CHAPTER 1

FROM NATURE TO NATURAL COMPUTING

Y. gcience has often made progress by studving simple absivactions when mare realistic
models are foo complicated and confusing.
(1. Stewart, Does God Play Dice, Penguin Books, 1997, p. 65)

“ften the most profound insights in science come when we develop a method for prob-
mg a new regime of Nature. "

(A, Nielsen and [ Chuang, Quantum Computation and Chantum [nformation, Cam-
bridge University Press, 2000, p. 3)

1.1 INTRODUCTION

During the early days of humanity natural resources were used to provide
shelter and food. We soon learned to modify and manage nature so as to
breed crops and animals, build artifacts, control fire. etc. We then started to ob-
serve and study biological, chemical, and physical phenomena and patterns in
order to better understand and explain how nature works. As examples, by learn-
g about the physical laws of motion and gravity 1t became possible to design
arcrafts; and by understanding some basic principles of life 1t 1s now possible to
manage nature in various levels, from the ereation of transgenic food to the con-
trol ol diseases.

With the advent ol computers, the way human bemngs interact with nature
changed drastically. Nature 1s now being used as a source ol mspiration or
metaphor for the development of new techniques lor solving complex problems
in various domains, [rom engineering to biology: computers can simulate and
emulate biological life and processes; and new matenal and means with which
to compute are currently being investigated. Nafural computing 1s the terminol-
ogy mtroduced to encompass these three types of approaches, named, respec-
tivelv: 1) computing inspired by nature, 2) the simulation and emulation of
natural phenomena in computers. and 3) computing with natural materials. This
book provides an mtroduction to the broad leld of natural computing. It consti-
tutes a textbook-style treatment of the central 1deas of natural computing, inte-
grated with a number of exercises, pseudocode, theoretical and philosophical
discussions, and relerences lo the relevant hiterature in which to gather [urther
information, support, selected websites, and algorithms mvolving the topics cov-
cred here. This introductory chapter provides some motivations to study natural
compuling. challenges the student with some sample 1deas. discusses 1ls
philosophy and when natural computing approaches are necessary, provides a
taxonomy and makes a brief overview of the three branches of the proposed
laxonomy for natural computing.
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1.1.1. Motivation

Why should we study natural computing and why should research in this broad
area be supported? There are many reasons for doing so; from the engineering of
new computational tools for solving complex problems whose solutions are so
far unavailable or unsatisfactory: to the design of systems presenting nature-like
patterns, behaviors and even the design of new forms of life; and finally to the
possibility of developing and using new technologies for computing (new com-
puting paradigms). Although still very voung m most of 1ts forms. the many
products of natural computing are already available i various forms nowadays,
i washing machines, trains, toys, air conditioming devices, motion pietures,
mside computers as virtual life, and so forth. Some of these apphications will be
reviewed throughout this book with varving levels of details,

Natural phenomena (e.g.. processes. substances, organisms, eic.) have long in-
spired and motivated people to mumic, design, and build novel systems and arti-
facts. I'or many centuries, the observation of the natural world has allowed peo-
ple to dewvise theories about how nature works. For example, physics 1s
abounded with laws describing clectromagnetism (Maxwell's equations), ther-
modynamies (first law: conservation, second law: entropy, and thard law: abso-
lute zero), motion (Newton’s laws), and so forth, Artifacts, such as sonar echo-
location, chemical substances used for pharmaceutical purposes, infrared imag-
ing syslems, airplanes, submarines, ete., were all developed by taking inspiration
from nature. from ammals (bats, birds, etc.) to chemmeal substances

Natural computing 1s the computational version ol this process ol extracting
ideas from nature to develop “artificial’ (computational) systems, or using natu-
ral media (ec.g.. molecules) to perform computation. The word artificial here
means only that the systems developed are human-made instead of made by na-
ture. While not the rule, in some cases, the products of natural computing may
turn out to be so life-like that it becomes difficult to tell them apart from natural
phenomena. Natural computing can be divided mto three main branches (Figure
1.1) (de Castro and Von Zuben, 2004 de Castro, 2003):

1y Computing inspired by nature: 1t makes use of nature as inspiration for
the development of problem solving techniques. The mam i1dea of this
branch 18 to develop computational tools (algorithms) by taking nspira-
tion from nature for the solution of complex problems.

2y The simudation and enndation of nature by means of computing: 1t 1s basi-
callv a synthetic process aimed at creating patterns, forms, behaviors, and
organisms that (do not necessarily) resemble ‘life-as-we-know-it", Ifs
products can be used to mimic vanous natural phenomena, thus increas-
ing our understanding of nature and insights about computer models.

3)  Computing with natural materials: 1t corresponds to the use of natural
materials to perform computation. thus constituting a true novel comput-
ing paradigm that comes to substitute or supplement the cwrrent silicon-
based computers.
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Matural Computing

PART I PART II PART I
Computing Inspired by Nature | [Simulation and Emulation of MNature | | Computing with Natural Materials

Figure 1.1: The three main branches of natural computing and their order of appearance
in the book.

Therefore, natural computing can be defined as the field of research that,
based on or inspired by nature, allows the development of new computational
tools (in software, hardware or “wetware’) for problem solving, leads to the syn-
thesis of natural patterns, behaviors, and orgamisms, and may result 1n the design
of novel computing systems that use natural media to compute.

Natural computing 1s thus a field of research that testimonies against the spe-
clalization of disciplines in science. It shows, with its three main arcas of inves-
ligation - computing inspired by nature. the simulation and emulation of nature
by means of computing, and computing with natural materials - that knowledge
from wvariwous ticlds of research are necessary for a better understanding of life,
for the study and simulation of natural systems and processes, and for the pro-
posal of novel computing paradigms. Physicists, chemists. engineers, biologists,
compuler scienlists, among others, all have to act together or at least share 1deas
and knowledge m order to make natural computing feasible.

[t 15 also important to appreciate that the development and advancement of
natural computing leads to great benefits to the natural sciences, like biology, as
well. Many computational tools developed using 1deas {rom nature and the bio-
logical sciences are applied to create models and solve problems within the bio-
sciences. This application domain 1s becoming even more important over the last
few years with the emergence of new [ields of investigation like computational
biology and biomformatics (Attwood and Parry-Smmth, 1999, Baldi and Brunak,
2001, Waterman, 1993). Natural computing has also proven to be useful for a
better understanding of nature and life processes through the development of
highly abstract models of nature. Sometimes natural computing techniques can
be directly aimed at being theoretical models of nature. providing novel insights
into how nature works.

1.2 A SMALL SAMPLE OF IDEAS

The history of science 1s marked by several periods of almost stagnation, ter-
twined with times of major breakthroughs. The discoveries of Galileo, Newto-
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man mechanmies, Darwin’s theory of evolution, Mendel' s genetics, the develop-
ment of quantum physics, and the design of computers are just a small sample of
the scientific revolutions over the past centuries. We are m the mudst of another
technological revolution - the natural computing age, a time when the nterac-
tion and the similarity between computing and nature 1s becomung each day
greater, The transformation may be revolutionary for all those mmvolved in the
development of natural computing devices, but, if they do their job well, 1t waill
not necessarily make much difference for the end users. We mav notice our
spreadsheels recalculating faster. our grammar checker finally working, several
complex problems being solved, robots talking naturally to humans, cars driving
themselves, new forms of life, and patterns emerging 1in a computer screen 1n
front of us, computers based on biomolecules, ete. But we will all be deahing
with the end results of natural computing. not with the process itsell. However,
will ordinary people and end-users get a chance to experiment and play with
natural computing? In fact, we can get our hands dirty already. And we will start
doing this just by testing our ability to look at nature and computing 1n different
ways.

Below are discussions about some natural phenomena and processes involving
natural means: 1) clustering of dead bodies mn ant colonies; 2) bird [locking: and
3) manipulating DNA strands. All of them have already served as mspiration or
media for the development ol natural computing techniques and will be pre-
sented here as a first challenge and motivation tor the studv of natural comput-
ng. Read the deseriptions provided and try to answer the [ollowing questions.

To clean up their nests, some ant species group together corpses of ants or
parts of dead bodies, as 1llustrated in Figure 1.2, The basic mechamsm behind
this type of clusiering or grouping phenomenon 1s an atiraction between dead
items mediated by the ants. Small clusters of items grow by atiracting more
workers to deposit more dead bodies. This grouping phenomenon can be mod-
eled using two simple rules:
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Figure 1.2: Clustering of dead bodies in an ant colony. (a) Initial distribution of ants. (b)
Clustered bodies.
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Pick up rule: 1f an ant finds a dead body, 1t picks 1t up and wanders around the
arena until it finds another dead body. The probability or likelihood that an ant
picks up a dead body 15 mversely proportional to the number of items n that
portion of the arena: that 1s, the more dead bodies around, the smaller the prob-
ability 1t 15 picked up. and vice-versa.

Dropping rule: while wandering around, the loaded ant eventually tinds more
dead bodies n 1ts way. The more dead bodies are found in a given region of the
arena, the higher the probability the ant drops the dead body it 15 carrying at that
location of the arena, and vice-versa.

As a result of these very simple behavioral rules, all dead items will eventu-
ally be brought together mto a single group, depending on the mitial conligura-
t1on of the arena and how the rules are set up

Chrestion 1: what kind of problem could be solved mspired by this simple
model of a natural phenomenon?

Ceestion 2. how would you use these 1deas to develop a computing tool (e.g.,
an algorithm) for solving the problem vou specified above? m

Figure 1.3 illustrates a bird [lock. When we see birds flocking in the sky. 1t 1s
most natural to assume that the birds ‘lollow a leader™; m this picture, the one n
front of the flock. However, 1t 1s now believed (and there are some good ewi-
dences to support 1t) that the birds 1n a flock do not follow any leader.

There 15 no “global rule’ that can be defined so as to simulate a bird flock. It 1s
possible, however, to generate seripts for each bird 1in a simulated flock so as to
create a mote realistic group behavior (for example, in a computer simulation),
Another approach, one that 1s currently used 1in many motion pictures, 1s based
on the derivation of generic behavioral rules for individual birds. The specifica-
tion of some simple individual rules allows realistic stmulation of birds flocking,
The resultant flock 1s a result of many birds following the same simple rules.

Cheestion | describe (some of) these behavioral rules that, when applied to
cach bird n the flock. result in an emergent group behavior that 1s not specifi-
cally defined by the individual rules. It means that such rules, together with the
mteractions among individual birds, result mn a global behawvior that cannot often
be predicted by simply looking at the rules.

Figure 1.3: [llustration of a flock ol birds.
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Figure 1.4: Double strand of DNA.

Cuestion 2: can you extend these rules to herds of land amimals and schools of
fish? That 1s, 1s there a significant qualitative difference between these various
types of group behavior? 4

I'igure 1.4 depicts a double strand of DNA. The DNA molecules contain the
genetic information of all hving beings on earth. It 1s known that this genetic
information, together with the environmental intfluences, determines the pheno-
type (expressed physical characteristics) of an individual

Roughly, DNA molecules are composed of [our bases which bind to each
other exclusively 1n a complementary lashion: A binds with 1, and C binds with
(7, Genetic engineering techmaques can nowadays be used to artificially mampu-
late DNA so as to alter the genetic information encoded in these molecules. For
mstance, DNA molecules can be denatured (separated nto single strands). an-
nealed (single strands can be “glued’ together to form double strands of DNA),
shortened (reduced 1n length), cuf (separated in two), multiplied (copied), modi-
fied (e.g.. new sequences mserted), ete.

Ouesiion 1: 11 the mformation that encodes an organism 1s contamed 1 DNA
molecules and these can be manipulated, then life can be seen as information
processing. Based on your knowledge of how standard computers (PCs) work,
propose a new model of compuler based on DNA strands and suggest a number
of DNA mampulation techniques that can be used to compute with molecules.

Cluestion 2: what would be the advantages and disadvantages of vour pro-
posed DNA computer over the standard computers”? ]

[f vou have not tried to answer these questions vel, please take vour time.
They may give vou some [lavor ol what researchers on some branches of natural
computing do. If you want to check possible answers to these questions, please
refer to Chapters 3, 8, and 9 respectively

S50, how did vou get on?

[f your answers were too different from the ones presented in this volume, do
not worry; they may constitute a potentially new algorithm or computing para-
digm!
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1.3 THE PHILOSOPHY OF NATURAL COMPUTING

One important question this book tries to answer 1s how researchers discover the
laws and mechanisms that are so effective in uncovering how nature functions
and how these can be used within and for computing. A natural result ol this line
of mvestigation 1s the proposal of novel ways of computing, solving real-world
problems, and synthesizing nature. Scientific explanations have been domuinated
by the formulation of principles and rules governing systems’ behaviors. Re-
searchers usually assume that natural systems and processes are governed by

finite sets of rules. The search for these basic rules or fundamental laws 15 one of

the central 1ssues covered 1n this book. It 1s not easy to [ind such rules or laws,
but enormous progress has been made. Some examples were provided in Section
L2

Most of the computational approaches natural computing deals with are based
on highly simplified versions of the mechanisms and processes present in the
correspondimg natural phenomena. The reasons for such simphlications and ab-
stractions are mamfold. First of all. most simplifications are necessary to make
the computation with a large number of entities tractable. Also. it can be advan-
tageous to lighhght the minimal features necessary to enable some particular
aspects of a system to be reproduced and to observe some emergent propertics.
A common question that may arise 1s: “if 1t 15 possible to do something using
simple techniques, why use more complicated ones?”

This book focuses on the extraction of 1deas and design aspects of natural
computing. 1 particular the teaching of modeling, how to make useful abstrac-
tions, and how to develop and use computer tools or algorithms based on nature.
[n conirast to some books on the technological and advanced aspects of specific
topics, this text outhines the relations of theoretical concepts or particular techno-
logical solutions mspired by nature. It 15 therefore important to learn how to cre-
ale and understand abstractions, thus making a suitable simphlication ol a svs-
tem without abolishing the important features that are to be reproduced.

Which level 1s most appropriate for the investigation and abstraction depends
on the scientific question asked, what type of problem one wants to solve, or the
life phenomenon to be synthesized. As will be further discussed, simple behav-
1oral rules for some msects are sufficient for the development of computational
tools for solving combinatorial problems and coordinate collective robotic sys-
tems. These are also uselul for the development ol computer simulations ol bio-
logieal svstems 1n artificial hife, and the creation of abstract models of evolution,
and the nervous and immune systems, all aimed at solving complex problems in
various domains.

Natural computing usually integrates experunental and theoretical biology,
physics and chenustry, empirical observations from nature and several other
sciences, facts and processes from different levels of investigation into nature so
as to design new problem solving techniques, new forms ol mimicking natural
phenomena, and new ways of computing, as summarized in Figure 1.5.
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Figure 1.5: Manv fields of investization have to be integrated for the study and devel-
opment of natural computing. As oulcomes, new ways of computing. new problem solv-
ing techniques, and possible forms of synthesizing nature result,

1.4 THE THREE BRANCHES: A BRIEF OVERVIEW

This section provides a very brief overview of the three branches of natural
computing and their main approaches. The bibliography cited 1s basically com-
posed ol references [rom pioneer works and books where [urther and didactic
information can be found on all topics discussed. Instead of trving to cover the
arcas reviewed in detail, general comments about most natural computing tools,
algorithms. techniques and their potential apphcation areas are provided, to-
gether with a discussion of how the resultant computational tools or systems
relate (interact) with nature and the natural sciences. The reader will be pointed
to the chapters that deal specifically with each of the approaches discussed.

1.4.1. Computing Inspired by Nature

The main motivation for this part of the book 1s that nature has greatly enriched
computing. More importantly, nature has been very successful i solving highly
complex problems. In a very low level, there 1s an urge for survival in living
organisms: they have to search for tood, hide from predators and weather condi-
tions, they need to mate. organmize their homes, ete. All this requires complex
strategies and structures not usually directly modeled or understood. But, for
mstance, viewing a colony ol ants foraging lor [ood as an “mtelhgent behavior’
1s not always very mtuitive for us, used to attribute “intelligent behaviors™ to
“mtelligent beings™. What 1f | tell vou that the way ants forage for food has in-
spired algorithms to solve routing problems in communication networks? Can
vou imagine how this 1s done?
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Among all natural computing approaches. computational algorithms and svs-
tems mnspired by nature are the oldest and most popular ones. They arose with
two main objectives in mind. First, researchers were mterested m the modeling
of natural phenomena and their simulation m computers. The common goal 1n
this direction 18 to devise theoretical models. which can be implemented in com-
puters, [aithful enough o the natural mechanisms nvestigated so as lo reproduce
qualitatively or quantitatively some of their functioning. Theoretical models are
supposed to provide a deeper insight and better understanding of the natural
phenomena being modeled. to aid in the critical analysis and design ol experi-
ments, and to facilitate the recovery of results from laboratory experimentation
or empirical observations. There 15 a vast number of theoretical models available
mn the hterature concerning all natural sciences, meluding biology, ethology,
ecology, pharmacology, nutrition and health care, medicme. geophvsics. and so
forth.

However, the focus of computing inspired by nature. under the umbrella of
natural computing. 15 most often on problem solving mstead ol on theoretical
modeling, and this leads to the second objective of computing based on nature.
The second objective, thus, involves the study of natural phenomena. processes
and even theoretical models for the development ol computational systems and
algorithms capable of solving complex problems. The motivation, in this case, 1s
to provide (alternative) solution techniques to problems that could not be (satis-
factorily) resolved by other more traditional techniques. such as linear. non-
linear, and dynamic programmung. In such cases, the computational techniques
developed can also be termed bio-inspired computing or biologically motivated
compuiing (Mange and Tomassini, 1998; de Castro and Von Zuben, 2004), or
computing with biological metaphors (Paton, 1994).

As computing mspired by nature 15 mostly aimed at solving problems, almost
all approaches arc not concerned with the creation of accurate or theoretical
models ol the natural phenomena being modeled. In many situations highly ab-
stract models, sometimes called metaphors (Paton. 1992), are proposed mimick-
ing particular features and mechanisms from biology. What usually happens 1s
that a natural phenomenon, or a theoretical model of 1t, gives rise to one particu-
lar computational tool and this 1s then algorithmically or mathematically 1m-
proved to the extent that, in the end, 1t bears a far resemblance with the natural
phenomenon that origmally motivated the approach. Well-known examples of
these can be found n the fields of artificial neural networks and evolutionary
algorithms, which will be briefly discussed n the following.

A landmark work 1n the branch of bio-inspired computing was the paper by
MecCulloch and Pitts (1943), which mtroduced the first mathematical model of a
neuron. This neuronal model, also known as artificial neuron, gave rise to a field
of investigation of its own, the so-called artificial neural networks (Fausett,
1994 Bishop, 1996; Haykin, 1999; Kohonen. 2000). Artificial neural networks,
to be discussed 1n Chapter 4, can be defined as information processing svstems
designed with inspiration taken from the nervous system, in most cases the hu-
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man brain, and with particular emphasis on problem solving. There are several
types of artificial neural networks (ANNs) and learning algonthms used to set
up (train) these networks. ANNs are distinet from what 15 currently known as
computational neuwroscience (('Reilly and Munakata, 2000: Dayan and Abbot,
2001; Trappenberg, 2002). which 1s mainly concerned with the development of
biologically-based computational models of the nervous system.

Another computing approach motivated by biology arose in the nud 1960°s
with the works of 1. Rechenberg (1973), H. P. Schwefel (1965), L.. Fogel, A.
Owens and M. Walsh (Fogel et al., 1966), and I Holland (1975). These works
gave nse to the held of evolutionary computing (Chapter 3), which uses 1deas
from evolutionary biology to develop evolutionary algorithms for search and
optimization (Back et al., 2000a b, Fogel, 1998; Michalewicz, 1996). Most evo-
lutionary algorithms are rooted on the neo-Darwiman theory ol evolution, which
proposes that a population of mndividuals capable of reproducing and subject to
genetic variation followed by natural selection result in new populations of indi-
viduals mereasmgly more [1 to their environment. These simple three processes,
when implemented 1in computers, result in evolutionary algorithms (EAs). The
main types of LLAs are the genetic algorithms (Mitchell, 1998; Goldberg, 1989),
evolution strategies (Schwefel. 1995. Bever, 2001). evolutionary programming
(Fogel, 1999), genetic programming (Koza, 1992, 1994. Bahnzal et al | 1997),
and classifier systems (Booker et al., 1989, Holmes et al., 2002).

The term swarm intelligence (Chapter 3) was coined 1n the late 1980 s to refer
to cellular robotic systems in which a collection of simple agents m an environ-
ment nteract based on local rules (Bemi, 1988; Bem and Wang, 1989). Nowa-
days, the term 1s being used to describe anv attempt to design algorithms or
problem-solving devices mspired by the collective behavior of social organisms,
from msect colomes to human societies, Swarm mtelligence has two mam [ront-
lines: algorithms based on the collective behavior of social insects (Bonabeau et
al.. 1999), and algonthms based on cultures or sociocognition (Reyvnolds, 1994
Kennedy et al., 2001). In the [irst case, the collective behavior of anls and other
inscets has led to the development of algorithms for solving combinatorial opti-
mization, clustering problems. and the design of autonomous robotic systems.
Algonthms based on cultures and sociocogmtion demonstrated effectiveness in
performing search and optimization on continuous and discrete spaces.

Artificial immune svstems (AIS) or immunocomputing (Chapter 6), borrow
1deas [rom the immune system and its corresponding models to design computa-
tional systems [or solving complex problems (Dasgupta, 1999; de Castro and
Timmuis, 2002; Timnus et al., 2003). This 15 also a voung ficld of research that
emerged around the nud 19807s. Its application areas range from biology to ro-
botics. Sumlarly to ANNs. EAs and swarm intelligence, different phenomena,
processes, theories and models resulted in different tvpes of immune algorithms,
from evolutionarv-like algorithms to network-like svstems. Several other
(emerging) types of algorithms inspired by nature can be found in the hiterature.
For instance. it is possible to list the simulated annealing algorithm, the systems
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based on growth and development, and the cells and tissues models (Kirkpatrick
et al., 1983, Aarts and Korst, 1989; Paton et al., 2004; Kumar and Bentley,
2003 Glover and Kochenberger, 2003; de Castro and Von Zuben, 2004),

Figure 1.6 summarizes the main components ol computing mspired by nature
to be discussed in this book and the respective chaplers,

Computing Inspired by Nature

Chapter 3 Chapter 4 Chapter 5 Chapter &
EA ANMN Sl AlS

Figure 1.6: The main components of computing inspired by nature to be discussed in this
book: ANN: artificial neural networks (neurocomputing). EA: evolutionary algorithms
(evolutionary computing); SI: swarm mtelligence; AIS: artihicial immune svstems (1m-
munocomputing).

