Software Engineering-1 (CS504)
Assignment # 5 (Solution)
 Total marks = 20
 Deadline Date =Expired
Please carefully read the following instructions before attempting the assignment.

Rules for Marking

It should be clear that your assignment would not get any credit if:

· The assignment is submitted after due date.

· The submitted assignment does not open or file is corrupt.

· The assignment is copied. Note that strict action would be taken if the submitted assignment is copied from any other student. Both students will be punished severely.

1) You should concern recommended books to clarify your concepts as handouts are not sufficient.
2) You are supposed to submit your assignment in .doc format. Any other formats like scaned images, PDF, Zip, rar, bmp, docx, .CPP etc will not be accepted

3) You are advised to upload your assignment at least two days before Due date.
4) This assignment file comprises of Two (2) pages.
Important Note:
Assignment comprises of Two (2) Questions and Total 20 Marks. Note that no assignment will be accepted after due date via email in any case (whether it is the case of load shedding or emergency electric failure or internet malfunctioning etc.). Hence, refrain from uploading assignment in the last hour of the deadline, and try to upload Solutions at least 02 days before the deadline to avoid inconvenience later on.

For any query please contact: CS504@vu.edu.pk
Question No. 1 [Marks 10]
How “Modularity” can help us to achieve a clear, easy to understand and maintainable code, Explain with Solid example.
Solution:

Modularity means to divide the large and complex modules in to smaller, less complex and hence more manageable pieces, which provide a base for handling multiple aspects (e.g. separation of concerns, abstraction and to develop a system that fulfills maximum of its requirements (especially non functional requirements)

Modularization is a design technique that is based on dividing the larger modules in smaller and more cohesive units. These cohesive units provide number of benefits including increased modifiability, understandability and maintainability, along with requiring minimum efforts to debug the resulting code.

The reason behind the above arguments is that these coherent (abstract) pieces localize the effect of change i.e. in case if any of these sub components or modules needs to be changed, the change will have minimum effect (most probably with in the scope of that sub module) and hence avoiding the ripple effect. This factor of localizing the change becomes the core to achieve the above mentioned features.

Further more this technique also effects the artifacts that are based on these modules e.g. they help make the documentation simple and properly managed. They help develop the code that is more readable and easy to modify which may further affect the efforts required for testing.

We provide the example of “modularity” at code level e.g.

Consider the following specification of a sample class (we suppose, this class is implemented as a complete module):

ClassName:

NumberSystem

Methods:

Hex2Bin(…) // hexadecimal to binary conversion

Hex2Oct(…) // hexadecimal to Octal conversion

Hex2Dec(…) // hexadecimal to Decimal conversion
Bin2Hex(…) // Binary to Hexadecimal conversion
Bin2Oct(…) // Binary to Octal conversion
Bin2Dec(…) // Binary to Decimal conversion
Oct2Dec(…) // Octal to Decimal conversion
Oct2Bin(…) // Octal to Binary conversion
Oct2Hex(…) // Octal to Hexadecimal conversion
Dec2Bin(…) // Decimal to Binary Conversion
Dec2Oct(…) // Decimal to Octal conversion
Dec2Hex(…) // Decimal to Hexadecimal conversion
HexAdd(…) // Hexadecimal Addition
BinAdd(…) // Binary addition
OctAdd(…) // Octal addition
DecAdd(…) // Decimal Addition
Now we divide this module in four sub modules based on the functionality
1) ClassName: BinAlgebra

Methods:

Bin2Hex(…)

Bin2Oct(…)

Bin2Dec(…)

BinAdd(…)

2) ClassName: OctAlgebra

Methods:
Oct2Dec(…)

Oct2Bin(…)

Oct2Hex(…)

OctAdd(...)
3) ClassName: HexAlgebra
Methods:

Hex2Bin(…)

Hex2Oct(…)

Hex2Dec(…)

HexAdd(...)
4) ClassName: DecAlgebra

Methods:

Dec2Bin(…)

Dec2Oct(…)

Dec2Hex(…)

DecAlgebra(...)

Clearly seen, that the sub modules are more cohesive, easy to maintain and modify. Furthermore, as all the sub modules have become separate entities independent of others, so modifying any of them will not affect the rest of the system.

Question No. 2 [Marks 10]

How the short circuit evaluation of AND operator (&&) and OR operator (||) in C++, helps us to write a safe code, Explain, at least with one example (apart from the one, given in handouts).

Solution:

Short circuit evaluation of code provides a powerful feature to write down the safe code and especially to avoid runtime memory leakages.
Basically the idea behind is that the AND operator (&&) and OR operator (||) are evaluated from left to right and the evaluation stops as soon as the minimum condition to execute the rest of the code becomes true, in which case the further evaluation is not performed. So using this technique we can provide a guard on the later conditions to ensure that these conditions don’t deviate from the normal behavior. E.g. we can check where the memory to an object has been allocated or not, before we call any of its method.

e.g.

Consider the following statements:

if(Obj->Add(3)) {

 // Addition successful
}

In the above code, the successful execution is based on the value of object “Obj”. If it is not allocated any memory (in other words object does not exist) the above statement will throw an exception. However to ensure that the code will be secure we use “left to right” evaluation property along with an additional condition that acts as a guard. Now consider the following code:
If (Obj !=NULL) && (Obj->Add(3)) {

 // Addition successful

}

Now if “Obj” is not assigned any memory i.e. object does not exist, the rest of code will not be executed and hence memory leakage and any other side effect can be avoided up to maximum extent.