1.4.2. The Simulation and Emulation of Nature in Computers

While biologically inspired computing 1s basically aimed at solving complex
problems, the second branch of natural computing provides new tools for the
synthesis and study of natural phenomena that can be used to test biological
theories usually not passive of lesting via the traditional experimental and ana-
lvtic techniques. It 15 i most cases a synthetic approach aimed at synthesizing
natural phenomena or known patterns and behaviors. There 1s also a comple-
mentary relationship between iological theory and the synthetic processes of
the simulation and emulation of nature by computers. Theoretical studies sug-
gest how the synthesis can be achieved. while the application of the theory 1n the
synthesis may be a test for the theory. There are basically two mam approaches
to the simulation and emulation of nature in computers: by using artificial life
techmiques or by using tools for studving the fractal geometry of nature (Figure
L)

Simulation and Emulation of Mature in Computers

Chapter 7 Chapter 8
Fractal Geometry of Nature Artificial Life

Figure 1.7: The two main approaches for the simulation and emulation of nature in com-
puters and the chapters in which they are going to be presented.
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Recent advances in computer graphics have made it possible to visualize
mathematical models of natural structures and processes with unprecedented
realism. The resulting images, ammations. and miteractive systems are useful as
scientific, research, and educational tools 1 computer science, engineerig, bio-
sciences, and many other domains. One major breakthrough in the modeling and
synthesis ol natural patterns and structures 1s the recognition that nature 1s [rac-
tal in the sense that it can be successtully emulated by fracial geomeitry (Man-
delbrot, 1983: Peitgen et al., 1992: Flake., 2000; Lesmoir-Gordon et al., 2000),
In a simphified form. fractal geometry (Chapter 7) 1s the geometry of nature,
with all 1ts wrregular, fragmented. and complex structures. In general, fractals are
characterized by infinite details, infinite length, self-similanty, fractal dimen-
sions, and the absence of smoothness or dervative, Nature provides many ex-
amples of fractals, for mstance, ferns, coasthnes, mountains, cauliflowers and
broccoli, and many other plants and trees are {ractals. Moreover, organisms are
fractals: our lungs, our circulatory system, our bramns, our kidnevs, and many
other body systems and organs are fractal.

There are a number of techniques for modeling fractal patterns and structures,
such as cellular automaia (Ilachinsk:, 2001, Woltram, 1994), L-svsfems or Lin-
denmayer systems (Lindenmaver, 1968. Prusinkiewicz and Lindenmaver, 1990),
iterated function systems (Hutchinson, 1981; Barnsley and Demko, 1985, Barns-
ley, 1988), particle systems (Reeves, 1983), Brownian motion (Fournier et al |
1982, Voss, 1983), and others. Theiwr applications include computer-assisted
landscape design, the study of developmental and growth processes, and the
modeling and synthesis (and corresponding analysis) of an innumerable amount
of natural pattems and phenomena. But the scope and importance of fractals and
fractal geometry go far beyond these. Forest fires have fractal boundaries; de-
posits built up in electro-plating processes and the spreading of some liqguds n
viscous [Tuids have fractal pattermns: complex protein surfaces [old up and wrin-
kle around toward three-dimensional space mn a fractal dimension; antibodies
bind to antigens through complementary fractal dimensions of their surfaces:
fractals have been used to model the dynamics of the AIDS virus; cancer cells
can be 1dentified based on their fractal dimension; and the list goes on.

Artificial life (Alafe) will be discussed i Chapter 8. It corresponds to a re-
search lield that complements traditional biological sciences concerned with the
analvsis of hiving orgamisms by tryimg to svnthesize life-hike behaviors and crea-
tures 1 computers and other artificial media (Langton, 1988; Adamm, 1998,
Levy, 1992), Differently from nature-mnspired computing, approaches in the
Alife held are usually not concerned with solving any particular problem.
Alile has. as major goals, 1o mcerease the understanding ol nature (hife-as-it-1s),
enhance our insight into artificial models and possibly new forms of life (life-as-
it-could-be), and to develop new technologies such as software evolution, so-
phisticated robots, ecological momtoring tools, educational svstems, computer
graphies, etc.
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Al.ife systems have. thus, been designed to simulate and emulate behaviors
or organisms 1n order to allow the study or simulation of natural phenomena or
processes. In most cases 1t emphasizes the understanding of nature, and applica-
tions as a problem solver are left in second plan. For mstance, Alafe systems
have been created to study traflic jams (Resnick. 1994). the behavior of syn-
thetic biological systems (Ray, 1994); the evolution of organisms in virtual envi-
ronments (Komosmskt and Ulatowski., 1999, the simulation of collective be-
haviors (Revnolds. 1987); the study and characterization of computer viruses
(Spafford, 1991). and others. Its major ambition 1s to buld living systems out of
non-living parts; that 1s, to accomplish what 1s known as “strong Al.ife’ (Sober,
1996; Rennard, 2004).

1.4.3. Computing with Natural Materials

Computing with natural materials 1s concerned with new computing methods
based on other natural material than silicon. These methods result in a non-
standard computation that overcomes some of the limitations of standard, se-
quential John von Neumann computers. As any mathematical operation can be
broken down into bits, and any logical function can be built using an AND and a
NOT gate, any computable “thing” can be worked out by appropriately wired
AND and NOT gates. This independence of a specific representation makes 1t
possible to use new concepls for the computational process based on natural
materials, such as, chemical reactions, DNA molecules, and quantum mechani-
cal devices.

The history of computer technology has involved a sequence of changes trom
one lype of realization to another; from gears to relays to valves to transistors to
mtegrated cireuits, Nowadays, a single silicon chip can contamn milhions of logic
gates. This mimiaturization of the most basic information processing clements 1s
mnevitably going to reach a state where logic gates will be so small so as to be
made of atoms. In 1965 G. Moore (1965) observed that there 1s an exponential
growth in the number of transistors that can be placed in an integrated circuit.
Accordimg to what 1s now known as the “Moore’s law™, there 1s a doubling of
transistors i a chip every couple of years. If this scale remains vahd, by the end
of this decade, silicon-based computers will have reached their limits in terms of
processing power. One question that remains thus, 13 “What other materials or
media can be used to perform computation n place of stheon?”, Put in another
form, after certain level of mmmaturization of the computing devices. the stan-
dard physical laws will be no longer applicable, because quantum elfects waill
begin to take place. Under this perspective, the question that arises refers to
“How should we compute under quantum effects?”.

Computing with natural materials 1s the approach that promises to bring a ma-
jor change n the current computing technology n order (o answer the questions
above, Motivated by the need to 1dentify alternative media for computing, re-
searchers are now trying to design new computers based on molecules, such as
membranes, DNA and RNA. or quantum theory. These 1deas resulled i what 1s
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now known as molecular computing (Paun et al., 1998, Gramf et al., 2001,
Calude and Paun, 2001, Piun and Cutkosky, 2002; Sienko et al., 2003) and
gquantum computing or guantum compulation (Hirvensalo, 2000; Nielsen and
Chuang, 2000, Pittenger, 2000), respectively. Figure 1.8 summanzes the man
components ol computing with natural matenals.

Molecular computing 1s based upon the use of bwlogical molecules (bio-
molecules) to store information together with genetic engineering (biomolecu-
lar) techniques to manipulate these molecules so as to perform computation. [t
constitutes a powerful combination between computer science and molecular
biology. The field can be said to have emerged due to the work of L. Adleman
who, in 1994, solved an NP-complete problem using DNA molecules and bio-
molecular technmques for mampulating DNA (Adleman, 1994). Since then, much
has happened: several other ‘molecular solutions™ to complex problems have
been proposed and molecular computers have been shown to perform umiversal
computation. The maimn advantages of molecular computing are its high speed,
energy elliciency, and economical information storage. An overall, sinking ob-
servation about molecular computing 1s that, at least theoretically, there scem to
be many diverse wayvs ol constructing molecular-based universal computers.
There are, of course, the possibility of errors and difficulties 1n 1mplementing
real molecular computers. When compared with the currently known silicon-
based computers, molecular computers offer some unique features, such as the
use of molecules as data structures and the possibility of performing massively
parallel computations. In Chapter 9, this book reviews one particular molecular
computing approach, namely. DNA computing.

When the atomic scale ol logic gates 1s reached, the rules that will prevail are
those of quantum mechanics. which are quite different [rom the classical rules
that deternune the properties of conventional logic gates, Thus, 1 computers are
to become even smaller 1in the (not so far) future. quantum technology must
complement or supplement the current technology. Quantum computation and
guanium information, miroduced m Chapter 10, 18 the study ol the information
processing tasks that can be accomplished using quantum mechanical systems
(MNielsen and Chuang, 2000). In quantum computers information 1s stored at the
microphysical level where quantum mechanisms prevail.

Computing with Natural Materials ‘

Chapter 9 Chapter 10 ‘

DNA Computing Cluantum Computing

Figure 1.8: The two main branches ol computing with natural materials or media.
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In such cases, a bit could represent both zero and one simultaneously. and
measurements and manipulations of these guantum bits are modeled as matnx
operations. The seminal paper by R, Feynman (1982) mitroduced a computer
capable of simulating quantum physies, A hittle later on, 2. Deutsch (1984) pub-
lished a paper where he demonstrated the universal computing capability of such
quantum computers. Another seminal work that served to boost the field was the
paper by P. Shor (1994) introducing the first quantum algorithm capable of per-
formimg etficient factorization. something that only a quantum computer could
do. What 1s important to remark about quantum computing, though. 1s that 1t can
provide entirely novel types of computation with qualitatively new algorithms
based on quantum mechanics. quantum technology thus offers much more than
simply adding the capability of processing more bits using the current silicon-
based computers. Therefore, quantum computing aims at nontraditional hard-
ware that would allow quantum effects to take place.

1.5 WHENTO USE NATURAL COMPUTING APPROACHES

While studying this book. the reader will be faced with a diverse range of prob-
lems to be solved. phenomena to be svnthesized and questions to be answered.
In all cases, one or more of the natural computing approaches briefly reviewed
above will be used to solve the problem, synthesize the phenomenon or answer
the question. However, 1t 1s important to acknowledge that natural computing 1s
not the only field of investigation that provides solutions to these, nor 1s 1t al-
ways the most swmtable and efficient approach. To clanfy when natural comput-
ing should be used, let us present some examples and arguments 1n each of the
three branches. Let us assume that you have just fimished vour undergraduation
course and now have an engineering or science degree m hand. In vour [irst in-
terview for a job in a major company. vou are poscd with three problems and
glven some time to provide solutions to them.

Problem 1: the company 1s expanding rapidly and now wants to build a new
factory in a country so far unattended. The site where the factory 15 to be built
has already been chosen as long as the cities to be attended by this factory.
Figure 1.9 depicts the scenario. The problem 1s: given all the cities in the map
find the smallest route [rom the lactory to all ciies passing by each ety exactly
once and returning to the departure city (factory). This problem 1s well-known
from the literature and 1s termed fraveling salesman problem (TSP).

Such problems have several practical applications, from fast food delivery to
printed circuit board design. Although this problem may be simple to state 1t 1s
hard to solve, mainly when the number of cities involved 1s large. For example,

1f’ there 1s one factory plus three other cities, then there are 6 possible routes; 1f

there 1s one factory plus four other cities, then there are 24 possible routes: if
there 1s one factory plus five other cities, then there are 120 possible routes; and
so on. This corresponds to a factorial growth in the number of possible routes 1n
relation o the number of cities 1o be atlended.



16 When to Use Natural Computing Approaches

Figure 1.9: Map of the new country to be attended by the company. The city where the
factory 1s gomg to be built 1s detached together wath the 27 cities to be attended.

The most straightforward solution yvou could provide to this problem 1s to
suggesl the lesting of all possible routes and the choice ol the smallest one; an
approach we usually call *brute force™ or “exhaustive search’. Although simple,
this approach 1s only efficient for a small number of cities. Assunung vour com-
puter 1s capable of analvzing 100 routes per second. 1t would take much less
than a second to solve a three cities instance of this problem and a bit more than
a second to solve a five cities instance of the problem. For the problem pre-
sented, however. the scenario 1s much different: there are 27! possible routes,
and this corresponds to approximately 1.1 = 10°* possible routes to be tested. In
vour computer, the exhaustive search approach would take, approximately,
3.0 x 10™ hours, or 1.3 x 107 days. or 3.5 x 10" years of processing time to
provide a solution. Y

FProblem 2. the expansion plans of the company include the development of
motion prcture animations. The first animation to be designed mvolves a herd of
zebras running away from a few hungry lons. Your task 1s to propose a means
of realistically and effectively simulating the collective behavior of the zebras,

The first proposal you mav come out with 1s to write a scripf for each zebra;
that 1s. a computer program that [ullv describes the action of the zebras in the
field. This, of course, would seem easier than writing a single script to coordi-
nate the whole herd. Again, though simple. this approach has some drawbacks
when the number ol zebras involved 1s large and when more realistic scenarios
are to be created. First. as the script 1s static. in the sense that the behaviors
modeled do not change over time, the resultant collective behavior 1s the same
every time the simulation 1s run. Second, the number of scripts to be written
grows with the size of the herd and the complexity of the scripts grows m a
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What 1s the Occam’s Razor (also spelled Ockham’s Razor)? What 1s 1ts
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also provide a better understanding of what 1s meant by and what 1s behind of
many of the phenomena, processes, and systems studied 1n natural computing.
Finally, this chapter makes use ol the many concepts reviewed lo start our dis-
cussion of nature, which led to the development of natural computing. Several
natural systems and processes are used to illustrate the meaning of the concepts
mvestigaled here. Most of these examples {from nature will be returned to in later
chapters.

2.1.1. Natural Phenomena, Models, and Metaphors

All the approaches discussed in this volume are rooted on and sometimes en-
hanced by their natural plausibility and inspiration. The focus 1s on how nature
has offered mspiration and motivation for thewr development. However, all these
approaches are very appealing to us mainly for computational reasons, and they
also may help us study and understand the world we inhabit, and even to create
new worlds, new forms of life, and new computing paradigms. They hold out
the hope of offering computationally sufficient accurate mechamistic accounts of
the natural phenomena they model, mimic, or study, almost always with a view
of computing, understanding, and problem solving. They have also radically
altered the way we think of and see nature; the computational beauty and use-
fulness of nature.

Modeling 1s an integral part of many scientific disciplines and lies behind
greal human achievements and developments. Most olten. the more complex a
system, the more simplifications are embodied 1 1ts models. The term model
can be found in many different contexts and disciplines meaning a variety ol
different things. Trappenberg (2002) has defined “models [as] abstractions of
real world systems or implementations of a hvpothesis in order to mvestigale
particular questions or to demonstrate particular features of a svstem or a hy-
pothesis.” (Trappenberg, 2002; p. 7) It corresponds to a (schematic) description
of a system. theory, or phenomenon, which accounts for its known or inferred
properties and that mav be used for further studv of its characteristics. Put in a
different form, models can be used to represent some aspect ol the world. some
aspect of theories about the world, or both simultaneously. The representative
uselulness of a model hes in its ability to teach us somethmg about the phe-
nomenon 1t represents. They mediate between the real world and the theories
and suppositions about that world (Peck. 2004),

The critical steps in constructing a model are the selection of salient leatures
and laws governing the behavior of the phenomena under investigation. These
steps arc guided by metaphor and knowledge transfer (Ilolland, 1998). Ilow-
ever, for purely practical reasons, many details are usually discarded. In the par-
ticular case ol natural computing, models are most often simple enough to un-
derstand, but rich enough to provide (emergent) behaviors thatl are surprising,
mteresting, useful, and sigmbcant. If all goes well, what may commonly be the
case, the result may allow f{or the prediction and even reproduction of behaviors
observed 1n nature. and the achievement ol satislactory performances when a
given function 1s required from the model.
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The word metaphor comes from the Greek for “transference’. It corresponds
to the use of language that assigns one thing to designate another, in order to
characterize the latter in terms of the former. Metaphors have traditionally been
viewed as implicit comparisons. According to this view, metaphors of the form
X is a ¥ can be understood as X is fike . Although metaphors can suggesl a
comparison, they are pnimarily atinbulive assertions. nol merely comparisons
(Wilson and Keil, 1997; p. 535-537). For example, to name a computational tool
developed with inspiration 1in the human brain an “artificial neural network” or a
‘neurocomputing device” corresponds to attributing salient properties of the hu-
man brain to the artificial neural network or neuwrocomputing device. The first
part of this book, dedicated to computing nspired by nature. 1s sometimes re-
ferred to as computing with biological metaphors (Paton, 1994) or biologically
inspired computing (de Castro and Von Zuben, 2004).

The use of metaphors from nature as a means or mspiration to develop com-
putational tools for problem solving can also be exemplified by the development
of ‘artificial immune systems’ [or computer protection against viruses. One
might intuitively argue: “if the human immune system 1s capable of protecting
us against viruses and bacteria, why can’t I look mto 1its basic functioning and
lry to extract some ol these 1deas and mechamsms (o engineer a computer 1m-
mune system?” Actuallv, this type of metaphor has already been extracted, not
only by academie research institutions, but also by leading companies in the
computing arca. such as [IBM (Chapter 6). There 1s. however. an important dif-
ference between a metaphor and a model. While models are more concerned
with quantitatively reproducing some phenomena. metaphors are usually high-
levels abstractions and mspirations taken from a system or process in order to
develop another. Most metaphors are basically concerned with the extraction or
reproduction of qualitative features.

A simple formula, a computer sumulation, a physical system: all can be mod-
els of a given phenomenon or process. What 1s particularly important. though. 1s
to bear in mind what are the purposes of the model being created. In theoretical
biology and experimental studies. models mayv serve many purposes:

o  Through modeling and 1dentification 1t 1s possible to provide a deeper and
more quanfitative deseription of the system being modeled and 1ts corre-
sponding experimental results.

o Models can aid m the entical analysis of hypotheses and in the under-
standing of the underlying natural mechanisms.

* DModels can assist in the prediction of behaviors and design of experi-
ments.

e Models may be used to simulate and stimulate new and more satisfactory
approaches 1o natural systems, such as the behavior of msect societies and
immune sy stems.

e Models may allow the recovery of information from experimental results.

An experiment can be considered as a procedure performed 1n a controlled en-

vironment for the purpose ol gathering observations, data, or facts, demonstrat-
mg known facts or theories, or testing hypotheses or theores, Most biological
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experiments are usually made in vive, within a hiving orgamsm (e g.. rats and
mice), or in vitre, in an artificial environment outside the hiving organism (e.g ., a
tesl tube)

There 15 a significant conceptual dilference between experiment, simulation,
realization, and emulation. In contrast lo experiments, simulations and realiza-
tions arc different categories ol models (Pattec, 1988). Simulations are meta-
phorical models that “stand for’ something else. and may cover different levels
of fidelity or abstraction. They can be performed by physical modeling, by writ-
ing a special-purpose computer program, or by using a more general simulation
package that 15 usually st1ll aimed at a particular kind of simulation. They can be
used, for instance, to explore theores about how the real-world functions based
on a controlled medum (e.g.. a computer). As an example, the simulation of a
car accident can be performed by specifying the place and conditions in which
the car was driven and then using a given medium (e g, the computer) to run the
simulation. Computer simulation 1s pervasive 1n natural computing. It has been
used to design problem-solving techniques that mimic the behavior of several
biological phenomena (Chapter 3 to Chapter 6], it has served to drive synthetic
environments and virtual worlds {Chapter 7 and Chapter 8), and 1t has been used
to simulate DNA computers (Chapter 9).

The realization of a system or organism corresponds to a hiteral, matenal
model that implements certain functions of the origimal; 1t 1s a substantive func-
tional device. Roughly speaking, a realization 1s evaluated primarily by how
well 11 can [unction as an mplementation of a design specification, and not n
relation to the goodness of the measurements (mappings) they perform. A sys-
tem or function 1s used to realize another when one performs in exactly the same
way as another (Paltee, 1988; Mehler, 2003). To emulate a system 1s lo imilate
or reproduce 1ts functions using another system or medium. The emulating svs-
tem has to perform the same functions ol the emulated system in the way the
latter does. A typical example in computer science 1s the emulation of one com-
puter by (a program running on) another computer. You may emulale a system
as a replacement for the system, whereas yvou may simulate a system if the goal
15, for instance, simply to analyze or study it

Natural computing approaches are anmed at simulating, emulating. and some-
times realizing natural phenomena, orgamsms, and processes with distinet goals,
The metaphorical representation of simulations makes them switable for design-
g problem solving techniques and mimics of nature. Realizations of nature, on
the contrary, would be the primary target ol the so-called strong artilicial life
(Chapter 8). It 1s also important to acknowledge that. as most natural computing
approaches 1o be studied here usually have not the same goals as models, they
have the advantages of being explicit about the assumptions and relevant proc-
esses 1ncorporated, allowimng for a closer control of the variables involved, and
providing frameworks to explain a wide range of phenomena.

Due mainly to these differences in goals and levels of details imcorporated,
most of the ghly simplified models discussed in this volume are usually treated
as metaphors, simulations, or simple abstractions of natural phenomena or
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processes. In addition, natural computmg techmques are usually based upon a
different modeling approach. The theoretical models used in biological sciences
are based. m most cases. on ordmary differential equations (ODE) or Monte
Carlo simulations. For example, when theoretical biologists want to create a
model of an armyv ant. they use some rule ol thumb such as “the more phero-
mone (a chemical released by ants) an ant detects, the [aster 1t runs™. This rule
would be translated into an equation of the type dy/dr = &P, where dx/dr 1s the
speed (distance change, dx, divided by time change. df) of the ant. & 1s a constant
of proportionality, and P 1s the pheromone level This simple formula captures
the essence of ant movement as described.

Despite the differences in approach, level of details, and accuracy, it 15 unde-
niable, and this will become clearer throughout the text, that the inspiration from
nature and the relationship with 1t 15 the core of natural computing. Metaphors
are 1mportant approaches not only for the creation of useful and mteresting
tools, but they may also aid the design of more accurate models and a better un-
derstanding ol nature. Thus. 11 1s not surprising that many researchers in natural
computing call their products models instead of metaphors.

2.1.2. From Nature to Computing and Back Again

[n most cases, the first step toward developing a natural computing system 1s to
look at nature or theoretical models of natural phenomena in order to have some
msights into how nature 1s. works, and how 1t behaves. In other cases, 1t might
happen that vou have a given problem at hand, and yvou know some sort of natu-
ral svstem solves a simular problem. A good example 1s the immune system
metaphor for computer security mentioned above. Another classical example 1s
the neural network metaphor: 1f there are brains that allow us to reason, think,
process visual information, memorize, etc., why can I not look mto this system
and trv to find its basic functioning mechanisms n order to develop an (1ntelli-
gent) “artificial brain™

The problem with the extraction of metaphors and mspiration from nature 1s
that 1t 1s usually very difficult to understand how nature works. In the particular
case of the brain, though some basic signal transnussion processes might be al-
ready known (and many other facts as well), 1t 15 still out of human reach to
fully uncover its mysteries, mainly some cognitive abilities such as hate and
love. The use ol technological means (e.g.. computers) to simulate, emulate or
reproduce natural phenomena may also not be the most suitable approach.
Would computers, such as the ones we have nowadays, be suitable to build an
‘artificial brain’ or an “artificial organism’? Can we simulate “wetware™ with the
current “hardware™? Furthermore, even if we do know how some natural proc-
esses work, would it still be suitable to simply reproduce them the way they are?
For example, we know that most birds are capable ol [lying by {lapping wings,
however airplanes fly using propellers or turbines. Why do airplanes not fly by
flapping wings”

Last, but not least, sometimes looking at nature or theoretical studies may not
be sufficient to give us the necessary insight into what could be done in compu-
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ting and engineering with these phenomena. We have already seen, in Chapter 1,
that the clustering of dead bodies in ants may result in computer algorithms for
solving clustering problems. and that simple behavioral rules applied to many
virtual birds result in flock-like group behaviors. What 1f [ tell vou that the be-
havior of ants foraging for lood resulted m powerlul algorithms for solving
combinatorial optimization problems? Also, what 1 I tell vou that the behavior
of ant prey retrieval has led to approaches for collective roboties? Can you have
an idea of how these are accomplished without looking at the answers 1n Chap-
ter 57

Due to all these aspects, designing novel natural computing systems may not
be a straightforward process. But this book 1s not about how to design new natu-
ral computing devices, though some insights about 1t will certainly be gained.
[nstead, 1t focuses on how the main natural computing sy stems available nowa-
days were motivated, emerged, and can be understood and designed. Designming
natural computing svstems 1s basically an engineering task: that is. physical,
mechanical, structural. and behavioral properties ol nature are made uselul o us
in computational terms. They can become new problem-solving techniques, new
forms of (studving) nature, or new forms of computing. Fach part of natural
compuling, and 1ts manyv branches. 1s rooted i some specific feature(s):

e ['volutionary algorithms were ispired by evolutionary biology.

o  Artificial neural networks were inspired by the functioning of the nervous
system.

*  Swarm systems are based on social organisms (from insects to humans).

e Artilicial immune systems extract ideas [rom the vertebrale immune svs-
tem.

e Fractal geometry creates hile-like palterns using syslems ol inleractive
functions, L-systems, and many other techniques.

e Artilicial hife 1s based on the study of life on Earth to simulate hie on
computers and sometimes develop syvnthetic forms of Iife.

e DNA computing 1s based on the mechanmisms used to process DNA
strands 1n order to provide a new computing paradigim.

e  Quantum computing 15 rooted on quantum physics to develop another

new compuling paradigm.

Although 1t 1s generally difficult to provide a single engmeering framework to
natural computing. some of its many branches allow the specification of major
structures and common design procedures that can be used as [rameworks to the
design of specific natural computing techniques, For nstance, evolutionary al-
gorithms can be designed by specifying a representation for candidate solutions
lo a problem. some general-purpose operators thal manipulate the candidate so-
lutions, and an evaluation function that quantifies the goodness or quahty of
each candidate solution (Chapter 3). In artificial hife, however, 1t 1s much harder
to provide such a framework. It will be seen that most artificial life (Alife) ap-
proaches reviewed here are based on the specification ol usually simple sets of
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rules describing the behavior of mdividual agents. The remammg of the Alife
project will involve the modeling of the agents, environment, etc., which are not
part of the scope of this book.

2.2 GENERAL CONCEPTS

2.2.1. Individuals, Entities, and Agents

There 15 a body of literature about agenis and agent-based systems. One of the
main themes of this book 1s collectivity; populations of individuals. insect socie-
ties, [locks of bird. schools of [1sh. herds of land animals, repertoires ol immune
cells and molecules, networks of neurons, and DNA strands. What all these svs-
tems have i commeon 1s the presence of a number of individual entities or com-
ponents. When we model or study these svstems, the individuals may go by the
generic name of agents. However, the words mdividuals, entities, components,
and agents are sometimes used interchangeably and with no distinction through-
out the text.

The term agent 1s currently used to mean anything between a mere subroutine
of a computer program and an mtelhgent organism, such as a human bemng. In-
tuitively, for something to be considered an agent, 1t must present some degree
of autonomy or identity; that 1s. it must. in some sense. be distinguishable [rom
its environment by some kind of spatial, temporal, or functional boundary. Tra-
ditionally, agent-based models are drawn on examples of biological phenomena
and processes, such as social insects and immune systems (Rocha, 1999). These
systems are [ormed by distributed collections of interacting elements (agents)
that work under no central control. From simple agents, who interact locally
following simple rules of behavior and responding to environmental stitmuli, 1t 15
possible to observe a synergistic behavior that leads to higher-level behaviors
that are much more intricate than those of individuals.

Agent-based research has a vanety of defimitions of what 15 an agent, each
hoping to explain one particular use of the word. These definitions range from
the simplest to the lengthiest ones. Here are some examples:

“An agent 1s anvthing that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors.” (Rus-
sell and Norvig, 1995)

“Perhaps the most general way m which the term agent 1s used 1s to de-
note a hardware or (more usually) soltware-based computer system that en-
jovys the following properties: autonomy. social ability, reactivity, and pro-
activeness.” (Wooldndge and Jennings, 1995) [Summarized defimtion, for
the full version please consult the cited reference|

“An autonomous agent 15 a system situated within and part of an envi-
ronment that senses that environment and acts on it, over time, 1n pursuit of
1ts own agenda and also so as to eflect what 11 senses in the future.” (Frank-
lm and Graesser, 1997)
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(a) (b)

Figure 2.1: Examples of agents. (a) Pictonal representation of hiological agents (bird,

neuron, termite, and ant). (b) Physical agent (the AIBO ERS-210 robot by Sony™).

Therefore, an agent can be understood as an entity endowed with a (partial)
representation of the environment. capable of acting upon itself’ and the envi-
ronment, and also capable of communicating with other agents. Its behavior 15 a
consequence of its observations, knowledge. and its interactions with other
agents and the environment. Agents can be of many types, mcluding biological
(e.g., ants, termites, neurons, immune cells, birds, etc.). physical (e.g.. robots),
and virtual agents (e.g., a computer algorithm, Tamagotchi, ete.), as illustrated n
Figure 2.1.

2.2.2. Parallelism and Distributivity

There are several well-known examples mvolving the capability of processing
more than one thing at the same time. In the natural world, paralle! processing 15
evident 1n nsect societies, brain processing., immune functiomng, the evolution
ol species. and so forth. All these examples will be studied in this book.

In order for evolution to occur, there must be a number of individuals 1n a
population competing for hmited resources. These mndividuals sulfer genetic
variation and those more fit (adapted) to the environment have higher probabili-
ties of survival and reproduction. All the individuals in the population play 1m-
portant roles in exploring the environment and sometimes exchanging (genetic)
information, thus producing progenies more adapted to the life in a spatial loca-
t1omn.

In nsect societies, 1n particular in ant colonies, a colony of ants has individu-
als assigned to various tasks, such as harvesting food. cleaming the nest, and car-
g for the queen. Termtes, bees, and wasps also perform simular tasks mn a dis-
tributed way: there are individuals allocated for different tasks. All insects in a
colony work 1n parallel in a given task, but thev may swilch lasks when needed.
For mstance. some worker ants mav be recruited [or battle when the nest 15 be-
ing invaded.
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In immune systems. a large variety and number of cells are mnvolved 1n an
immune response. When a virus infects a cell, some specialized immune cells,
named T-cells, recogmze fragments of this virus presented by a molecular com-
plex of another specialized antigen presenting cell. This recogmition triggers the
action ol many other immune cells to the site of infection. In addition, several
other cells are performing the same and other processes, all at once in a distnb-
uted and parallel form.

In the human nervous system, a huge number of neurons are involved in proc-
essing mmformation at each time mstant. Talking while driving, watching TV
while studying. hearing a name while having a conversation with someone n the
middle of a party (a phenomenon called the ‘cocktail partv effect”), all these are
just samples of a kind of parallel processing. Who does not know about the joke
of not bemng able to walk while chewing gum? The vast number of neurons we
have endow us with this capability of processing multiple information from mul-
tiple sensors at the same tume.

What 1s surprising about each of the individual processes from the examples
above 15 that they are all a product of a large number of elements and processes
occuwrring 1n parallel. At the lowest level of analysis, evolution requires a large
number of individuals to allow for a genetic vanety and diversity that ultimately
result in a higher adaptability; mmsect colomes are composed of thousands, some-
times millions, of nsects that work m concert to maintamn hife in the colony,
immune systems are composed of approximately 10" lymphocytes (a special
type of immune cell); and the human brain contains around 10" nervous cells.
Each of these individual agents contributes its little bit to the overall global ef-
fect of evolution, maintenance of life in the colony (insects), and the body (1m-
mune systems). and thought processes and cognition (nervous system).

I'rom a biological and computational perspective. all the end results discussed
are going (o be emergentl properties of the parallel and distnibuted operations of
individual entities. All these systems can be termed parallel-distributed systems
(PDS). Rumelhart and collaborators (Rumelhart et al., 1986; McClelland et al.,
1986) have comed the term parallel distributed processing (PDP) to describe
parallel-distributed svstems composed of processing elements, in particular neu-
rons. They used this termunology 1o refer to highly abstract models of neural
function, currently known as artificial newral networks (ANN). These will be
discussed i more detail in Chapter 4 under the heading of Neurocomputing,
PDP networks are thus a particular case of parallel-distributed systems.

2.2.3. Interactivity

A remarkable feature of natural systems 1s that individual agents are capable of
interacting with one another or the environment. Individual orgamsms mnteract
with one another n variety of forms: reproductively, svmbiotically. competi-
lively, 1n a predator-prey situation, parasitically, via channels of communication.
and so on. Al a macro level, an important outcome ol these interactions 1s a
struggle for limited resources and life. Individuals more adapted to the (local)
environment tend to survive and mate thus producing more progenies and
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propagating their genetic materal. Genetic variation together with the selection
of the fittest individuals leads to the creation of increasingly fitter species. Be-
sides, interactivity allows for the emergence of sell-orgamzed patierns.
[nteractivity 1s an important mean nature has to generate and maintain life.
Complex systems. organisms. and behaviors emerge [rom inleracting compo-
nents. I'or instance, take the case of genes, known to be the basic functional cle-
ments of life. Researchers have created genetically modified organisms in which
a single gene has been deleted or blocked, a process known as knockout. In some
situations, these researchers have been surprised to find that some other gene(s)
can take over 1ts whole function or at least part of 1t. Simmlar cases are constantly
being reported mn the news where people with damaged brains, from accidents
for example, are capable of recovering some of their lost functions after often
long periods of treatment and recovery. It 1s observed. in most of these cases,
that other portions of the bram assume the functions previously performed by
the damaged arcas. Interactions, thus, are not only necessary for the complexity.
diversily, and maintenance ol hife, but 1t also leads to emergent phenomena and
behaviors that cannot be predicted by simply looking at discrete components.

In all the main svstems studied 1n this book, several types of interactions can
be observed. For mstance, immune cells and molecules commumicate with one
another and foreign agents through chemical messengers and physical contact,
insects may also communicate with one another via chemical cues, dancing
(e.g., bees dance to mdicate where there 1s food to the other bees i the nest) or
physical contact (e.g., antennation); and neurons are known to be connected with
one another via small portions of its axons known as synapses. All these com-
municalion and contact means allow for the mnteraction ol mdividual agents n
the many syvstems. The mteractions between individuals can be basically of two
types: direct and indirect. One important example of direct interaction. namely
connectivity, and one important example of indirect mteraction, namely stig-
mergy, will be discussed m the next two sections, Other important examples of
direct interaction are reproduction and molecular signaling, and these will be
spectfically discussed in the next few chapters.

Connectivity

Connectionist systems employ a type of representation whereby mformation 1s
cncoded throughout the nodes and connections of a network of basic elements,
also called units. Their content and representational function 1s often revealed
only through the analvsis of the activity patterns of the internal units of the sys-
tem. Although the term connectionism appeared in the nud 1980s to denote net-
work models of cognition based on the spreading activation of numerous simple
umts (cf. Rumelhart et al , 1986, McClelland et al., 1986), 1t can refer to any
approach based on interconnected elements. These systems are sometimes re-
ferred to as networks.

The peculiarity of connectionist systems 1s due to several factors. The connec-
tions establish specific pathways of interaction between units; two units can only
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interact 1f they have a connection linking them. The connection 1s also 1n most
cases an active element of interaction, 1.e., 1t not only specifies who interacts
with whom, but 1t also quantifies the degree ol this mteraction by weighting the
signal bemg transmitted. The direct interaction via connections also results in a
structured pattern for the svstem that may. lor instance. rellect the structural
organizalion of the environment m which the network 1s embedded. Networks
are also very successful examples of parallel-distributed processors, for instanee,
neural networks and immune networks. These two tvpes of networks will be
fully explored in this book in Chapter 4 and Chapter 6. respectively.

Stigmergy

Grassé (1959) introduced the concept of stigmergy as a means to refer to how
the members of a termite colonv of the genus Macroetermes coordinate nest
buillding. He realized how mdividual termites could act mdependently on a
structure without direct communication or interactions. This process was termed
indirect social interactions to describe the same mechanism of indirect commu-
nication among bees 1n a bee colony (Michener, 1974).

The concept of stigmergy provides a general mechanism that relates individ-
nal and colony-level behaviors: individual behaviors modify the environment,
which in turn modifies the behavior of other individuals. The environment thus
mediates the communication of individuals, 1.e., there 1s an ndirect communica-
tion, mmstead of direct, by means such as antennation, trophalaxis (food or hquid
exchange), mandibular contact, visual contact, and so on (Bonabeau et al,
1999}, Sell-orgamzation 1s thus made possible due 1o the miensity of the stig-
mergic interactions among termites that can adopt a continuum of imteractions,

Grassé (1959) gave the original example 1o tllustrate stigmergy involving nest
building 1n termite colonies (Figure 2.2). He observed that termite workers are
stimulated to act during nest building according to the conliguration of the con-
struction and of other workers. Termite workers use so1l pellets, which they 1m-
pregnate with a chemical substance known as pheromone, to build pillars. Ini-
tially, termites deposit pellets n a random [fashion until one of the deposits
reaches a critical size. Then, if the group of builders 1s large enough and the pil-
lars start to emerge, a coordination phase begins. The accumulation of pellets
remforces the attractivity ol deposits due to the diffusing pheromone emtted by
the pellets. Therefore, the presence of an mtial deposit of so1l pellets siimulates
workers to accumulate more pellets through a pesitive feedback or sell-
reinforcing mechanism (Dorigo et al., 2000).

It 15 possible to extend the idea of stigmergy to other domains (Ilolland and
Melhuish, 1999). It can be seen as an even more impressive and general account
of how the interaction of simple entities, such as ants or termites, can produce a
wide range ol highly organmized and coordimmated behaviors and behavioral out-
comes, simply acting and exploiting the mfluence of the environment. By ex-
plotting the stigmergic approach to coordimation, researchers have been able to
design a number of successful algorithms and systems that can be applied to
several domains, such as diserete optimization. clustering, and robotics.
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(a) (b} (c)

Figure 2.2: Termite mound building. (a) Pellets are initially deposited randomly 1in space.
If the group of builders 1s large enough and pillars start to emerge (b), then a coordinated
building phase starts (c).

Chapter 5 reviews some of these applications focusing on those systems in-
spired by the behavior of ants. Chapter 8 also provides some examples of stig-
mergic interactions such as the wasp nest building behavior

2.2.4. Adaptation

Adapiation can be defined as the ability of a system to adjust its response to
stimuh depending upon the environment. Something, such as an organism, a
device, or a mechamsm, that 1s changed (or changes) so as to become more swt-
able to a new or a special application or situation, becomes more adapted to the
new application or situation. The use of the word adaptation 15, 1n many cases,
related with evolution (¢f. Wilson and Keil, 1999, p. 3-4). However, many other
important concepts in natural computing. such as learning and self-organization,
can also be viewed as types of, or resulung [rom, adaptation mechanisms

Learning

Learning may be viewed as corresponding to the act, process, or experience of
gaming knowledge. comprehension, skill, or mastery, through experience, study,
or mmteractions. Learming systems are those able to change their behavior based
on examples in order to solve mformation-processing demands. An 1mportant
virtue of adaptation in learming 1s the possibility of solving information process-
g tasks and the ability to cope with changing (dynamic) environments,

A consideration of what 1t takes to learn reveals an important dependence on
gradedness (the passing through successive stages of changes) and other aspects
ol natural mechanisms (O Reilly and Munakata, 2000). Learning, or more gen-
erally adapling, can be viewed as a svnonvm for changing with the end result of
knowledge (memorv) acqusition. When a svstem learns it changes 1its pattern of
behavior (or another specific feature), such as the way information 1s processed.
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[t 15 much easier to learn 1if the system responds to these changes 1n a graded,
proportional manner, instead of radieally altering the way 1t behaves.

These graded changes allow the system to try out a number of different pat-
terns of behavior, and gel some kind of graded proportional indication of how
these changes are affecting the system’s interaction with the environment, By
exploring several little changes. the system can evaluate and strengthen those
that 1mprove performance, while abandoning or weakening those that do not.
There are, however, other types of learning procedures in nature that are more
discrete than the graded one just described. For instance, 1t 1s believed that there
are some specialized areas in the brain particularly good at “memorizing’ dis-
crete facts or events.

In contrast to some behefs, learming does not depend purely on consciousness
and also does not require a brain. Insect societies learn how to forage for food,
and our immune systems learn how to light agamst disease-causing agents - a
principle explored mn the vacemation procedures. Even evolution can be viewed
as resulting in learming, though evolutionary systems are more appropnately
characterized as adaptive systems in the context of natural computing.

Neurocomputing models, and others based on compulational neuroscience,
provide useful accounts of many forms of learming, such as graded learning and
memorization. Chapter 4 reviews some of the standard and most widelv spread
neurocomputimg techniques, and provides a discussion aboutl the main learning
paradigms in this field, namely supervised, unsupervised, and reinforcement
learning.

Evolution

In its simplest form, the theory of evolution 1s just the idea that life has changed
over time, with younger forms descending from older ones. This 1dea existed
well before the time of Charles Darwin, but he and his successors developed 1t
to explain both the diversity of life and the adaptation of living things to their
environment (Wilson and Keil, 1999; p. 290-292),

In contrast to learming, evolution requires some specific processes lo oceur,
First, evolution involves an individual or a population of individuals that repro-
duce and suffer genectic variation followed by natural selection. Without anv one
ol these characteristics. there 1s no evolution. Therelore, there cannot be evolu-
tion if there 1s a single individual, unless this individual 1s capable of asexually
reproducing. Also, some vanation has to occur during reproduction so that the
progeny brings some ‘novelty” that allows it to become more adapted to the en-
vironment. Finally, natural selection 15 responsible for the maintenance of the
genetic material responsible for the hittest mdividuals to the environment; these
will have survival and reproductive advantages over the others, less (it individu-
als. The outcome of evolution, like the outcome of learning, 1s a better adaptabil-
ity to life and the environment.

Both, the evolved genetic conhiguration of organisms together with thewr
learning capabilities make mmportant contributions to their adaptabilitv to the
environment. But perhaps only in the context of learning the genetic encoding
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can be fully understood, much as the role of DNA itself in shaping the pheno-
type must be understood 1n the context of emergent developmental processes.

2.2.5, Feedback

Essentially, feedback occurs when the response to a stimulus has an effect of
some kind on the onginal stimulus. It can be understood as the return of a por-
tion of the output of a process or system to the mput, especially when used to
maintain performance or to control a system or process. The nature of the re-
sponse determines how the leedback 1s labeled: negative feedback 15 when the
response diminishes the orginal stimulus (they go in the opposite direction): and
positive feedback 1s when the response enhances the original siimulus (they go
in the same direction). An mimportant leature of most natural systems described
in this text 1s that they rely extensively on feedback, both for growth and self-
regulation.

Take the case of the human brain as an example of extensive feedback loops
and their importance. The bram can be viewed as a massive network of neurons
mterconnected via tiny gaps known as synapses. Any bramn activity, such as
thinking of a word or recogmizing a face. triggers a vast array of neural circuitry.
Each new brain activity triggers a new array, and an umimagimably large number
of possible neuronal cireuits go unrealized during the hfetime of an individual.
Beneath all that apparent diversity, certain circults repeat themselves over and
over again. All these feedback and reverberating loops are believed 1o be neces-
sary lor learming, and are consequences ol the hgh mterconnectivity of the
bram.

Positive Feedback

Positive feedback 1s a sorl ol sell-remforcing (growth) process m which the
more an event occurs, the more 1t tends to oceur, Take the case of the immune
system as an example. When a bacterium invades our organism, it starts repro-
ducing and causing damage to our cells. One way the immune systems [ind o
cope with these reproducing agents 1s by reproducing the immune cells capable
of recognizing these agents. And the more cells are generated, the more cells can
be generated. Furthermore. the immune cells and molecules release chemicals
that stumulate other immune cells and molecules to fight agamnst the disease-
causing agent. Thercfore, the response of some immune cells provides some sort
ol positive feedback to other immune cells reproduce and join the pool of cells
involved in this immune response.

The termite mound building behavior discussed previously 1s another example
of a positive feedback mechanmism. The more soil pellets are deposited m a given
portion of the space. the more pellets tend to be deposiled n that portion be-
cause there 1s more pheromone attracting the termutes (Figure 2.3). But these
self-reinforcing (positive feedback) processes have to be regulated by negative
Jeedback processes, otherwise the svstems would go unstable or the resources
would be depleted.
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More termites

More pheromene

Figure 2.3: Example of positive feedback

There are several other examples of positive feedback 1n nature:

e Human breeding: the more humans reproduce, the more humans exist to
reproduce.

o  Feeding the baby: a baby begins to suckle her mother’s nipple and a few
drops ol mulk are released, stimulating the production and release ol more
mlk.

o Avalanche: an avalanche starts at rest and, when disturbed. accelerates
quickly towards its end point at the base of a slope.

o Awutocatalysis. autocatalysis occurs 1n some digestive enzymes such as
pepsin. Pepsin 1s a protein-digesting enzvme that works in the stomach.
However, the stomach does not secrete pepsin, it secretes an inactive
form, called pepsinogen. When one pepsinogen molecule becomes acti-
vated, 1t helps to activate other pepsinogens nearby, which in turn can ac-
tivate others. In this way. the number of active pepsin molecules can in-
crease rapidly by using positive [eedback.

o (rving birth: while giving barth, the more uterine contractions a mother
has. the more 1t 15 stimulated to have. until the child 15 born

e Scratching an itch: scratching an itch makes 1t more mfected and dam-
aged. and thus more 1tchy.

o Ripening fruits: a nipening apple releases the volatile plant hormone eth-
vlene. which accelerates the ripening of unripe fruit in its vieinity; so
nearby [ruits also ripen, releasmg more ethylene. All the [ruts become
quickly rpe.

Negative Feedback

Negative feedback by contrast, plays the role ol regulating positive feedback so
as 1o mamtam a(n) (dynamic) equlibrium of the medium. It refers to change m
the opposite direction to the original stimulus. The thermostat 1s one of the most
classic examples of negative [eedback. It takes the reading of a room’s lempera-
ture, measures thal reading according o a desired selting, and then adjusts 1s
state accordingly. If the room’s temperature 1s too low, more hot awr 1s allowed
to flow nto the room: else 1f the temperature is too high. then more cold air
[lows nto the room (Figure 2.4).
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Too hot

|Maore cold air

Pleasant A3
temperature

Maore hot ar

Too cold

Figure 2.4: Example of negative feedback,

Negative [eedback 1s at the heart of every stable, sell-regulating system. I a
company raises prices too high, people stop buving, and soon the company cuts
the price to mnerease sales. In the immune system example given above, alter the
mfection 1s successfully eliminated, specilic immune cells are stimulated lo re-
lease other chemical substances that suppress the replication of immune cells,
thus ceasing the immune response. Without this negative feedback mechanism,
death by uncontrolled cell reproduction would be mmewvitable. And without the
positive feedback, death from infection would be inevitable.

There are also plenty of examples of negative feedback in nature:

o [Fcosystems: in an ecosystem composed of, say rabbits and grass, when
there 1s plenty of grass to feed the rabbuats, thev tend to reproduce with
oreater rates. But as there are more rabbits in the environment, the more
grass will be eaten, and the less grass will be left as food; the amount of
grass provides a feedback to the rabbits birth rate.

o [lomeostasis: blood glucose concentrations rise after eating a meal rich m
sugar. The hormone 1nsulin 1s released and 1t speeds up the transport of
glucose out of the blood and into selected tissues, decreasing blood glu-
cose concentrations.

e  Metabolism: exercise creates metabolic heat that raises the body tempera-
ture. Cooling mechamsms such as vasodilatation (flushed skin) and
sweating begin, decreasing the body temperature.

o Climate theory: the curvature of the earth helps making 1t so that conti-
nental glaciers expanding equator ward experience strong sunhight and
tend to melt. Another example 1s the tendency for continental glaciers to
make cold. high-pressure regions, which do not favor further snowfall.

2.2.6. Self-Organization

An important question in biology. physics, and chemistry 15 “Where does order
come [rom?” The world abounds with systems. organisms. and phenomena that
maintain a high internal energy and organization in seeming defiance of the laws
of physics (Decker, 2000). Water particles suspended in air form clouds; a social
msect grows from a single celled zygote into a complex multicellular organism
and then participates in a structured social organization: birds gather together 1n
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a coordinated flock; and so forth. What is so fascinating is that the organization
seems to emerge spontaneously from disordered conditions, and it does not ap-
pear to be driven solely by known phvsical laws or global rules. Somehow, the
order arises from the multitude of mteractions among the simple parts. Self-
organization mav also go by the name “emergent structuring’, “sell-assembly’,
‘autocalalysis’, and “aulopoiesis’, though most of these concepls have some
slight differences to the self-organization concept provided here (see Project 3).

Self-organization refers to a broad range of pattern-formation processes 1n
both physical and biological systems, such as sand grams assembling into rip-
pled dunes. chemical reactants formmg swirling spirals, cells making up highly
structured tissues, and fishes joining together in schools. A basic feature of these
diverse systems 1s the means by which they acquire their order and structure. In
sell-organizing systems, pattern formation oceurs through nteractions internal
to the system, without intervention by external directing influences, As used
here, a pattern corresponds to a particular, organized arrangement of objects in
space or lme. Examples ol biological behavioral patterns include a school of
fish, a raiding column of army ants, the synchronous flashing of fireflies, and the
complex architecture of a termite mound (Camazine et al., 2001). But self-
organization does not only affect behavioral patterns. 1t 1s also believed to play a
role 1n the definition of patterns, such as shapes, and the coating of several am-
mals (sce Figure 2.3). In these cases, 1t 1s believed that not only the genetic code
of these amimals determine their physical expressed characteristics, some self-
organized processes may also be mvolved,

The concept of self-orgamization can also be conveved through counterexam-
ples. A system can form a precise pattern receiving instructions from outside,
such as a blueprint, recipe. orders, or signals. For mstance. the soldiers marching
form a neat organized process that 1s not sell-organized. Thewr sequence ol steps.
direction of movement, velocity. ete., are all dictated by specilic instructions. In
such cases, the process 1s organized but not sell-organized. Il 13 less obvious,
however, to understand how a defimte patlern can be produced in the absence of
such instructions.

The self-orgamzed pattern formation in social systems 15 one of the mam
themes of this book, and will become clearer and more exemplified along the
chapters, It will be seen that manv social nsects, such as ants, termutes, and
bees, are capable of building extremely complex nests without following any
blueprint, recipe, leader, or template. It 1s interesting to note that, although all of
them have a queen (the queen ant, the queen termite, and the queen bee), queens
arc basically involved in reproduction, mamly when the colony size 1s very
large.

There 1s even an interesting historical tact about the queen bee. Until the late
19™ century, in a time when men were considered superior to women, queen
bees were called kings, because people could not accept that anything so well
organized could be run by females. Although females could actually run the
colony, 1t 15 now known that, in most cases, the man role of the queens 15 to lay
eggs. Even more swrpnising, such complex patterns of behavior, architecture
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designs. and foraging and hunting strategies, do not require any global control or
rule whatsoever; they are amazing self-organized undertakings.

Figure 2.5: Animal patterns believed to involve self-organized pattern lformation. (a)
Polygonal shapes on the shell of a turtle. (b) Stnipes coating the tiger skin. {¢) Stnipes in
the 1guana’s tail,
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Characteristics of Self-Organization

Self-organization refers to spontaneous ordering tendencies sometimes observed
in certain classes of complex systems, both natural and artificial. Most self-
organtzed svstems present a number of features:

Collectivity and interactivily: sell-orgamzing svstems (SOS) are usually
composed ol a large number of elements that interact with one another
and the environment.

Dynamics: the multiphicity of mteractions that characterize self-
organizing systems emphasize that they are dynamic and require contin-
ual interactions of lower-level components to produce and mamtain struc-
ture.

Emergent patterns: SOS usually exhibit what appears to be spontaneous
order; the overall state of a self-orgamzed system 18 an emergent prop-
erty.

Nonlinearities: an underlying concept in self-organization 1s nonlinearity.
The mteractions of components result in qualitatively new properties that
cannot be understood as the simple addition of the individual contribu-
tions.

Complexity: most self-orgamizing systems are complex. The very con-
cepts of complexity and emergence are embodied 1n 5O8. However, 1t 15
more accurale to say that complex systems can be self-orgamizing sys-
lems

Rule-based: most 508 are rule-based. mainly biological self-organizing
systems. Examples of rules governing natural self-orgamzed systems
were already reviewed, such as the ones that result in dead body cluster-
ing 1 ant colonies. Further examples will be given n the following chap-
ters

Feedback loops: positive and negative feedback contribute to the forma-
tion of self-orgamzed processes by amphifying and regulating fluctuations
in the system.

Alternatives to Self-Organization

Self-organization 1s not the only means responsible [or the many patlerns we see
i nature. Furthermore, even those patterns thatl arise through sell-organization
may involve other mechanisms, such as the genetic encoding and physical con-
stramts (laws). Camazine et al (2001) provide four alternatives to sell-
organtzation:

Following a leader: a well-informed leader can direct the activity of the
group, providing each group member with detailed mstructions aboul
what to do. For example, a captain in a battle field gives order to ecach
soldier relating to where to attack, etc.
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o  Building a blueprint: a blueprint 15 a compact representation of the spatial
or temporal relationships of the parts of a pattern. For instance, each mu-
sician ol an orchestra receives a musical score that fully specifies the pat-
tern ol notes within the composition and the tonal and temporal relation-
ships among them.

o [Following a recipe: each member of the group may have a recipe, 1.e., a
sequential set of mstructions that precisely specily the spatial and tempo-
ral actions of the individual’s contribution to the whole pattern. For ex-
ample, you tell someone how to get to vour place by specifying the pre-
cisc sequence ol streets he/she must follow. A blueprint 1s different from
a recipe because 1t does not specify how something 1s done, only what 1s
to be done.

e Templates: a template is a full-size guide or mold that specifies the final
pattern and strongly steers the paitern lormation process. F'or example. a
company that makes car parts uses a template in which raw material is
poured in order to make the desired parts; each part has 1ts own template.

2.2.7. Complexity, Emergence, and Reductionism

Complexity and emergence are some of the most difficult terms to conceptualize
in this chapter. Viewpoints and delinitions of complexity (complex systems) and
emergence vary among researchers and disciplines. This section discusses only
some of the many perspectives; further and more complete studies can be found,
for instance, in (Emmeche, 1997, Baas and Emmeche, 1997), the special issue
on Complex Systems of the Science magazme (Science, 1999), on the Santa Fe
volumes on Artificial Life and Complex Systems (e.g., Cowan ct al.. 1994,
Morowilz and Singer, 1995), and on the Artificial Life and Complex Systems
journals (see Appendix C).

Complexity

To start the discussion, let us present a very simplistic 1dea that fits into the con-
text of natural computing: a complex system 1s a system featuring a large number
of interacting components whose aggregate activity 15 nonlinear (not denivable
by summing the behavior of individual components) and typically exhibit self-
organization (Morowitz and Smger. 1995; Holland, 1995; Gallagher and Ap-
penzeller, 1999; Rocha, 1999). Consider the case of an organism: sav the human
body. Can you fully uncover how 1t works bv looking at its major systems and
organs? The answer 15 no. Take an even more reductiomst approach, and tryv to
understand the orgamsm by analvzing all 1ts cells and molecules. Can vou un-
derstand 1t now"” Not still. Some himitations of this more traditional reductionist
way ol thinking will be discussed later. What 15 important here 1s the fact that
for complex svstems we are unable to understand/explamn their behavior by ex-
amining 1ts component parts alone.

The studies on complexity suggest that not only the internal organization (c.g.,
the genetic code of a biological organism) of a system 1s sufticient for its full
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understanding, but also how the svstem itself and 1ts component parts interact
with one another and the environment. The internal microstructure, self-
organizing capabilities, and natural selection are part of the most 1mportant as-
pects necessary for a better understanding of complex systems.

Perhaps the most remarkable contribution ol complexity to science was the
perception that manv natural phenomena and processes can be explamed and
sometimes reproduced by following some basic and simple rules. For instance,
the most striking aspects of physics are the simphicity of its laws. Maxwell’'s
equations, Schrodinger’s equations, and Hamultonian mechanies can cach be
expressed in a few lines. Many 1deas that form the foundations of nature are also
very simple mndeed: nature 1s lawful, and some basic laws hold everywhere. Na-
ture can produce complex structures even m simple situations and can obev sim-
ple laws even in complex situations (Goldenfeld and Kadanoll, 1999).

The five basic forms of mvestigating complex systems have already been dis-
cussed (Section 2.1.1), namely, experimentation. simulation, theoretical model-
g, emulation, and realization. Experiments are necessary for raising a range of
information about how the natural organisms and processes behave. Simulations
are often used lo check the understanding, vahdate experimental results, or
simulate a particular system or process. Theoretical models are useful for the
understanding. complementation. prediction, critical analysis. and quantitative
and qualitative description of natural phenomena. Finally. realizations and emu-
lations are lundamental for the possibility of creating and studying (new) life-
like patterns and forms of hife.

In order to explore the complexity inherenl in nature. one must focus on the
right level ol description. In natural computing, higher-levels ol description are
usually adopted. Most systems developed are highly abstract models or meta-
phors of their biological counterparts. The inclusion of too many processes. de-
lails, and parameters. can obscure the desired qualitative understanding and can
also make the creation of computational systems based on nature unfeasible. For
instanece, the “artificial’ neural networks are based upon very simple mathemati-
cal models of neural units structured 1n a network-like architecture and subjected
to an iterative procedure of adaptation (learming). Despite all this simplicity, the
approaches to be presented still capture some important features borrowed from
nature that allow them to perform tasks and solve problems that, in most cases,
could not be solved satisfactorily with the previously existing approaches.

In Hidden Order, J. Holland (1995) starts with a discussion of how natural
(biological and social) systems are formed and self-sustained. Among the sev-
eral instances discussed, there 1s the case ol the immune system with 1ls numer-
ous cells, molecules and organs. Other examples range from the New York City
to the central nervous system. These systems are termed complex adapiive sys-
tems (CAS), in which the (complex) behavior of the whole 1s more than a simple
sum of mdividual behaviors. One of the main questions involved in complex
adaptive systems 1s that ol how a decentralized svstem - with no central plan-
ning or control - 1s self-orgamzed.
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Despite the differences among all complex adaptive systems and orgamza-
tions, 1n most cases, the persistence of the system relies on some main aspects:
1) interactions. 2) diversitv. and 3) adaptation. Adapltability allows a system or
organism to become better fit to the environment or to learn to accomphish a
given task. Adaptability also has to do with the system’s capability of processing
mformation (or computing); another 1mportant [ealure ol a complex adaptive
system. The major task of surviving involves the gathering of information from
the environment, its processing and responding accordingly. It 1s elear, thus, that
compuling or processing information does nol require a bram: ants, immune
systems, evolutionary processes, flocks of birds, schools of fish, and many other
complex adaptive systems present the natural capability of processing informa-
fon.

According to Holland. the choice of the name complex adaptive systems 1s
more than a terminology “It signals our mtwtion that general principles rule
CAS behavior, principles that point to ways of solving attendant problems.”
(Holland, 1995; p. 4). This turns back to the 1dea that there are general rules or
principles governing natural systems. The question, thus, can be summarized as
how to extract these general principles. This 1s also one of the main aims of this
book and will be illustrated and more clearly 1dentifled in all chapters.

Emergence

Important questions about complex adaptive systems rely upon the understand-
ing of emergent properties. At a very low level, how do living svstems result
from the laws of physics and chemustry? That 15, how do the genes specily the
unfoldimg processes of biochemical reactions and interactions that result in the
development of an orgamism? Are the genes the necessary and suflicient ingre-
dients to development? At higher levels, how msect socielies are organized?
How do bramms process information? How does the immune system cope with
discase-causing agents” Why does a flock ol bird present such a coordinated
behavior? None of these questions can be answered without having 1 mind the
concept of emergence; that 15 to say. the properties of the whole are not pos-
sessed by, nor are they directly derivable from, any of the parts - a water particle
15 not a cloud, and a neuron 15 not conscious

All the syslems and processes discussed above present behaviors by drawing
upon populations of relatively “unmtelhigent” mdividual agents, rather than a
single, “intelligent” agent. They are bottom-up systems, not foep-down. Thev are
complex adaptive systems that display emergent behaviors. Emergence 1s a con-
cept tightly limked with complex svstems. [n these svstems, agents residing on
one scale or level start producing behaviors that lie scale(s) above them: social
msects create colomes: social animals create locks, herds. and schools: immune
cells and molecules compose the imimune system; neurons form brains, and so
forth. The movement from low-level rules to higher-level sophistication 1s what
we call emergence (Johnson, 2002).

One 1mportant feature most emergent systems and processes discussed 1n this
book share 15 that they are rule-governed. Remember, nature 1s lawful! It means
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and the environment in multiple ways, following local rules and unaware of any
higher-level instructions. Nevertheless, the behavior of such a system can only
be considered emergent 1ff discermble macro-behaviors are observed. For -
stance, these lower-level rules may result in the appearance of traffic jams and a
higher flux of cars on the high-speed lane than on the lower speed ones. All
these are emergent phenomena that were notl programmed 1 the local rules ap-
plied to the cars. They simply emerged as outcomes of the lower-level interac-
tions, even though some of them could be predicted.

Several features and behaviors of natural systems are not so obviously emer-
gent: only a detailed analvsis of complex mteractions at the orgamism level can
show that they are genmunely new features that only appear at the higher levels.
However, emergent behaviors of natural systems can be observed through the
creation of models. Even highly abstract and simphified models, such as the ones
that will be reviewed here, allow us to simulate, emulate, observe, and study
several emergent behaviors of natural complex adaptive systems. In particular,
DNA strands, chromosomes, ant colonies, neurons, immune systems, {locks of
birds, and schools of fish, will all be seen to present a large variety of emergent
properties.

Reductionism

The classical vitalist doctrines of the 18" century are based on the idea that all
life phenomena are amimated by immaterial Life spirits. These life spints deter-
mine the various life phenomena, but are themselves unexplainable and inde-
scribable [rom a physical perspective. By contrast, the redictionist position, also
in the 18" century, nsisted that a large part, if not all, of the life phenomena can
be reduced to physics and chenustry (Emmeche et al.. 1997).

For long, scientists have been excited about the belief that natural systems
could be understood by reductionism; that 1s, bv seeking out their most funda-
mental constituents. Phvsicists search for the basic particles and forces, chemists
seck to understand chemical bonds, and biologists scrutinize DNA sequences
and molecular structures n an effort to understand organisms and hife. These
reductionist approaches suggest that questions i physical chemistry can be an-
swered based on atomic physics. questions in cell biology can be answered
based on how biomolecules work. and orgamsms can be understood 1n terms of
how their cellular and molecular systems work (Gallagher and Appenzeller,
1999 Williams. 1997).

However, apart from a few radicals, the reductionists do not claim that the
higher psychological functions can be reduced to physics and chemistry. As an
outcome of the scientific development i many areas, such as cytology, neuro-
anatomy, immunology ., and neurophisiology, it became very difticult to maintain
the more classical positions (Emmeche et al., 1997).

Advances 1n science and lechnology have led to transformations n the vital-
15ts” and reductionists” positions as well. After a number of scientific discoveries
in the early 19" century, the vitalists gradually limited their viewpoints to a nar-
rower field. They now insisted that only the higher psychological functions were
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To make the distinction even clearer, consider the case of bulding a sand cas-
tle. A bottom-up approach 1s the one 1n which vou keep pouring sand and mold-
g it, and a top-down approach 1s the one in which you mitally pour a lot of
sand, making a big mountain of sand, and then you start molding the castle from
the mountain of sand.

2.2.9. Determinism, Chaos, and Fractals

One of the classical positions in the theory of science 15 that scientific theories
are capable of providing deterministic relations between the elements being in-
vestigated, A deferminmistic sysiem can have 1ts time evolution predicted pre-
cisely: all events arc inevitable consequences of antecedent sufficient causes.
The main charactenstic ol this type of delermunistic system 1s predictability.
When 1t 1s possible to predict the development or time evolution of a system
from some predefined conditions there 1s a deterministic relation between the
elements that constitute the system. This classical perspective demands the ca-
pacity of predicting the time evolution of a system, thus precluding the appear-
ance of new and emergent phenomena.

One of the most interesting and exciting results of recent scientific develop-
menl, mainly i physics, 1s the remodeling of the relation between determimsm
and prediction. It 1s now evident that there are many systems that can be de-
scribed adequately as being strictly determmistic but that still remain unpredict-
able. The impossibility of predicting the properties arising within many systems
considered fotally determimistic 15 the consequence ol the well-known Poin-
car¢ s treatment ol the three-body problem and the Hadamard's investigation of
the sensitivity to initial states - insights from the latler half of the 19" century
that have recently given nise to the chaos theory. Several processes in physics
and biology are deterministic but unpredictable. Thus, one of the very important
theoretical consequences ol chaos theory 1s the divorce between determinism
and predictability.

Belore chaos theory, scientists (mainly physicists) were suffering from a great
1gnorance about disorder n the atmosphere, in the turbulent sea, m the fluctua-
tions of wildlife populations, 1n the oscillations of the heart and the brain. The
uregular side of nature, the discontinuous and erratic side. has been a puzzle to
sclenee. The msights from chaos theory led direetly mnto the natural world - the
shapes of clouds. the paths of lightening. the microscope mntertwining of blood
vessels, the galactic clustering of stars, the coast lines. Chaos has created special
techniques of using computers and special kinds of graphic images, pictures that
capture fantastic and delicate structures underlying complexity. The new science
has spawned 1ts own language, such as the word fractals.

The word fractal comes to stand for a way of deseribing, calculating, and
thinking about shapes that are wregular and fragmented. jagged and broken-up -
shapes like the crystalline curves of snowflakes. coast shores. mountains, clouds.
and even the discontinuous dusts of galaxies (see Figure 2.6). A [ractal curve
implies an orgamizing structure that lies hidden among the hideous complication
of such shapes.
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Figure 2.6: Examples of the fractal geometry of nature. (a) Clouds. (b) Top of mountains
in Alaska.

Fractals - the term used to describe the shape of chaos - seem to be every-
where: a rising column of cigarette smoke breaks into swirls: a flag snaps back
and forth i the wind; a dripping faucet goes Irom a steady pattern to a chaotic
one; and so forth (Gleick, 1997, Stewart, 1997).

Chaos theory 15 often cited as an explanation for the dilficulty m predicting
weather and other complex phenomena. Roughly, it shows that small changes 1n
local conditions can cause major perturbations in global, long-term behavior 1n a
wide range of “well-behaved” systems, such as the weather. Therefore, chaos
embodies three important principles: sensitivity to mitial conditions, cause and
effect are not proportional, and nonlinearities. This book talks very little about
chaos; however Chapter 7 describes the Fractal Geometry of Nature as the main
branch of the study of biology by means of computers aimed at creating life-like
shapes or geometrical patterns.
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2.3 SUMMARY

This chapter started with a discussion of what are models, metaphors, expern-
ments, simulations, emulations, and realizations. These concepts are 1important
for they allow us to distinguish natural computing techniques [rom theoretical
models, computer simulations from realizations, and so on. Some comments
about the difficulty 1n ereating a general framework to design natural computing
systems were also made. However. 1t was argued that each approach, with the
exception of some topics m the second part of this book, do have specilic
frameworks for their design. Also, it was emphasized that this 15 a book about
how existing techniques can be understood, reproduced, and applied to particu-
lar domains, not a book about how to engineer new techniques. Of course. [rom
reading this text the reader will certainly get the feeling of natural computing
and will then find 1t much easier to go for his/her own personal explorations and
design of novel natural computing approaches.

I the contents of this chapler were to be summanzed in a single word, this
word would be complexity or complex system, Complexity encompasses almost
all the terminology discussed here. It may involve a large number of interacting
imndividuals presenting or resulting i emergent phenomena. sell-organizing
processes, chaos, positive and negative feedback, adaptability, and parallelism.
Although this book 1s not about the theory of complex systems. it provides de-
sign techniques, pseudocode. and applications for a number of complex systems
related with nature.

2.4 EXERCISES

2.4.1. Questions

1. Provide alternative definitions for all the concepts described in Section 2.2

2. last ten journals that can be used as sources of information about natural
svstems and processes that could be uselul for natural computing and ex-
plain your choice.

3. Name two connectionist systems in nature in addition to the nervous system
and the immune network. Explain.

4, Section 2.2.5 presented the concepts ol positive and negative feedback. In
Section 2.2.3 the presence of an mitial deposit of soil pellets was demon-
strated to stimulate worker termites to accumulate more pellets through a
positive feedback mechanism. It 15 intwtive to think that 1if no negative
feedback mechanism existed in this process, the process could go uncon-
trolled. Name three negative leedback mechanmisms imvolved mn the termute
mound building process.

5. Name a natural system or process that involves both, positive and negative
feedback, and describe how these arc observed.
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Chapter 17

Physiological Systems Modeling,
Simulation, and Control

Konstantina S. Nikita
National Technical University of Athens, Greece

Konstantinos P. Michmizos
Massachusetts Institute of Technology, USA

ABSTRACT

Physiological systems modeling, simulation, and control is a research area integrating science and

engineering and contributes to a continuous refinement of knowledge on how the body works. The roots
of modeling a body area date back thousands of years, yet it was not until the 1950s that the tree of
knowledge started to be fed with data-driven hypotheses and interventions. This chapter tries to orga-
nize disparate information of the most important modeling, simulation, and control perspectives into
a coherent set of views currently applied to modern biological and medical research. It is addressed
to researchers on human system physiological modeling, working both in academia and in industry to

address current and future research goals.

17.1. CHAPTER OBJECTIVES

It is Zeus anathema on physiological models to
agonize between the Scylla of simulating abiologi-
cal system and the Charybdis of controlling such
systems. This chapteraims to serve as an introduc-
tion to and overview of the interdisciplinary field
of modeling, simulation, and control of physi-
ological systems. Research and applications in the
area extend from cells to organs and systems, and
include linear and nonlinear approaches having

DOI: 10.4018/978-1-4666-0122-2.ch017

time-varying or time-constant variables. Although
it is not possible to cover all of the physiological
modeling domains in the subsequent pages, we
have made an effort to present and briefly discuss
the major fields of activity in which models of
biological systems are engaged. We first provide
an introduction to important concepts and then we
illustrate these ideas with examples acquired from
physiological systems. We focus on techniques
in modeling that motivate the inclusion of con-
trol mechanisms into physiological systems and

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
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models. In parallel, we provide methodological
approaches and we discuss their advantages and
limitations in order to motivate the reader to have
a hands-on experience on the main modeling
aspects covered.

17.2. INTRODUCTION

How does an organ work? What is really happen-
ing inside a diseased organ? How can we monitor
and supervise a drug molecule to help an organ
work in a healthy manner? What is a healthy
manner of living for a cell, organ or body any-
ways? The motivation of modeling is convoluted
with our distinctive characteristic of wondering.
Models in physiology are mainly used for insight,
description, and control. We want to know, and
sometimes we need to learn, how the components
of a system and their interconnections generate
the overall operating characteristics of that sys-
tem. We also seek to capture the characteristics
of a physiological system response accurately
and concisely.

In practice, the physiological modeling road
does not resemble the directional straightness of
a roman road. Biological signals are typically
amplitude limited and distorted by colored (i.e.,
non-white) noise. Signal recordings have limited
length and are generally nonstationary; whereas,
the underlying system is either unknown or very
complex to describe. But we still need models,
since they can verify our designs before the pro-
totype stage; and, even if they are not exactly ac-
curate, they can help us gain a basic understanding
ofthe underlying system. Models of physiological
systems often aid in the specification of design
criteria for the design of procedures aimed at
alleviating pathological conditions. Models also
summarize the physiological behavior ofasystem
concisely, making them an appropriate testing bed
foraplethora ofscientific hypotheses being stated.
This has also been proven useful in the design
of medical devices. In a clinical setting, models
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can make predictions before any intervention or
after failures (lesions). Models can also be used to
evaluate the functional limits of an operation, be
it biological or that of an instrument interrelated
with a biological system. They can also explore
linear behavior at selected operating points. Lastly,
physiological models provide the means (simula-
tions) to truly explore the non-linear nature of the
biological physics.

17.3. COMPREHENSIVE
DEFINITION OF PHYSIOLOGICAL
SYSTEMS MODELING,
SIMULATION, AND CONTROL

Inorderto start thinking about modeling a system,
let us begin with the parable of a Saturday theater
that is crammed to suffocation by all kinds of
spectators. By the end of the theatrical play, each
of the spectators is asked to talk about his/her ex-
perience. One person, sitting in the last rows of the
theater finds that the stage design was ingenious.
Another, having the opportunity to sit in the first
row of'the theater is amazed by the expressiveness
ofthe actors. A third, positioned in a corner of the
theater shows a tendency to talk only for specific
scenes of the play; the ones performed near his/
her side. Each person, inside the theater, gives a
different description of the same object; yet none
keeps the ultimate truth in his/her hands.

Before projecting our parable to modeling,
three aspects need to be further discussed. First,
in the real world, we cannot go into the mind of
the director. We do not know the script or even
the number of the actors in the play; and what is
more, there is no unbiased observer that holds an
unconditional truth. Second, all spectators formed
a personal opinion based on a hypothesis of the
play that was consistent with the data they col-
lected. This activity, which seems easy and natural
to humans, is called abduction. Third, abduction
is not an infallible way for discovering truth.
This chapter describes most of the basic tools
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that can be used to create a quantitative formula
of the description abducted from observations on
physiological systems.

In essence, each spectator created a model (a
descriptive version) of a system (the play). Let us
introduce some main terminology at this point. A
system may be considered to be any collection of
interconnected processes and/or objects. A model
is arepresentation that approximates the behavior
ofanactual system. This representation is descrip-
tive in a certain level of detail, for that system. By
using a set of simplifying assumptions, the system
is conceptually reduced to that of a mathematical
model. Therefore, the results of each model have
significant limitations and are valid only in the
regimes of the real world where the assumptions
are valid. A model is always connected to an ex-
periment from which we obtain data. To optimize
the experiment, we need to have access to the data
related to important variables of the model. Con-
sequently, designing and executing an experiment
is a crucial step in modeling that usually involves
acareful and usually time-consuming selection of
the model’s variables. Next, we will discuss the
two most important classes of variables for any
modeled system: the input and the output.

The input of a system is the information or
signals that flow into a system, and which can
normally be manipulated independently. The
output of the system is the information or sig-
nals that flow out of a system, and result from
the operation of the system on the input. Both
the input and the output can be material flows,
voltages, temperatures, pressures, or any other
biological signal. The information that is getting
into the system or out of'it is depicted by a physi-
cal quantity, property or condition that is being
measured (i.e., the biological signal), usually
called a measurand. In terms of a physiological
system, there are various measurand accessibility
sites, namely a) internal to the body (e.g., blood
pressure), b) external to the body (e.g., electrocar-
diogram potential), ¢) emanating from the body
(e.g., infrared radiation), or d) extracted tissue

(e.g., blood or biopsy). Most medically important
measurands can be grouped into five categories:
1) biopotential (e.g., electromyography - EMG,
electrocardiography - ECG), ii) pressure flow
displacement (e.g., velocity, acceleration, force),
ii1) impedance, iv) temperature, and v) chemical
concentration.

Various factors complicate the choice of bio-
logical input and output (I/O) measurands. First,
most of the parameters that are measured in prac-
tice are quite small as compared with non-medical
parameters in most industries. For example, most
voltages are in the micro-volt range, and the sig-
nals are in the audio-frequency range or below.
Many crucial I/O variables in living systems are
also inaccessible because the proper measurand
transducer interface cannot be achieved without
compromising the system (e.g., cardiac output).
Patient’s comfort is another parameter selection
factorthatis alsorelated to the level of invasiveness
and the safety of the patient in general. Compat-
ibility with existing equipment and the cost of the
experiment also affect decisions on the level of
abduction used to define a physiological model.
Thus, there are times that a model is forced to be
designed with less details as compared to what
was the initial target.

Desired inputs are the physiological signals
(i.e., the measurands) that the model is designed
to process. In practice, they are subjected to
two unwanted artifacts; namely, interfering and
modifying inputs. Interfering inputs relate to how
things are measured. They are quantities that
inadvertently affect the data as a consequence
of the principles used to acquire and process the
desired inputs. Modifying inputs relate to how
the experiment is physically built or laid out.
They are undesired quantities that indirectly af-
fect the input by altering the performance of the
measurement itself. They can influence both the
desired and the interfering inputs. Some undesir-
able quantities can act as both a modifying input
and an interfering input.
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Amodelneeds to be tested on some quantitative
measures that describe the goodness of fit between
the simulated and the true data. The accuracy of
a single model is the difference between the true
value and the predicted value. The difference is
sometimes divided by the true value of the quantity
measured; this ratio is often expressed as a percent.
However, the true value ofthe reference is seldom
available. The precision ofameasurement system,
also known as reproducibility or repeatability,
expresses the closeness of the system’s output in
several measurement experiments made in the
same way. Typically, this value is determined by
statistical analysis of repeated measurements. It
is related to the number of significant figures to
which ameasurement can be made (e.g., an output
variable of 2.434 V is more precise than 2.43 V).
High precision does not imply high accuracy be-
cause precision makes no comparison to the true
value. Figure 1 illustrates the difference between
accuracy and precision.

Figure 1. Accuracy vs. precision of a model s output

Not Accurate nor Precise

Accurate but not Precise
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Physiological modeling is initiated by ex-
perimental observations of a phenomenon that
lead to a guesstimate or a verbal description of
the observed system. An initial hypothesis is
formed followed by a mathematical or computa-
tional model that describes our understanding of
the phenomenon. The accuracy of the model is
tested by acquiring some more data and testing
(simulating) the model against the new data. If
the model performs adequately, the model isready
to serve its purpose (e.g., to replace a module of
a control system). If the model’s accuracy does
not meet performance specifications, then we
need to refine the model. Additional experiments
are carried out to acquire even more data and use
them to update our model. Usually, some of the
variables in the model are observable and some
are not. Hence, the new experiments aim to pro-
vide the data that are needed in order to increase
our understanding of the physiological system.
The new data include information about previ-
ously unobservable variables. The process of

Precise but not Accurate

Accurate and Precise
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refining the model using new data continues
until a satisfactory model is obtained. Typically,
aquantitative criterion is used to test the goodness
of fit between the model and the data. One of the
characteristics of a good model is how well it
predicts the future performance of the physiolog-
ical system. The process is illustrated in Figure
2.

Instead of a concluding remark, two important
modeling principles are underlined: i) The starting
point for successful physiological modeling is
always a simple model that gains a basic under-
standing of the underlying system. If that model
partially succeeds in capturing the known or
anticipated behavior, then the subsequent job is
to refine it. ii) An otherwise hidden structure of
a biological process can become clearer if the
process is successfully modeled with adequate
mathematical and statistical concepts. A deep
knowledge of the modeled structure, and of the
way its mathematical representation responds to
change, allows the formulation of hypotheses and
the testing of theories that are usually not evident
from the phenomenological descriptions of the
system. Engineers and scientists aiming to
model very complex behaviors, such as bio-
medical phenomena, should not escape the
memory of these hallmark principles.

17.3.1. Diagnostic and
Therapeutic Challenges

The results of medical or biological models serve
three different purposes: i) fo understand; to have
a deep, profound knowledge of a real physiologi-
cal system, ii) to predict; to know the future of
such a system that is currently unknown, and iii)
to control; to constrain or manipulate a system
to function inside desirable working conditions.
In analogy to the above purposes, physiological
models can contribute in i) diagnosis if they ac-
quire information for presentation to the human
senses (i.e., extend the human senses), ii) therapy
if they are used to control a physiological process

Figure 2. Model refinement graph
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that has gone awry due to disease, trauma or some
other intervention, and iii) assist if they are used
to substitute a diminished or lost function (e.g.,
robotic systems that help the paretic side of a
patient after a stroke, for example see (Krebs &
Hogan, 2006), or cardiac pacemaker able to predict
and control rhythmic heart beats). Usually, these
models have life-supporting or life-sustaining
applications.

Modify
Hypothesis

17.4. HISTORICAL BACKGROUND
AND LITERATURE OVERVIEW

17.4.1. History of Modeling
The process of modeling a physiological system
has a long history interconnected with the history

of medicine. It was first introduced as a vague
concept with rather philosophical roots; and, after
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centuries, it acquired its scientific entity and a
proper name. Modeling of the living world, the
universe, has its origins in the sixth century BC
among the lonian Greeks of Asia Minor. At that
time, it was mainly occupied with speculation
about the cause of the universe, and was associ-
ated with the name of Thales of Miletus, whose
chiefsuccessors (also sixth-century BC Milesians)
were Anaximander and Anaximenes. The material
principle of the universe was modeled as a single
uncreated and imperishable substance that under-
went various modifications to produce the plethora
of phenomena in the universe. Thales thought that
this substance was water; Anaximander defined
it as something indeterminate, without specific
qualities, and Anaximenes believed it was the air.
Around 500 BC, Alcmaeon of Croton, a Greek
writer and philosopher, localized the brain as the
center of understanding reality and introduced
brain pathways by using the term channels (poroi
— mdpor) that connected the brain to the sensory
organs. By using a political metaphor, he was
also the first to relate health with balance. He
defined a healthy body as the result of equality
(isonomia —1covopin) of opposing powers (e.g.,
hotvs. cold) which make up the body. Empedocles
(490 BC - 430 BC), a Greek philosopher that
lived in Sicily, was the advocate of the segrega-
tion of the matter to four basic elements: water,
earth, air, and fire. He was the first to consider an
interconnection among the various compartments
of his model of the human body. In addition to
the four elements (which he called roots), he used
the words love (philotis — p1LoTIG) to model the
attraction of different forms of matter, and strife
(neikos - veixog) to account for their separation.
He considered love and strife to be distinct sub-
stances in equilibrium, with the four elements in
solution with them.

Interrupting centuries of superposition and
mythology that entwined the understanding of
the real world and the treatment of diseases, Hip-
pocrates (ca. 460 BC - ca. 370 BC) combined
the sixth century BC philosophical trend of Asia
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Minor with Alcmaeon’s percepts and Empedocles’
concepts about the equilibrium to develop the
humoral theory for human physiology (Longriff,
1989). According to this theory, human beings are
modeled to consist of a soul and a body, which
contain four humors: blood, phlegm, black and
yellow bile; humors that correspond to the four
organs ofthe body: the heart, the brain, the liverand
the spleen. These four humors were believed to be
in continuous motion through the circulation. The
equilibrium and the harmony of the four humors
(eucrasia in Greek terminology) were identified
with health. Their disequilibrium and disharmony
(dyscrasia in Greek terminology) produces what
is known as disease (Marketos, 1997).

For six consecutive centuries, the Hippocratic
view of humorism that regarded the disease as a
dynamic process, withstood the pressure of the
Atomists’ view of the body as an interconnec-
tion of indivisible particles in which the disease
remained a static phenomenon. Around 150 AD,
Galenos’understanding of anatomy and medicine,
principally influenced by theory of humorism,
reestablished the Hippocratic ideas of the unity
of the organism in which the interaction with the
environment (homeostatis) is crucial for survivor.
His theories dominated and influenced Western
medical science for nearly two millennia. Gale-
nos’ theory of the physiology of the circulatory
system endured until 1628, when William Harvey
published his treatise entitled De motu cordis, in
which he established a model of blood circula-
tion with the heart acting as a pump (Furley &
Wilkie, 1984). Stephen Hales, nearly a century
later, introduced arterial elasticity and postulated
its buffering effect on the pulsatile nature of blood
flow (Hales, 1733). He modeled the depulsing
effect with the fire engines of his day, in which a
chamber with an air-filled dome, “inverted globe”,
acted to cushion the bolus from the inlet water
pump so that “a more nearly equal spout” flowed
out of the nozzle. His analogy became the basis of
the first modern cardiovascular models. In 1897,
Stewart first measured cardiac output in intact
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animals (Stewart, 1897), more or less affirming
Harvey’s calculations. Krogh and Erlang,in 1919,
presented what is believed to be the first paper
on mathematical modeling in biomedical science
(Krogh, 1919). About ten years later, Wiggers
used Fourier analysis to describe intraventricular
pressure waveforms (Wiggers, 1928).

In1952, Alan Lloyd Hodgkin and Andrew Hux-
leyinitiated the sub-cellular and cellular modeling.
They presented a set of nonlinear ordinary differ-
ential equations that approximates the electrical
characteristics of excitable cells such as neurons
and cardiac myocytes. Their model explains the
ionic mechanisms underlying the initiation and
propagation of action potentials in the squid giant
axon (Hodgkin & Huxley, 1952). For their work,
they received the 1963 Nobel Prize in Physiol-
ogy or Medicine, and the Hodgkin-Huxley model
became the “paradigm” physiological model of
nerve excitation. A few years later, Noble presented
the first cardiac Purkinje fiber cell model (Noble,
1960). These two works set the foundations for the
development of the current, quantitative approach
to computational modeling of biological systems,
which is thoroughly based on experimental data,
and aims to make experimentally verifiable pre-
dictions. Together with the first physiological
models, the methodology to acquire them began
to develop as well. The iterative process in model
building was first introduced by Popper, who
pointed out that no model should be considered
perfect. In fact, he proposed that models must
exhibit “falsifiability” (Popper, 1959).

During the last 50 years, fuelled both by ad-
vancements of digital computers, programming
languages, and simulation software and by the
increasing demand in quantitative assessment
of element interrelations in physiological sys-
tems, computational modeling of physiological
processes and systems witnessed a remarkable
development. Now attention is shifting toward
integrative computational modeling in biomedi-
cal research to link the magnificent body of new
knowledge to an understanding of how intact

organisms function. Multidisciplinary scientific
research spotlights the characteristics of vari-
ous physiological systems. Complex, nonlinear,
nonhomogeneous, discontinuous, anisotropic,
multilayered, multidimensional, etc. systems
needed the development of analogous models
that described them.

17.4.2. Evolution of Computer Power
and Relation with Advancements in
Physiological Systems Modeling

In the second half of the 20™ century, biological
models, used to describe and classify the normal
and abnormal physiological conditions, pushed
the researchers to descend the modeling ladder:
from the organismal level down to the sub-cellular
and even nuclear (gene) level. But before the use
of digital computers, mathematical models of
biomedical systems were either oversimplified
or involved a great deal of hand calculation as
described in the Hodgkin-Huxley investiga-
tions published in 1952. Since the 1980’s, the
progressive introduction of the digital computer,
programming languages, and simulation software
to every lab space in laboratories across the world
enormously shrank the time required to acquire
data from simulation experiments. In fact, since
the 1990’s, digital computer environment became
the working place for any scientist; and, the terms
modeling and simulation have almost become
synonymous. In addition, the internet boom at
the start of the new millennium was the major
contributor to the international partnership among
scientists, and allowed for time and resource
consuming modeling projects to become feasible
since simulations could run on multiple process-
ing sites spread throughout the world. This has
allowed the development of much more realistic
or homeomorphic models that include as much
knowledge as possible about the structure and
interrelationships of the physiological system
without any overriding concern about the number
of calculations.
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The development of information-gathering
technologies and the introduction of modeling
methodologies that incorporate large-scale data
have facilitated a dramatic increase in the degree
of quantification applied to modern physiological
research. In the past few years, computational
modeling and analysis played a critical role in
decoding complex systems descriptions from large
sets of noisy and sometimes redundant data, and
in developing an engineering understanding of
physiological systems. In November 2010, the
search-term “modelling OR modeling” yielded
over 111,000 entries in PubMed, with more than
58,000 since the year 2006. Thus, almost half
of the papers appeared in the last four years, as
compared to the rest of the papers published in the
preceding six decades. These developments show
that the distance between theory (models) and
experiment (simulations) is rapidly diminishing.

The start of the 21* century has found research-
ers working behind their computers climbing
the simulation ladder, and composing low level
information to gradually form a first-principles
physiological knowledge from the low scale ofthe
nucleus of a cell all the way to the level of a com-
plex organism. Various international cooperation
projects on healthcare information systems, based
on grid capabilities and biomedical informatics,
among European Union (EU), North and Latin
America, and North Africa countries, aim to cre-
ate acommon health information infrastructure in
Western countries and extend it to other regions.
In EU, various FP6 initiatives such as SHARE
(http://www.eu-share.org), ImmunoGrid (http://
www.immunogrid.org), SeaLife (http://www.
biotec.tu-dresden.de/sealife), and ACGT (http://
www.eu-acgt.org) have concluded successfully,
and other FP7 initiatives, such as Sim-e-child
(http://www.sim-e-child.org) and ActioGrid
(http://www.action-grid.eu) have begun. At the
planet level, HealthGrid initiative (http://initia-
tive.healthgrid.org), supported by the HealthGrid
Association, was created to promote deployment
of grid technologies in health.
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Though models can continue to be made more
complex, itis important to evaluate the value added
with each stage of complexity — the model should
be made as simple as possible to explain the data,
butnot so simple that it becomes meaningless. On
the other hand, a model that is made too complex
is also of little use. Such models fail to generalize
well either due to a lack of computing resources
(such as time and processing power), or because
they are gradually becoming sluggish in keeping
pace with the new knowledge that is constantly
being added to the description of physiological
systems. Models, currently developing, consti-
tute a pivotal point in solving the many open
questions of human systems’ dynamics, and the
information processing from singe cells. The
present and forthcoming advances in biology and
systems modeling are expected not only to further
increase the huge amount of information coming
from physiological studies, but also to represent
an opportunity to help improve the well-being or
quick healing of individuals facing health issues.

17.4.3. Presentation of Current
Projects: The Physiome Project, The
Virtual Physiological Human-VPH

Whereas the reductionist approach in the last
century focused on studies of isolated systems
aiming for the finest possible molecular and cel-
lular events, integration is becoming the most
popular scientific term today. The remarkable
achievement of completion of the first draft of
the human genome sequence demonstrates the
power of integration of the interdisciplinary
scientific power. Following the contemporary
trend, currently developed models aim not only
to explicitly understand the physiological entity
under study, but also to relate the subsystems’
interconnections to the systemic behavior. Scien-
tists trawl for relations in a large area extending
frommolecules, genes, proteins, cells, organs, and
systems up to whole organisms. Interrelationships
among biological systems span more than one
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descriptive level, atall space and time scales. The
aggregation of various modeling levels is achieved
by identifying appropriate variables that can be
omitted, averaged, or approximated. In that sense,
a newly developed model should be placed with
respecttoamodeling hierarchy atall scales so that
parameters in one model are the output of models
at a finer spatial or temporal scale.

The elucidation of such multilevel models re-
lies onacquiring detailed structural and functional
information. Forinstance, research on Parkinson’s
diseaseis based on dataranging from the properties
of membrane ion channels using patch clamp tech-
niques, toneuronal in vivo characteristics available
by means of multiple microelectrodes, populations
of neurons using stereo-electroencephalography
or electro-corticography, up to extended brain ac-
tivities with high density electroencephalography
and magneto-encephalography.

Nevertheless, the knowledge gathered is ham-
pered by the system’s intrinsic complexity and
by the fact that biological mechanisms are still
poorly understood. That is why model design,
experimental investigations and observational
tools have to be wisely chosen to represent con-
sistently the true system. Scientists in medicine,
biology, physics, chemistry, applied mathematics,
and computer and engineering science are needed
to collaborate. Database management, recognition
and fusion of multidimensional signals and sens-
ing devices are to provide the means to modeling
and control studies.

Overthe pastdecade, several model integration
initiatives have been launched that aim to create
reliable biological and physiological models,
including projects like E-cell, Virtual Cell, the
Virtual Physiological Human, and the Physiome
Projects. These projects attempt to formulate
a comprehensive framework for modeling the
human body using computational methods to
provide answers to basic questions, and better
care forhuman beings. The collaborative research
initiatives consist of scientifically independent
projects on integrative systems physiology and

biology undertaken by individual laboratories
mainly in Western countries. Financial support is
provided mainly from national and international
health research agencies.

The main scope of those projects is to gather
interdisciplinary modeling work, information pro-
cessing methodologies and relevant software tools,
data banks, etc., and make them approachable to
research groups across the globe. However, most of
the projects have justbegun and have notachieved
great depth yet, for many theoretical and techno-
logical issues have to be addressed. The challenge
for the projects is to link these two developments
for an individual — to use complementary data
together with computational modeling tailored
to the anatomy, physiology and genetics of that
individual, for diagnosis or treatment.

The Physiome Project represents current quan-
titative attempts in this direction that establish
top-down paths to meet up with the sub-cellular
information and, so, introduce models traveling
the whole way from genes to health. Its concept
was first presented in a report from the Com-
mission on Bioengineering in Physiology to the
International Union of Physiological Sciences
(IUPS) Council at the 32" World Congress in
Glasgow, in 1993. The name of the project comes
from “physio-” (pdoig- life) and “-ome” (as a
whole), and is intended to provide a “quantita-
tive description of physiological dynamics and

functional behaviour of the intact organism™. A
synthesium on the Physiome Project was held at
the 34" World Congress of TUPS in Christchurch,
New Zealand, in August 2001, and the Physiome
Project was designated as a major focus for [UPS
for the subsequent decades. The main projects of
the Physiome include models of the brain and the
central nervous system, the cardiovascular, the
respiratory, the urinary, the musculo-skeletal, the
alimentary, the reproductive, the endocrine, the
haemolymphoid, and the integumental systems.
To illustrate the international collaboration, more
than 16 research laboratories from five countries
(Australia, USA, United Kingdom, Israel, and
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Switzerland) are currently working only on
cardio-models.

Virtual Physiological Human is a European
Union initiative which started in 2007. Its main
targets are the creation of several patient-specific
computer models that will be used for personalized
and predictive healthcare; as well as, the creation
of ICT-based tools for modeling and simulation of
human physiology and disease-related processes.
The Physiome and the Virtual Physiological Hu-
man projects seek to understand and describe the
human organism, its physiology and pathophysi-
ology, and to use this understanding to improve
human health. While it will be a very long time
before a surgery will be executed or a drug’s ef-
fects will be tested on a virtual patient, that day
is closer than ever. But we need to recognize the
potential of such international efforts. The most
daunting challenge for the future remains the inte-
gration of this incredible wealth of information to
increase our awareness of how biological systems
are structured at all levels, and how this structure
drives the function of a healthy or diseased entity.

17.5. LEVELS OF MODELING:
FROM CELLULAR TO ORGAN
AND SYSTEMS MODELING

The breadth and depth of the experimental data
currently obtained across laboratories all over the
world has allowed the design of sub-cellular to
whole organ models. For the reasons discussed
in Section 17.4.2, a rapid expansion of detailed
experimental data, mainly occurred in the last
decade ofthe previous millennium, had created the
area to develop the “theoretical biology” (Noble,
2002). The term “Systems Biolog)” represents a
novel, quantitative approach to biological research
that encompasses physiological functioning as
well. Biology and physiology are merged together
using a combination of experimental data and a
quantitative theoretical description of the interac-
tions between system components across multiple
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spatial and temporal scales. Modeling at the sub-
cellular level has advanced to an impressive level
in most biological tissues, partially guided by
direct knowledge transfer from cardiac to other
cell models (Youm et al., 2006).

Models are formulated in the cellular, intercel-
lular, tissue, organ, and organism levels. At the
organ and organism level, complexity of computa-
tional (and experimental) models increases rapidly.
In order to handle this problem, the multitude
of interacting processes and components must
be assessed for inclusion into, or elimination
from, mathematical representation of biological
behavior. Different researchers have taken differ-
ent approaches, but applied (i.e., experimentally
testable) work seems to follow the pattern that,
once the research question has been determined
experimentally, the mathematical models are
developed to maximally reproduce relevant be-
havior with minimal complexity. This process of
selection and reduction is, of course, difficult and
usually requires a continuous iteration between
experimental and theoretical model application.
In order to formulate a model description, two
main pathways exist. The first pathway leads to
a mathematical model via a physical description
of the system. The second pathway is based on
the system identification using observations.
These pathways will be further discussed in the
next Section.

Starting from the sub-cellular and cellular lev-
els, Hodgkin & Huxley introduced the “paradigm”
physiological model of nerve excitation (Hodgkin
& Huxley, 1952). Eight years later, Denis Noble
presented the first cardiac cell model (Noble,
1960). These two works were the cornerstones
for the development of the current, computational
approach to modeling of living cells. As we ascend
the spatial biological ladder, we need to integrate
the cell functioning to amore complicated level of
structure that resembles that of a tissue. Numerous
mathematical and computational descriptions of
cellular and inter-cellular effects use the work of
Beeler & Reuter (1977) formodels of the electrical
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activity propagation in the intracellular and extra-
cellular spaces. At the organ and organism level,
complexity of computational (and experimental)
models increases rapidly, and scientists usually
simplify their models in order to gain insight into
the underlying physiological system that is be-
ing examined. The work from researchers at the
University of California, San Diego, CA, USA
is a good example of how advanced the field of
system modeling has become in this regard. Bigg
is a freely available model of the first complete
computer model of human metabolism that helps
researchers uncover new drug pathways, and un-
derstand the molecular basis of cancer and other
diseases (Schellenberger et al., 2010).

17.6. CLASSIFICATION OF MODELS

We can now begin to get to the heart of the matter,
by describing and classifying models. This section
will deal with models of physiological systems
and their behavior; either dynamic or static. A

Figure 3. Classification of models

dynamic model is characterized by a number of
variables whose values change with time, even
in the absence of external inputs. These variables
fully describe the systemic behavior at any given
time and are known as state variables. On the
other hand, a static model has direct instanta-
neous links between all variables. A very broad
categorization, which is nonetheless quite useful
for creating more finely structured hypotheses,
considers randomness, a priori knowledge of the
model s structure and the domain of description. A
major target in modeling a physiological system
is to identify these properties through the use of
appropriate computational tools.

17.6.1. Deterministic and Stochastic
Models

In a deterministic system, we always have an ex-
act relationship between measurable and derived
variables. Given a clear knowledge of the initial
conditions and the system dynamics, the future
behavior of a deterministic system has no uncer-
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tainty for all time. Most physiological systems
are studied as deterministic and the unavoidable
uncertainty is introduced into the model as a
separate random process superimposed into the
variables of the system. What makes a determin-
istic system so desirable is that, given sufficient
knowledge about the dynamics and the values of
the state variables at a given time (the state of the
system at that time), the future course of the system
can be predicted with some degree of accuracy.

On the other hand, the outcome of a stochastic
model is governed by some degree of chance.
Even if complete information on the dynamics
and the initial states of such a model is given,
the future course of the system is impossible to
be fully predicted. Rather, the model’s output can
be described in terms of its statistics; that is, the
likelihood of its state variable having particular
values. A basic modeling question in many ex-
perimental situations is whether the system used
to provide the acquired data is to be modeled
as deterministic or stochastic. In practice, the
acquired data set is the result of a mix of deter-
ministic and stochastic processes. In fact, such a
concern is further complicated; we can always
constructa deterministic system that will generate
the specific data of any given finite data set, even
if our data set is acquired from a highly stochastic
process. A goldenrule for these kinds of situations
is this: We always seek to model a process with
the maximum possible simplicity.

17.6.2. Parametric and
Nonparametric Models

For a better description and analysis of any sys-
tem, we need to introduce the subtle distinction
betweenvariables and parameters. Aparameter is
a constant; it is a term in an equation that is fixed.
On the contrary, a variable changes with time to
reflect the dynamics of the system.
Aparametric modelis abottoms-up representa-
tion of a process based on physical principles and
a-prioriknowledge of constitutive laws governing
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the sub-processes. These laws, together with physi-
cal constraints, are used to integrate the models of
subsystems into an overall mathematical model of
the system. If one has valid representations from
basic science, then equations can be postulated to
represent the system under study in either continu-
ous time or discrete time (events). In which case,
the variables are related by equations containing
parameters which define system behavior. In the
case of static systems, the relations are simple
algebraic equations independent of time. For dy-
namic systems (linear ornon-linear), the equations
include functions of time and require knowledge
ofpast values for variables. In addition, the system
under study may have lumped variables, or require
distributed parameters over a domain of interest
(e.g., temperature in space). The latter is usually
described with partial differential (or difference)
equations or finite elements.

A nonparametric model provides a method
to estimate a system’s output representing the
actual relationship between the input and the
output, without making restrictive assumptions
about the variables of the system or its statistic
properties. Such models can provide accurate
methods of data analysis, because they make
minimal assumptions about the data-generating
process. In the nonparametric black box approach,
a mathematical model is formulated on the basis
of the input output characteristic of the system
without consideration of the internal function-
ing of the system. Linear nonparametric models
consist of data tables representing the impulse
response, step response, and frequency response
of the system. Because nonparametric models
are not represented by a compact mathematical
formula with adjustable parameters, such models
do not impose a specific mathematical structure
on the system.

Now a question arises on the selection criteria
between those two types of models. The modeling
choice depends mainly on the nature of the system,
onthe type of behavior thatis expected, and on the
intended use of the model. Nonparametric models
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serve well as preliminary models that are used
to analyze system characteristics. For example,
estimating the transient response provides insight
into the rise time and settling time of the system
response. Similarly, estimating frequency response
might indicate the order of the system, locations
ofresonances and notches, crossover frequencies,
and the bandwidth of the system. In some cases, a
specific mathematical form is preferable because
the estimated parameters have a physical inter-
pretation. However, when estimates of dynamic
characteristics are only required, nonparametric
models are usually used.

17.6.3. Applied Examples

Example 17.1: A simple example of a dynamic
system is that of a bicycle ride. The state
variables of the model include the bicycle’s
speed and the feet pressure on the pedals.
The variables are related in a direct but
potentially complicated manner. A simple
model would just consider speed to be pro-
portional to pedal pressure. A more realistic
model would include time delays resulting
from the chain dynamics and neural lag.

An even more extensive model would also
include chain dynamics explicitly, as well
as air pressure against the running bicycle.
Knowing which variables are important to
include in the model is one of the keys to
successful modeling, and this is, in many
cases, more an art than a science.
Example 17.2: Another example, aimed to distin-
guish between parameters and state variables
is given below. In the case of modeling the
heart rthythm during a specific short-term
physical activity, the subject should not eat
during the exercise, and the exercise should
take place in a limited amount of time so
that circadian fluctuations do not have a
significant effect on the experiment. Hence,
food and the time of the day are considered
as fixed parameters (i.e., they are constant).
Onthe contrary, if we wantto model the heart
rhythm over the day, then the time of day
and food absorption become state variables.
Example 17.3: Any signal that is recorded from
the brain, either inside (e.g., local field
potentials - LFP) or outside of the scalp
(e.g., electroencephalograph - EEQG)), is
a highly stochastic signal. The LFP is an

Figure 4. A local field potential (LFP) recorded inside the subthalamic nucleus of a Parkinson s disease
patient. The signal is highly stochastic since it is produced by a stochastic system. The LFPs are domi-
nated by the more sustained currents in the tissue, typical of the somato-dendritic currents.
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electrophysiological signal, dominated by
slow varying potentials, typical of aneuron’s
somato-dendritic processes withina volume
of tissue. The electrical potential is usually
recorded with a very small electrode embed-
ded within neuronal tissue, typically in the
brain of an anesthetized animal or patient
(in vivo) or within a thin slice of brain tissue
maintained in a solution (in vitro). A typical
LFP signal, acquired from the subthalamic
nucleus of a Parkinson’s disease patient, is
shown in Figure 4.

17.7. COMPARTMENTAL MODELING

Compartmental modeling is mainly used to
describe systems that include transfer of solutes
across compartments, such as the respiratory and
circulatory systems. It is based on metabolism
of tracer-labeled compound studies that started
in the 1920s. Compartmental models are linear,
nonlinear, continuous or discrete models of sys-
tems thatare divided into homogenous well-mixed
components, called compartments. Acompartment
is a well-delineated biotic or abiotic entity. The
models may have constant or even time-varying
parameters. The internal behavior of the system
is characterized by the movement of materials
between two neighboring compartments. Two
of the main difficulties of compartment model-
ing are the determination of the exact number of
compartments to be used in the model, and the
accessibility of some of the compartment’s data.
Lumped compartmental variables are mainly sub-
stances (solutes) that are either exogenous (e.g.,
a drug) or endogenous (e.g., insulin). Blood and
chemical species (such as hormones) distribution
to various organs, cellular dynamics, tempera-
ture distribution, etc. are just few examples in
which compartmental models are used in studies
involving pharmacokinetics, chemical reaction
engineering, fluid transport etc.
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Compartmental modeling is also a significant
approach of modeling neural systems. Various
platforms have been developed to provide the
tools for a detailed realistic simulation of a real
neuron, or even a large network of neurons based
on a “building block™ approach. In such systems,
simulations are constructed from modules that
receive inputs, perform calculations on them, and
then generate outputs. GEneral NEural SImula-
tion System (GENESIS) is a general purpose
object-oriented software platform developed by
James Bower and David Beeman (Bower & Bee-
man, 1998) to support the biologically realistic
simulation of neural systems. This object-oriented
environment enables the modification of existing
simulations for new purposes. GENESIS, and
its version for parallel and networked computers
(PGENESIS), was the first broad scale modeling
system in computational biology to encourage
modelers to develop and share model features and
components. It supports the simulation of neural
systems, ranging from subcellular components
and biochemical reactions to complex models of
single neurons, simulations of large networks,
and systems-level models.

An alternative to the GENESIS simulation
environment is NEURON (http://www.neuron.
yale.edu), which is widely used by experimental
and theoretical neuroscientists. It was primarily
developed by Michael Hines, John W. Moore, and
Ted Carnevale at Yale University, New Haven,
CT, USA and Duke University, Durham, NC,
USA (Hines & Carnevale, 1997). Both platforms
implement a built in “scalability” in models. This
is a major advantage compared to other custom
made codes needed to be written for a specific
simulation (e.g., in a MATLAB & Simulink en-
vironment), but it comes with the expense of a
need to invest the time required to understand the
analysis and graphic tools provided by platforms
such as GENESIS and NEURON.
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17.7.1. Detailed
Compartmental Models

In order to describe the transfer of a solute by dif-
fusion between two compartments, the following
assumptions are needed:

1. All compartments have constant volumes.

2. The solutes, upon entering a compartment,
are dispersed homogenously in the entire
compartment.

3. Therate of solute depletion from a compart-
mentis analogous to the concentration ofthe
solute in the same compartment.

If the aforementioned assumptions are met,
the time course of a solute transfer across two
compartments can be examined. Using a law of
diffusionderived by Adolph Fick in the year 1855,
we can model the diffusion coefficient, D of a
solute, transferred between two compartments,
that has quantity, ¢, and concentration, ¢, using
a membrane with surface area, 4, and thickness
dx, as follows,

da _ _pyde

17.1
dt dx ( )

Thetransferrate, R, ofthe diffusionis defined as

DA

Cdr

R (17.2)

For a thorough review and an analytical ap-
proach of two-compartment models, please see
(Enderle, 2005). The simplification of compart-
ment models is allowed by the fact that the dis-
tribution inside a compartment is not included.
The basic assumption of a solute homogeneously
mixed inside a compartment, results in knowing
everything about a system’s behavior, when the
inflow and outflow for each compartment are
identified.

17.7.2. Modified
Compartmental Models

The compartment analysis presented in Section
17.7.1 is not adequate to fully describe systems
in which the transfer rates are not constant, but
depend, for example, on the concentration of a
solute in a single compartment. But even in those
systems, we can apply a modified compartment
analysis to cope with the nonlinearities present.
As the model becomes more and more complex,
an analytical solution is not feasible; yet, simula-
tions of such models can give us an approximation
of the solution.

One of the earliest modeling attempts that
aimed at analyzing smallpox morbidity and mor-
tality dates back to 1766 when the Dutch-Switch
mathematician, Daniel Bernoulli, tried to analyze
it as a statistical problem to demonstrate the ef-
ficacy of vaccination. The next infectious disease
modeling attempt belongs to Hammer and Soper
who created a model of measles spreading, in
1906. Their model contained separate compart-
ments for susceptibles, infectives, and recovered,
taking into consideration the births, the infection
rate, etc. Twenty years later, Kermack and McK-
endrick (in the continuous time), and Reed and
Frost (in the discrete time) presented extensions
for the model of Hammer and Soper.

For both the Kermack-McKendrick and Reed-
Frost models, any given person is related to a
certain time period. The latent period is the time
elapsed between contact and the actual discharge
of the infectious agent. The infectious period is
the time during which the contagious agent is
spread to others. The immune period is the time
during which a person has temporal or permanent
immunity and can no longer transmit the agent.
Theincubation periodis the time elapsed between
contact and the observation of symptoms. The
symptomatic period is the time interval in which
the person overtly displays signs of the illness; see
(Enderle, 2005) for anillustration of these periods.
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If we consider a population of size, n, with x
susceptibles, y infectives, and z immunes, so that
n =S8+ C+ R, the assumptions for a Kermack-
McKendrick continuous time modeling approach
are the existence of: i) a uniform mixing among
the population, ii) a zero latent period, iii) a closed
and isolated population, iv) a negative exponen-
tial distribution for the infectious period, v) an
infectious rate, b, and vi) a removal rate, ¢g. The
course of an infectious epidemic in a closed and
isolated population is a function of the number
of susceptibles and the infectious rate between
susceptibles and infectives. In Figure 5 (upper
panel), the Kermack-McKendrick model is shown.
Arrows indicate a nonnegative transfer of indi-
viduals from one state to another, dependent on
the infective rate b (infectives) and the removal
rate g. The Kermack-McKendrick model describes
the transfer of S susceptibles, C infectives, and R
immunes at time ¢ from state to state. With b as
the infective rate, the differential equations that
describe the model are:

ﬁszsc

dt

dC

— =b5C — gC 17.3
= g (17.3)
dR

= _qC

at

Equation 17.3 can be solved analytically using
a Taylor series expansion; see (Enderle, 2005).

The Reed-Frost model is a deterministic dis-
crete time model; this makes it more practical in
being used with true data which is usually sampled
versions of continuous data. The assumptions for
a Reed-Frost discrete time modeling approach
are as follows: 1) the existence of a uniform
mixing among the population; ii) the existence
of a zero latent period (although the model can
extend easily to a nonzero latent period having a
well defined distribution); iii) the existence of a
closed population at steady state; iv) susceptible
individuals can develop the infection only once
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and then become permanently immune; v) since
the person can be infected at any instant during the
time period, the average latent period is one-half
of the time period, where the length of the time
period represents the period of infectivity; and, vi)
each individual has a fixed probability of coming
into adequate contact p with any other specified
individual within one time period.

The structure of the Reed-Frostmodel is shown
in Figure 5 (bottom panel). Note that the prob-
ability of adequate contact p can be thought of as

p= (17.4)

el

where, n is the average number of adequate
contacts.

As before, the Reed-Frost model describes
the transfer of S susceptibles, C infectives, and R
immunes, but now the transfer is measured with
respect to the next discrete time (state), k+ /. After
adequate contact with an infective in a given time
period, a susceptible will develop the infection and
be infectious to others only during the subsequent
time period, after which one becomes immune.
If the infective rate is (1 - g“®), the model can be
described by the nonlinear difference equations

Ok +1) = S(k)(1 - ¢°®)
Sk +1) = S(k) — Ok + 1) (17.5)
R(k +1) = R(k) + O(k)

The time period T is understood to be the
length of time an individual is infectious, so that
the removal rate is equal to one.

17.7.3. Expansion to Multi-
Compartmental Models

It should be clear by now that real biological
models incorporate more than the limited number
of compartments already described in previous
sections. A single compartment model can be
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Figure 5. Modified compartmental models. The Kermack-McKendrick (upper panel) and the Reed-Frost

(bottom panel) models are shown.
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divided to multiple compartments if we choose
to include more details on it such as cell volume,
interstitial volume, or plasma volume. But even
these volumes can be further compartmental-
ized. For instance, the interstitial volume can
be defined with compartments including the GI
tract, mouth, liver, kidneys, and other unidentified
compartments. Each of these compartments has its
own transfer rate for moving the solute from one
compartmentto another. In general, concern about
how the solute moves from and into a compart-
ment is not a focus, but only the amount of solute
that is transferred. The concepts described in the
previous section can be applied to a model with
any number of compartments. Each compartment
is characterized by a conservation of mass differ-
ential equation that describes the rate of change
of solute. Thus, for the case of N compartments,
there are N equations of the general form

dq
% = Input — Output (17.6)

where, g, is the quantity of solute in compartment .
Foralinear system, the transferrates are constants.

Physiologically based pharmacokinetic
(PBPK) modeling is a multi-compartmental
modeling technique used in pharmaceutical re-
search and drug development, and in health risk
assessment for cosmetics or general chemicals.
Compartments correspond to a-priori defined

organs or tissues, and their interconnections cor-
respond to blood or lymph flows. This modeling
approach aims to balance between complexity
and simplicity to predict the absorption, dis-
tribution, metabolism and excretion (ADME)
of synthetic or natural chemical substances in
humans and animal models. PBPK models may
have purely predictive uses, but other uses, such
as statistical inference, have been made possible
by the development of various statistical tools. A
system of differential equations for concentration
or quantity of substance on each compartment is
usually written, and its parameters represent blood
flows, pulmonary ventilation rate, organ volumes,
etc. PBPK models are also used for inter-species
transpositions or extrapolation from one mode of
administration to another (e.g., males to females,
adults to infants, inhalation to oral) to asses toxicity
risk and therapeutic drug development.

17.7.4. Applied Example

Example 17.4: Let us consider a two compart-
ment model, shown in Figure 6, in analogy to the
one presented by Goodman and Noble (1968).
According to that model, the rate of cholesterol
turnover has been described as conforming to a
two-compartmental system consisting of one pool
that turns overrapidly and a second pool with a low
turnoverrate. Cholesterol is inserted into the blood
plasma of all animals by two sources, namely the

761



Physiological Systems Modeling, Simulation, and Control

food and synthesis from simpler substances within
the body. Cholesterol is recycled. Itis excreted by
the liver via the bile into the digestive tract. This
system can be described using a two-compartment
model, where some of the tissue (primarily the
liver, which is the main organ playing a role in
the dynamics of the cholesterol levels) and the
blood exchange cholesterol with the blood. We
assume that the exchange of cholesterol between
the liver and the blood is happening in a high,
almost instantaneous speed; that is why we model
the blood-liver system as a single compartment.
The rest of the exchange — between blood and
liver and the rest of the tissues, lumped together
in a second compartment — is happening at a
much slower speed. Hence, the first compart-
ment represents the amount of cholesterol in the
blood and liver, and the second represents the
amount of cholesterol in all the rest of the body.
If we inject a small amount of C'# into the blood
stream, we can estimate the amount of radioactive
cholesterol in the two compartments, O, and Q,
respectively. We assume that the concentration of
radioactive cholesterol-C' in the first compart-
ment is C,(1)=0,(1)/G,, and the concentration of
radioactive cholesterol in the second compartment
is C,(1)=0,(1)/G,. Let us first consider the blood-

liver compartment. The cholesterol thatis inserted
via food and from biosynthesis is not radioactive.
Hence, the only inflow of cholesterol-C'# into
the first compartment arrives from the second
compartment. Now, let us consider the second
compartment. The total inflow of cholesterol into
the second compartmentis R +R, and theamountof
the cholesterol-C"is C,()=Q,(1)/G,. This means
that the amount of cholesterol-C that flows into
the first compartment is (R,+R,)0,(?)/G,, and the
amount of cholesterol-C’* that flows out of the
first compartment and into the second compart-
mentis R O (2)/G,. The amount of cholesterol-C"*
that is extracted to the environment is given by
(R, YR +R,)Q,(1)/G,. From these relations, we can
write down the differential equations that govern
the system as follows,

R2+R3 7R0+R1+R2+R3
Q) =50 e
Rs - RQ + Rz

(17.7)

Figure 6. Compartmental model of cholesterol concentration in the body
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17.8. LINEAR MODELING OF
PHYSIOLOGICAL SYSTEMS

Linear systems are highly popular among the
physiological models since they are simple to
implement and provide extremely powerful tools
for their analysis. In contrast, methods available
for the study of nonlinear systems are much more
limited. In fact, almost all physiological systems
are nonlinear; however, many of these systems
can be modeled as linear systems in a limited
range of operation.

Let us introduce a short description of the
terminology in the field. If the operation that
transforms the input into the output varies with
time, the system is time varying; whereas, if the
operation remains constant, the system is time
invariant. Two attributes of linear time-invariant
(LTT) systems form the basis for almostall analyti-
cal techniques applied to these systems:

1. Responseobeystheprincipleofsuperposition.

2. Response can be expressed as the convo-
lution of the input with the unit impulse
response of the system.

The concepts of superposition, convolution,
and impulse response will now be defined shortly.
The principle of superposition states that if the
system has an input that can be expressed as a
sum of signals, then the response of the system
canbe expressed as the same sum of the individual
responses to the respective signals. Superposition
can be expressed mathematically as follows:

flax, +a,x,) = af(z)+a,f(z,) (17.8)

where, x, and x, are two inputs, f(x ), f(x,) are
the respective outputs of a system, fand a , a, are
two scalars. Superposition applies if and only if
a system is linear. The effects of performing any
linear operation on the input of a linear system

(e.g.,integration, differentiation, Fourier transfor-

mation, etc.) will affect a change on the output
in exactly the same way as if the transformation
were applied to it directly. That is, if fand g are
two linear operators, then f{g(x))=g(f(x)). Thus, for
example, the response of a linear system to a step
input can be computed by integrating its impulse
response, since a step is the integral of an impulse.

Under the same test conditions, a system that
is time-invariant will respond identically to a
specific stimulus irrespective of when it is intro-
duced. That is, except for the time shifts between
responses, all responses are identical. Just as not
all systems are linear, not all linear systems are
time-invariant. Mathematically, time invariance
can be expressed as follows:

y(t) = f(z(®) = y(t —7) = f(a(t — 7))
(17.9)

where, T is a time constant. A system that satisfies
both of these properties is naturally called a linear
time-invariant (LTI) system.

Testing a system for linearity may be done
using the principle of superposition. An easy way
to implement such tests is to apply the same input
at different amplitudes. If the system is linear, the
output will have the same shape and the output
amplitude will scale with the input amplitude.
It is also useful to remember that the response
of a linear system to a sinusoidal input will be a
sinusoid at the same frequency. Thus, if the output
has components at frequencies not in the input, it
must be nonlinear.

Many systems behave linearly overarestricted
range of inputs. For example, a rectifier is linear
as long as the input remains either positive or
negative. Almost any system will become non-
linear if the input is large enough. Conversely,
most nonlinear systems can be described by a
linear approximation if the input amplitude is
small enough. Thus, it is important to determine
not only whether a system is linear, but over what
range of values does it behave linearly. Thus, it is
important to determine the linear range of a system.
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In some cases, a system may have more than one
linear range and display different behaviors in
each range (e.g., a full wave rectifier). Note that
the linear range is a property of the amplitude of
the input — not its frequency content. That being
said, the linear range may vary with frequency
for some types of nonlinear systems.

Anapproach thatis frequently useful in dealing
with nonlinear systems is to transform either the
input or the output in order to make the resulting
input-output relation more linear. For example,
logarithmic transformations are useful in linear-
izing systems in which there is a power relation
between input and output.

17.8.1. Time-Domain and
Frequency-Domain Models

If a system is known to be linear, it is always
guaranteed that an adequate model of the system
can be determined. This consists of determining
the system’s response to a set of basis functions
(for example impulses or sinusoids of different
frequencies). Once these responses are known, the
response to an arbitrary input may be determined
as follows:

1. Decompose the arbitrary input into a linear
combination of basis functions (e.g., Fourier
analysis decomposes the signal into a linear
combination of sinusoids).

2. Determine the response to each component
using the principle of proportionality.

3. Sum the resulting components to determine
the overall response by relying on the prin-
ciple of superposition.

If the basis functions are a series of impulses,
then the analysis results in time domain models.
On the other hand, if the basis functions are
sinusoids, then the analysis results in frequency
domain models.
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One way to characterize the dynamic behavior
of a linear system is in terms of its response to
an impulse. The impulse response function (IRF)
can be used as a representation of a linear system
because it can be used to predict the response of
the system to any input. To visualize how this
works, consider the input to the system to be a
series of impulses of different amplitudes. The
response of the system to any one impulse is
simply the IRF multiplied by the amplitude of the
input impulse, and delayed by the time at which
the input impulse occurs. Now, because a linear
system obeys the superposition principle, the
overall output is simply the sum of the responses
to all the input impulses. The convolution integral
is the mathematical statement of this procedure.

A system’s IRF can have both positive time
values, representing system memory, and negative
time values, representing system anticipation. The
response, y(t), of such a two-sided IRF, A(), to an
input, x(2), is given by the convolution integral

f h(r)a(t — 7)dr

If, as is usually the case, f b R’ (T)dT < 00,

(17.10)

then the system has finite memory and A(t) =~ 0
when 7 < T, and 7> T, for some value of T,

and T,. Under these conditions, Equation 17.10
may be simplified to

f h(r)z(t — 7)dr

In causal (physically realizable or non-antici-
patory) systems there is no anticipatory component
to the response; e.g., 4(7)=0 for <0 so that T1_0.
The IRF is then one-sided and the convolution
integral further simplifies to

f h(r)z(t — 7)dr

(17.11)

(17.12)
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A linear system can be represented by either a
parametric or non-parametric IRF. A parametric
IRF is in the form of an equation. The structure
of the equation defines the class of systems it
represents, and the parameters of the equation
determine how the behavior differs from that of
the other members of the same class. In contrast, a
non-parametric IRF consists of the sampled values
of the response, and is stored as a real vector in
the time domain. In short, the parametric form
can be represented by an equation, and the non-
parametric form can be represented by a curve.

It is normally assumed that physical systems
are causal and do not anticipate. Consequently,
the usual IRF identification procedures employed
in engineering determine only the positive or
memory part of the IRF. There are a number of
areas of research, particularly those involving the
life sciences, where it is important to determine
both the positive and negative parts of an IRF.
Two-sided IRFs will be important in situations
involving actual prediction. Living systems
frequently demonstrate predictive behavior. For
example, the frequency response of the visual
pursuit system is wider for predictable stimuli
than for random stimuli. Effective prediction can
occur when the input is unknown but structured
(e.g., periodic), or when preview of the input is
possible. Under such conditions, a negative por-
tion of the IRF may well occur. A pure delay of
7, either preceding or following a linear dynamic
system, moves the IRF zto theright. Thus, whether
or not a system contains a pure delay may often
be determined from the IRF. If the input to the
system is measured after a delay of z, then the IRF
is shifted to the left with the result that negative
time values may occur, necessitating the use of
two-sided IRF identification techniques. Once
the delay has been determined from the identified
IRF, the input can simply be shifted with respect to
the output to eliminate the delay. There are many
situations where the input to a system is related to
its output by feedback. Attempting to identify the
systemunder such conditions can lead to incorrect

estimates of the system’s dynamics. However, the
presence of a feedback relation can be detected
as an anticipatory component of the IRF, relating
the input to the output. Hence, computing the
two-sided IRF provides a means of testing for a
feedback relation between two signals.

Now, we will deal with an alternative approach
inwhich linear dynamics are characterized in terms
of the response to sinusoidal stimuli of different
frequencies. The response of a linear system to
a sinusoidal stimulus will be a sinusoid of the
same frequency but of different amplitude and
phase. The frequency response of a linear system
describes the relative magnitudes of the input and
output sinusoids (gain), and the phase difference
as a function of frequency.

The frequency response of a linear system may
be used to determine the response of the system
to an arbitrary input as follows:

1.  Decompose the input signal into a sum of
sinusoids using Fourier analysis.

2. Multiply each sinusoid by the gain of the
system at the appropriate frequency, and
shift it by the corresponding phase.

3. Sum the scaled and phase-shifted sinusoids
to reconstruct the overall response.

The response of a linear system to an arbitrary
input may be computed from its impulse response
using the convolution integral defined in Equa-
tion 17.10. The Laplace transform of this relation
gives Y(s)=H(s)X(s); where, H(s) is the Laplace
transform of the impulse response, Y(s), X(s) are
the Laplace transforms of the output and the input,
respectively, and sisacomplex variable defined as
s =0 + jw, ¢ being a damping factor and wbeing
a frequency term. The transfer function of the
system can then be written as

(17.13)
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The transfer function of any linear, time-in-
variant, constant-parameter system without delays
may be written as the ratio of two polynomials:

(17.14)

where, the zeros (z,) and poles (p) of the polyno-
mials may be real, zero, or complex (if complex
they come as conjugate pairs). To determine the
frequency response of a system with transfer func-
tion H(s), apply a sine wave stimulus:

z(t) = Asin(wt) (17.15)
which has the Laplace transform x(s) = A %
s t+w

The response in the Laplace domain will be

s (s—2).(s—2)
(8" +w') (s—p)-(s—p,)
(17.16)

Y(s)=AK

Expanding the right hand side of Equation
(17.16) using partial fractions gives

c c c c
Y(is)=—r—+—"— 42—+ ——+ ..
S+jw s—Jjw S—p  S—D,

(17.17)

Taking the inverse transform gives the solution

y(t) = ce ™ + e, e + e e + .
(17.18)

All p, i=1,...,n must be less than zero for the
system to be stable, so the steady state response is

y (t)=ce ™ +c,e™ (17.19)

Standard partial fraction techniques then give
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c :M c :AH—W (17.20)

1 2 ] 2
so that

y,(t) = A‘H(jw)‘ cos (wt + ¢<H(jw)>)
(17.21)

where, |H(jw)| denotes the magnitude of H(jw),
and ¢<H(jw)> is its phase.

Thus, the steady state sinusoidal response of
a linear system can be operationally determined
fromits transfer function by letting s=jw, and then
evaluating the magnitude and phase of the result-
ing complex number as a function of frequency.
Conversely, the frequency response of a system
can often be used to determine the underlying
transfer function.

Sinusoidal inputs provide a convenient,
straightforward means of determining the fre-
quency response of a system. The procedure is
as follows:

1.  Apply a sinusoidal stimulus at frequency
 to the system, wait for the response to
reach steady state, and record the resulting
sinusoidal response.

2. Compute theratio of the response amplitude
to the inputamplitude, and use itas ameasure
of the system gain at frequency w.

3. Compute the phase shift of the output with
respect to the input, and use it as a measure
of the system phase shift at w.

4. Repeat steps i-iii at frequencies over the
range for which the system responds.

5. Draw or fit a smooth curve through the
resulting points.

Advantages of sinusoidal testing include:

1.  The gain of the recording system can be
adjusted at each frequency (either manually
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or automatically) to use the full dynamic
range and minimize the effects of noise.

2. Theamplitudes of the input sinusoids can be
adjusted until the output amplitude reaches
some desired value.

3. Inthe presence of noise and nonlinearities,
only the amplitude and phase of the sinusoi-
dal component at the input frequency need
be measured.

Sinusoidal testing is very effective, when
practical, but does have a number of limitations:

1. Theapproachrequirestheapplication of pure
sinusoids of a single frequency. This is often
difficult technically. Furthermore, in the life
sciences, particularly in behavioral studies,
it is often desirable to avoid predictable,
periodic stimuli.

2. The procedure is time consuming. Each
stimulus frequency must be applied sepa-
rately and the response recorded only after
the transient response has decayed. If the
system’s time constant is long, this may
require many cycles at each frequency.
The time taken to do sinusoidal testing is
particularly important in the study of physi-
ological systems where experimental time is
always limited. In addition, living systems
are frequently time varying so it is important
to obtain an identification in as short a time
as possible.

3. Only a limited number of frequencies can
be tested. If too few frequencies are tested,
sharp changes in the frequency response,
e.g. resonances, may be missed.

17.8.2. Stochastic Testing

Consider a constant parameter, linear system de-
scribed by the one-sided, impulse response /(z)
with the corresponding frequency response func-
tion H(jw). Assume that the system is subjected to

astationary, random input x(z) which generates the
stationary random process y(?) as output. Then,

ut)= [ ")t — T)dr (17.22)

The autocorrelation function of the output is
given by

R ()= B[yt —7)] (17.23)
which has the expected value
t t
fo fo h()h()R,_ (t — p + v)dvdp
(17.24)

where, R_ is the autocorrelation of the input. Thus,
the output autocorrelation function is defined by
the system’s impulse response and the autocorrela-
tion function of the input. The cross-correlation
function R between the input x(#) and the output
y(¢) may be derived from the relation

Elz(t)y(t + 7)) = E [ fﬂ ¥ (h(v)a(T)a(t + T — v)dv
(17.25)

which has the expected value

R, (r)= fﬂ " (V)R (T — v)dv (17.26)

Thus, the cross-correlation between the input
and output is simply the convolution of the input
auto-correlation function, with the Fourier that is
transforming these relations, yields the frequency
domain expressions:

S, (jw) = |[HGW)| 5., (jw)

vy

(17.27)

and
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S, (jw) = H(jw)S,, (jw) (17.28)

where,S_(jw)and S, (jw) are the inputand the out-
put power spectra, and S_(jw) is the input-output
cross spectrum. The gain portion of the system
frequency response may be estimated from the
input and output power spectra as

S, (w)
S, (jw)

|H(jw)| = (17.29)

However, this estimate gives no information
about the phase. Moreover, it will be biased if
there is noise at either the input or the output. A
better approach is to determine the system fre-
quency response function from the input power
spectrum and the input-output cross spectrum by
using Equation 17.26 to get the relation:

(17.30)

S_is a complex number, so the frequency re-
sponse has both a magnitude (or gain) and a phase
characteristic. Moreover, because of the averaging
involved in computing the cross-spectrum, the
estimate will not be biased as a result of output
noise. However, if there is much output noise,
then long data records and, hence, much averag-
ing may be needed to reduce the random error.
Furthermore, noise at the input will still result in
biased results.

The coherence squared function between the
input x(¢) and the output y(¢) of a system is a real-
valued function defined by:

(17.31)
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The coherence-squared function will have
values in the range 0 to 1, and is analogous to the
variance accounted for as a function of frequency
(i.e., the square of the correlation coefficient
function which arises in linear regression). For a
constant parameter linear system with no noise,
the coherence-squared will identically equal to 1.
If the input and output are completely unrelated,
the coherence-squared function will have a value
of 0. If the coherence-squared function is greater
than zero but less than one, three possibilities exist:

1. Extraneous noise is present in the
measurements.

2. The system is not linear.

3. y(t) is an output due to an input x(z) as well
as to other inputs.

The coherence-squared can be interpreted as
the fraction of the output variance that is linearly
related to the input at each frequency.

Note that the coherence function is usually
estimated from spectral estimates obtained by
averaging a number of segments of the original
data. The bias error associated with coherence
estimates varies with the number of segments
and the expected value of the coherence; the error
decreases as either or both increase. Estimates of
the coherence function may be in serious error
if the number of segments is small and/or if the
value of the coherence function is low. Indeed,
the worst case occurs if only one segment is
used to estimate the coherence function, since
the coherence estimate will always be equal to
one for this case.

The procedure for doing frequency analysis
of a system using a stochastic input is:

1. Apply a stochastic input having power over
the range of frequencies where the system
is expected to respond.

2. Record the input and resulting output.
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3. Computetheinputspectrum, the output spec-
trum, and the input-output cross spectrum.

4.  Evaluatethe gain, phase and coherence using
Equations 17.29 through 17.31.

Note that since the stochastic input has
power over a wide range of frequencies, the
stochastic technique can be thought of as testing
a large number of frequencies simultaneously.
Consequently, it takes much less time than pure
sinusoidal testing. Furthermore, the coherence
provides a quantitative measure of how well the
resulting linear model describes the system. If the
coherence function is less than one, it is useful to
determine whether this is due to additive noise or
due to nonlinearities. One way to investigate this
is to increase the amplitude of the input signal; if
the problem is noise, then the coherence function
should increase since the output signal-to-noise
ratio (SNR) should increase. Conversely, if the
problem is nonlinearity, then the coherence func-
tion will stay the same or will decrease. Another
possibility is to repeat the experiment a number of
times with the same input, and average the input
and output signals before doing the analysis. If
noise is the problem, then the coherence of the
average signals will be greater than that of the
individual trials. If the problem is nonlinearity,
then the results will not change.

17.8.3. Applied Examples

Example 17.5: A method to model a dynamic
linear physical system uses simple basic
electrical components, namely aresistor (R),
an inductor (L), a capacitor (C), and sources
ofpotential (V) and current (I). Such method
allows foramore natural modeling approach,
since the system has a direct correspondence
to its graphic representation that is more
comprehensible than differential equations.
In this example, we will introduce the basic
elements of an electrical model of a system

and the procedure to get the differential equa-
tion from the graphic description, which is
based on the Kirchhoft’s circuit laws.

Letus consider the simplest dynamic linear model
(“leaky integrator”) of a nerve cell, depicted in
Figure 7. The resistors R, R,, R, represent the
neuron’s dendrites and the respective voltages
V,, V,, V, are generated by the synapses from
other neurons. The respective currents, I, 1,
I, are integrated in the capacitor C that models
the cell body membrane capacity. The presence
of the membrane resistance, R, denotes that the
integrator is “/eaky”. The differential equation of
this model can be written as follows:

1.  Weregard all the currents to have a direction
towards out of the point, V..

2. Kirchhoff’s current law says that the sum
of all currents in a single node is equal to

Z€ro, IR1 +IR2 —|—IR3 —|—IR4 +1,=0

3. Wereplace the currents by their voltage
values as follows:

V07V1+V07Vz Ve =V, £+Cdvc:0
R R R R dt

1 2 3 4
4. We can write the same equation in a

simplified form,

v, Vv, V, dv,
EEIE S Vo=l +2+2|+C—5=0
R R, R, R, R R, R, dt

This is a standard form for a first order dif-
ferential equation that can be solved analytically
or numerically, or even be transformed to the
Laplace domain for further analysis.

Example 17.6: A class of simple, yet accurate
models, estimated from microelectrode
recordings, can predict spike generation of
single and multiple subthalamic nucleus
(STN) neurons of Parkinson’s disease (PD)
patients. The most characteristic attribute
of an STN neural recording is the presence
of bursting/quietness segments. It has been
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Figure 7. Associative linear neural network
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suggested that the STN sends the burst-
ing pulse of spikes as a braking signal to
reset the major basal ganglia output nuclei.
This mechanism does not work right in
abnormal situations, such as the PD. To
be able to have a quantitative validation of
the prediction of the model, the coherence
between the predicted spike rhythm and the
recorded one is estimated. In Figure 8, the
two rhythms, calculated in 50 ms bin, and
their coherence are shown. The coherence
is 1 in low frequencies and drops after 2 Hz
(3 dB point is calculated at 2.4 Hz). This
depicts that the model predicts the ups and
downs of the rhythm accurately; whereas,

it misses one or two spikes (per 50 ms bin),
explaining the small jittering observed in
the exact spike prediction.

17.9. NONLINEAR MODELING OF
PHYSIOLOGICAL CONTROL
SYSTEMS

Any system which violates the principle of super-
position is non-linear. Many physical and virtually
all biological systems are nonlinear. In this case, it
is impossible to provide a general system descrip-
tion that can be used for any input, and applied at

Figure 8. Coherence estimate between the predicted and the observed spiking rhythm. The prediction is
done using a model that accepts the local field potentials as its input.
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any time. Instead, functional series are typically
used. A functional is a function whose argument
is a function and whose value is a number. For
instance, the convolution integral evaluated at a
given time is a functional.

17.9.1. Volterra Series

An example of a functional series to describe a
non-linear system is the Volterra series. Volterra
showed thatifasystem is time invariant, has finite
memory, and is analytic (differentiable), then the
relation between input x(¢) and output y() can be
expressed as the infinite sum

0=k, +f 2(t — T)dT
+f“f k(Tl,T)x(t—TM(t,T)dTIdTZ

0

+f TRt = )t = 7)alt - 7 )dr drdr,
(17.32)

where, k, k (1), k(z,7,), k(z,7,7,), ... are the
kernels ofthe system, and are symmetric functions
of their arguments. The zero-eth order kernel k, a
constant, can be assumed to be zero without loss of
generality by assuming y(¢) = 0 when x(¢) = 0 (in
other words, we remove the non-zero bias). The
n™ order kernel describes the pattern of interac-
tion between n pieces of the past stimulus and its
contribution to the total response. However, there
are other contributions due to n* order interac-
tions also present in all other terms with kernels
of order greater than n. That is the response to
n-order interactions is defined by all kernels
of order n or greater; it is not isolated in the n®
component. For example, the first-order term in
the series is exactly the same as the convolution
integral in a linear system, where the first kernel
then represents the impulse response. However,
note that in a non-linear system, the above series
defines the impulse response (1% order effect) to
depend on all kernels

y(t) :k(]+f'x/<‘(T (t —7)dr
f” fﬂ ky(1,,7,)8(t — 7)8(t — 7,)dr dr,
+f f f k(Tl,T T)8( —7)6(t — 7,)8(t — 7,)dT dTdT,

(17.33)

or equivalently,

y(t) =k, + k() + k(1) + k(650 + ok (1) 4.
(17.34)

Hence, the use of impulses to isolate kernels
of different order is not practical here. Another
problem is that full description of a non-linear
system with Volterra series, theoretically, has an
infinite number of terms. Because the importance
of each functional depends on the form of the
non-linearity, and because the terms in this series
are not orthogonal to each other, then

1. One cannot know a priori when or where
to truncate the series (small kernels can be
followed by an important large kernel at
higher dimensions).

2. Addingtermschangesall the previously eval-
uated kernels and they must be recomputed.

17.9.2. Wiener Series

To address the above issues, Wiener proposed a
special form for a functional series description
of a non-linear system. Assuming white Gauss-
ian noise as the input, the G, functionals in the
series are designed to be orthogonal with respect
to each other and with respect to white noise
input functionals of lower order. As a result, the
importance of Wiener functionals in the series
usually decrease in magnitude with kernel order,
and adding terms does not affect already computed
functionals. Furthermore, the mean squared error
associated with truncation of the series is lowest
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for Wiener descriptions, when compared to other
series truncated at the same order (like Volterra).

Starting with the general Volterra series form,
Wiener proposed

zOC:G [ 17 27 'Tm);x(t')?tlgt]
. (17.35)

where, G are now orthogonal functions, x(¢) is a
Gaussian white-noise signal with zero mean, and
h, is the set of Wiener kernels. Each /2 is a sym-
metrical function with respect to its arguments.
The first four Wiener kernels are defined by the
following functionals:

sa(0)] =
G, [h L(t]7£, 2(t — 7)dr
z()]—f) f; a(t — 7))t — 7,)dT d7, 717]‘ 7,7,
hz alt ]7 0 \]:\ j:» ZT Tas T )(t T)(t T)dTldT2qu
73P‘/:, J; (7,,7,,7,)a(t —7,)dT,dT,

(17.36)

where, x(¢) is Gaussian white noise of zero mean
and power density spectrum ¢ _(f)=P (or other-
P6(7) . The func-
tionals have been selected to be orthogonal to
each other so that

wise, autocorrelation ¢ _(7) =

E {G [h;2(8)|G, [hj;x(t)” — 0 for all i#f
(17.37)

Furthermore, Wiener constructed the function-
als so that a given G, is orthogonal to all homog-
enous functionals of x(#) whose order is less than
k, when x is white noise. For example, if x(t—7)
is an homogenous functional of order 1, then
E {G z(t)](t — 7-)} = 0,fork>1.Thekernels

in a Volterra series {k} can be related to those in
a Wiener series {h} according to even or odd
terms:
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= @m41)IP
By (0y000305,0) = me

f j; Ey, ( Ty Oy AT dT
(17.38)

This makes it clear that Wiener kernels, in
contrast to Volterra kernels, are polynomial func-
tions of P, the power of this noisy stimulus. Also,
agiven Wiener kernel is a function ofhigher order
Volterra kernels.

17.9.3 Applied Example

Example 17.7: Aspecial class of Volterra-Wiener
non-linear models is the block oriented
non-linear models in which a linear time
invariant (LTI) dynamic block is preceded
and/or followed by a static non-linearity.
When the linear dynamic block is preceded
by a static input non-linearity, the model is
referred to as a Hammerstein model; and,
when the linear dynamic block is followed
by a static output non-linearity, the model
is referred to as a Wiener model. Both are
a special case of the situation in which the
linear dynamic block is sandwiched between
two static non-linear blocks, a Hammerstein-
Wiener (H-W) model.

Briefly, in state space, an H-W model is repre-
sented by

v(k| k)= f(u(k|k))
2(k+1|k)= Ax(k | k) + Bo(k | k)
LIT=0 0tk | k) = Coll | ) + Du(k | £)
y(k | k) = h(w(k | k)
(17.39)
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where, u€R is the physical input to the plant,
which is passed through the non-linear mapping
f(u) to give the input veR of the linear dynamic
block. 4, B, C, and D are the system matrices
(of conformal dimensions) of the linear dynamic
block, x(k+1|k)€R is the state at time k+1 cal-
culated at time &, we®R is the output of the linear
block which is passed through the non-linear
mapping /(w) to give the output yeR of the plant.
The static non-linear functions f{u) and A(w) are
assumed to be invertible. The H-W model can be
used to investigate whether it is possible to infer
STN spike trains using only the underlying local
field potentials (LFPs) from intranuclear record-
ings, acquired intraoperatively during deep brain
stimulation procedure. The model regards the LFPs
to be the input, and the presence of the spikes to
be the output of a Hammerstein-Wiener model
and predicts, at least partially, that STN spikes
can indeed be inferred from intranuclear LFPs,
at least with moderate success. Such a model can
be seen in Figure 9.

17.10. IDENTIFICATION OF
PHYSIOLOGICAL CONTROL
SYSTEMS

The systemidentification approach to constructing
a mathematical model of a physiological system
is much different than what has been presented
until now. The modeler’s task is first to select a
general form, or structure, for the mathematical

model, and then estimate the parameter values.
Often, a variety of model structures are evalu-
ated, and the most successful one is retained. In
this section, we will first describe the estimation
problem in general, and then concentrate on the
pragmatic guidelines to select a model.

The general problem of parameter estimation
is formalized as follows: Let the model’s general
mathematical structure be represented by an op-
erator, M. Let the model depend on a set of pa-
rameters, ordered in a vector, 6. Then, for a
specific parameter vector, 0, the y(z,6,)=M(0,,
u(?)) is a static input/output function or a transfer
function in the Laplace domain, where u is the
input and y is the output. Now, if the model struc-
ture, M, and the parameter vector, 6,, exactly
represent the physical system, the objective of
system identification is then to find a suitable
model structure, M, and corresponding parameter
vector, ¢, given measurements of input and output.
The identified model will have a parameter vec-

tor, 50, and generate y(t) = M (éo,u(t)) , Where

9y(t) is an estimate of the system output, y(t). The
system identification problem is then to choose
the model structure model, M, and find the cor-

responding parameter vector, o, that produces
the model output that best predicts the measured
system output.

In the remaining parts of this section, the
identification steps that are usually involved for
discrete models are presented. The process requires
four steps, which are often applied iteratively:

Figure 9. A Hammerstein-Wiener cascade model is able to predict the spikes from the recorded local

field potentials (Michmizos & Nikita, 2010).
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1.  Postulateamodel form (structure) and select
the appropriate identification tool.

2. Postulate a model order and imbed data in
a set of equations for the identification.

3. Compare predictions to real observations in
the data set used for identification (i.e., find
residuals and their statistics), and estimate
confidence in parameter estimates; then,
correct model form or order as needed and
repeat steps i-ii.

4.  Validate the selected model by examining
predictions in new data sets in the same
experiment or in completely novel experi-
mental protocols. If several model forms
perform equivalently in step ii, they may
not do so here when tested on new data.

First, a model order is selected, by fixing the
model type and polynomial orders. The properties
of the residual noise, r = y — ¢ , y being the real
output and ¢ being the predicted output, for the
datasetcan be examined. For standard regression,
ifthe residual is white with approximately Gauss-
1an distribution, its variance can be used to set
confidence intervals on the parameters and decide
ifany ofthem are superfluous. Ifthe noise sequence
is not white, or diverges greatly from the normal
distribution, then it could be assumed that we
have either the wrong model form or the wrong
order in the current form.

Pragmatic guidelines to select model structures
at this stage are:

1. Residual is nearly white, Gaussian and
zero-mean: The t-statistics should be used
in order to define confidence intervals on
all the estimated parameters, or to examine
those provided by the applied estimation
function. If all are significantly different
from zero at the desired confidence level,
then the current model is a valid possibil-
ity, provided the quality of fit is satisfac-
tory (e.g., the % Variance of Accounted for
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(VAF) is high enough). If some parameters
have confidence levels which include zero,
then an attempt should be made by the in-
vestigator to fit another model with those
parameters removed (if one is manipulating
his/her own regressor matrix); otherwise, a
fit with a supplied algorithm setting a lower
order is to be attempted. Once an order for
the current model form is decided, the final
parameter estimates must then come from
a final fit with that selected order.
Residual is not white and not zero-mean:
Assuming the underlying noise statistics are
indeed Gaussian, this means that either the
wrong model form (schematic or hypotheti-
calrelationship)isattained, or aninsufficient
number of parameters exist. The investigator
should then increase the order and try again.
Subsequently, the investiagator is to examine
the currentresiduals for deterministic trends
(like ramps or sinusoids), and adjust the
model form accordingly.

Residual is not Gaussian butis zero-mean
and white: This may happen if the underly-
ing noise properties are actually themselves
not Gaussian, or the wrong model order
exists. Whatever the reason, one cannot rely
on the usual t-statistics for the confidence
intervals of estimated parameters — these
could lead to erroneous selection of model
order and/or pertinent parameters. In this
case, it is often recommended to resort to
‘Monte Carlo’ or ‘Bootstrap’ methods.
These approaches are computationally de-
manding, but they generate pseudo statistics
on parameter estimates from which more
accurate confidence intervals can be deter-
mined, regardless of the form of each pa-
rameter’s probability distribution (e.g., limits
for 95% of area under curve). Monte Carlo
relies on repeating the estimation routine
many times, using many experimental pro-
tocols, or dividing a large data set into
multiple sets — but, it may not always be
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feasible to have long experimental protocols.
Bootstrap instead uses a single data set and
generates multiple sets for parameter estima-
tion by for example: A) iteratively using
each estimate to generate a new shuffled
noise sequence (the investigator is to use
r =1y —1 as defined previously, shuffle
randomly, and add back onto ¢ for a ‘new’
data set), creating new virtual noisy data
sets-, or B) selecting a subset of data ran-
domly from the original set to generate es-
timates with each. This is repeated as many
times as necessary to obtain smooth param-
eter histograms; and, does not lengthen
experimental data acquisition. However,
there are differences between approaches A
and B. In particular, method B means that
each estimation run will have fewer data
observations than that of the original experi-
mental data length; in method A, the number
of observations entering the estimation step
is always the same total as the whole data
segment.

Finally, validation of the selected model should
include ademonstration that the predictors perform
well on new data not used in the original fitting
procedure. This can be data reserved from the
original experiment, or a totally new data stream
from a different protocol. The best models will
fit well the data used in the identification, and
will also duplicate well other data sets. This last
cross-validation step is the final test which can tell
the best models from those specific to a special
condition. Hence, this is an important step in jus-
tifying the final choice of a model form and order.

17.10.1 Applied Example

Example 17.8: Next, we will present a simple
parameter estimation problem for a linear
model, in order to illustrate the theory previ-
ously discussed. Let us model an unknown

physiological system with a linear model
y= Ei_wl.ui. Please note that the real

system may or may not be linear, and that
the data we acquire from the experiments
are usually noisy. But if we insist on finding
the optimal linear model according the least
square criterion, we have to find an optimum
matrix notation, W’ for which y=W"U, U
being the input matrix. According to the least
square criterion, we have to calculate
W= 'P, whereby P = E [Y'U]and ® = E
[U-U"], and where E stands for expectation
and U” is the transpose input matrix. For
further information on the origin and proof
pertaining to the above discussion, the
reader is to refer to a textbook on linear
parameter estimation, e.g., (Ljung, 1999).

Assume that we have a static system with two
inputs and one output, y=w, u +w,u,. To estimate
the model’s parameters, we conduct an experiment
measuring the inputs and the output four times,
as shown in Table 1.

We now calculate the estimation of P as fol-
lows:

1.975
2.925

51-1.1-08+4.7
514+1.1+0.8+4.7

1

y-u,

y-u,

P:E[Y-U]:E
4

Next, we calculate the estimation of @ as
follows:

Uy - Uy 1 Y

@:E[U-UT]:EU IR

Now, we can calculate the optimal parameters
W=(&'-P)"=[1.975, 2.925].

We can see that the model’s outputs for the four
experimental measurements in Table 2.
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Table 1. System's inputs and outputs.

Table 2. Model s outputs.

u, u, y

-1 -1 -5.1
-1 1 1.1
1 -1 -0.8
1 1 4.7

As one can see, the model outputs are very
similar to the data we acquired. However, in a
real experiment, itis highly expected to have more
noise than the one we had here. Hence, more
experiments should be conducted to gather more
data and have a good estimation of the model’s
parameters.

17.11. ARTIFICIAL NEURAL
NETWORKS FOR PHYSIOLOGICAL
SYSTEMS CONTROL

Artificial neural network models represent a
black box type of model. These models are used
in situations where the precise functioning of the
system is not understood or easily implemented,
and only the sample input-output data are known.
This section will provide a brief description of the
basic principles of neural network control systems
and their use in control of physiological systems.
Neural networks have been used for more than
two decades in solving engineering problems,
especially in pattern recognition and pattern clas-
sification applications. Neural networks are also
used in modeling problems that are difficult to
solve. Forinstance, controlling anonlinear system
has always been an advanced modeling task that
most of the times led to an insufficient solution.
The introduction of the neural networks to the field
of physiological systems control resulted inanew
area of research for both the neural network and
systems control scientific communities.
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1 -1 -4.90
-1 1 0.95
1 -1 -0.95
1 1 4.90

17.11.1. Basic Principles

The term neural network was traditionally used
to refer to a network or circuit of biological neu-
rons. The usage of the term has changed to refer
to artificial neural networks, which are composed
of artificial neurons or nodes. Various neural
network algorithms currently exist, but they all
share common characteristics that include a set of
inputs and outputs, the distributed processing of
the information, and their adaptive parameteriza-
tion. The structure of a neural network resembles
the structure of the nervous system. The input
information inserted into such a network is col-
lectively processed by a group of distinct units
(in analogy to the neurons). Each processing unit
interacts with the information given locally, and
then sends an output to other units or the environ-
ment (output information). The significance of a
certain connection (synapse) between two units
is determined by a value of strength (synaptic
weight). These values modify the input-output
behavior of the entire neural network, and are
adjusted according to alearning algorithm. In order
to design a neural network, one has to consider
the internal characteristics, the architecture, and
the number of the processing units, as well as the
learning algorithm.

The architecture of the neural network is not
the only analogy between the artificial and the
biological systems. The internal characteristics of
the processing unit mimic the ones of a neuron. A
neuron receives chemical messages (inputs) from
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other neurons that are transformed to dendritic
potential, which is then added up in the neuron’s
somarto fire an action potential (output). In general,
the decision upon firing an action potential relies
on a nonlinear function of a weighted summation
oftheneuron’s inputs. The most common equation
used to model the decision is the sigmoid curve
produced by the mathematical function having an
“S ” shape, as shown in Figure 10. The general
equation for a sigmoid function is

y—— 1 (17.40)

1+e™)

where, x is the input (the weighted summation of
the artificial neuron), and m is a constant that
regulates the slope of the sigmoidal output func-
tion. For m = 1, the function is named logistic
function and is related to population growth stud-
ies. Sometimes, a constant is added to the term
—mx, and is called the bias of the sigmoid function.
The inputs of an artificial neuron, u,, are related
to their weighted summation by the equation

(17.41)

n
i
i=1

Figure 10. Sigmoid function for various values of m
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where, 7 is the number of neurons that give their
outputs to the neuron, and w, is the synaptic weight
from presynaptic neuron i to the postsynaptic
neuron. Equations 17.40 and 17.41 denote that
the output of an artificial neuron depends on its
inputs only and does not depend on time; hence,
the output is a static nonlinear function of the
weighted summation of the inputs.

The most common architecture used in neural
networks is a structure that uses three layers of
processing units. The first layer, the input layer,
processes the input information and sends its
output to a second layer, called the hidden layer
that sends the processed information to the last
layer, the output layer. A neural network is called
feedforward network if all its processing units
receive inputs from the units of previous layers.
Defining the number of the processing units on
each layer is more of an art than a science.

A general learning algorithm, used to train a
neural network, is a function of: 1) the learning
rate, #; ii) the activation of the presynaptic unit,
a, and that of the postsynaptic unit, a; and, iii) a
training (error in supervised learning techniques)
signal, e,

Awlj = f(n, ai,aj,eij) (17.42)

...........
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Not all learning algorithms, used in practice,
include all those parameters. For instance, a Heb-
bian learning algorithm changes the weights, w,,
in proportion to the product of the presynaptic
activation, a, and the postsynaptic activation,
a,. Another class of learning algorithms that is
heavily used is the one that uses gradient descent
techniques to adjust the synaptic weights, w_. An
example is the error back-propagation algorithm
thatuses an error gradient descent technique. This
technique passes the output error to previous layers
of a neural network in order to estimate the input
signal for any given neuron. These techniques are
also classified as supervised learning techniques
since they use a specification of the true output in
order to estimate the output error of the network
prediction. Other learning algorithms, such as
reinforcement learning, are used when the true
output of the network is not directly accessible.

The motivation behind the utilization of neural
networks to control a system is usually our need to
model a nonlinear process or the requirement for
the control system to adapt. In a control system,
the neural network mimics the behavior of one
or more of the system’s components so well that
it can even replace them. In supervised control
systems, shown in Figure 11a, a neural network
may replace the controller of the system in situa-
tions where the true controller is not time or cost

efficient. The neural network is trained using
learning data acquired from the system’s output.
Alternatively, computer simulations of the true
system can be used. The training (error) signal, €
is usually the difference between the output of the
original controller and the output of the network.
After the network is adequately trained, it can
replace the controller entirely. In direct inverse
control systems, shown in Figure 11b, the neural
network is used to estimate an inverse model of
the system to be controlled. The network learns
to map the output of the system to its input. Di-
rect inverse control systems are common among
physiological control systems.

17.11.2. Applied Examples

Example 17.9: We will now use the basic notions
described in previous section to construct a
basic model for associative memory, which
stands as well, as the most likely model for
cognitive memories. Itis based on the obser-
vation that human beings retrieve informa-
tion best when it is linked to other related
information. That “/inkage” between already
known and new information is mathemati-
cally described by the weight (strength) of
the connections between processing units ofa
neural network. The architecture, illustrated

Figure 11. Single modules of controlling structures can be replaced from neural networks models

a.
»| Controller I Plant I

b.
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in Figure 12, is the most general static linear
neural network since the addition of neuron
layers does not change the capability of the
structure.

In this example, the input can be inferred as a set
of characteristics of an object (e.g., a set of mea-
surements that describe features of a tumor in a
CT image, such as tumor diameter, number of
tumors found, level of seriousness with respect
to location, etc.) and the output can be inferred
as a decision (e.g., the degree of malignancy, the
prognosis of the disease, etc.) For convenience
reasons, we select the inputs and the outputs of
the neural network to be binary {-1, 1}. Let us
assume that a learning set of two inputs-output is
given to train the neural network. Let the first
[1,1,—1,—1] and let the second
inputbe u” = [—1,—1,1,1]. Therespective outputs
are y' = [1] and y* = [~1]. According to Hebb’s
rule, the weights represent the correlation between
the input and the output

input be u' =

Figure 12. Associative linear neural network

Ug

U,

where, e is a constant called the learning rate,
usually taken to be the reciprocal of the number of
training vectors (usually referred to as the learning
examples) presented. In this case, the weights of
the neuron will be

Ix1+(-1)x (1) |1/2
x4+ (=Dx(=1) |1/2
{52” }* Cx1+1x(-D| |-1/2
( Dx14+1x(=1)] |-1/2

Now, we question ourselves about what will
be the result, y, if a new, unseen before, input is
introduced into the neural network. Let us take
for example, the input u = [1,1,1,—1]. For this
vector, the output is calculated as
y=> wu =1/2+1/2-1/2+1/2=1. As
one can see, the result of what we acquire when
u' is the input of the neural network, which is
what we really wanted, since the new item is
closer to the first learning example (only one bit
needs to be inversed to have an identical input,
compared to three bits in the second learning
example).
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However, the associative memory has many
disadvantages. Amajor drawback is that the stored
datashould be binary orthogonal vectors. Another
one is that there are a lot of intra-neuron connec-
tions. Other nonlinear associative memories exist;
however, they are not as simple as the example
given and they are beyond the scope of this chapter.

Example 17.10:Figure 13 presents a personal-
ized insulininfusion advisory system (IIAS)
which serves as a control algorithm towards
the development of a closed-loop artificial
pancreas using the subcutaneous (SC) route
(Mougiakakou et al., 2010). The IIAS is
able to provide real time estimations of the
appropriate insulin infusion rate for type 1
diabetes mellitus (T1DM) patients using con-
tinuous glucose monitors and insulin pumps.
It is based on Nonlinear Model Predictive
Control (NMPC) and comprises of two
modules: 1) a personalized glucose-insulin
metabolism model, based on the combined
use of a Compartmental Model (CM) and a
Recurrent Neural Network (RNN), and ii) an
NMPC strategy. For the in silico evaluation
ofthe IIAS, a Mathematical Model (MM) of
a patient with T1DM has been used. Each
of the aforementioned modules is briefly
described in the following.

Personalized glucose-insulin metabolism
model: The model, which is based on the combined
use of a CM and an RNN, is able to provide glu-
cose predictions (Zarkogianni et al., 2007; Mou-
giakakouet al.,2008). More specifically, informa-
tion regarding meal intake is fed to the CM, which
simulates the glucose absorption into the blood
from the gut. CM’s output along with the SC
insulin intake and previous SC glucose measure-
ment are applied to the RNN, which models the
patient’s glucose kinetics and predicts subsequent
glucose levels. The CM for glucose absorption
into the blood from the gut is linear and consists
of one compartment, while the gastric emptying
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rate is given by trapezoidal or triangular function.
The used RNN is a fully connected multilayered
perceptron NN with two recurrent loops, the
initial weights of which are set to unity. The RNN
istrained using the Real Time Recurrent Learning
(RTRL) algorithm (Williams & Zipser, 1989),
which is a sequential, error-correction learning
based algorithm and allows the RNN to update
the weights, while operating, as long as the RNN
is provided with the correct glucose level value.
The teacher-force version of the RTRL has been
applied, according to which the RNN replaces the
previous glucose level prediction with the cor-
responding glucose level value, when available,
in order to perform future predictions.

NMPC: The NMPC uses the personalized glu-
cose-insulin metabolism model, which provides
estimates of the future glucose levels. The NMPC
is based on an optimizer, which computes at each
sample time future control movements based on
the minimization of an appropriate cost function.
Particularly, at each sample time: 1) future outputs
are generated by the personalized glucose-insulin
metabolism model; ii) a cost function of the future
control movements is minimized, providing a set
of future control signals; and, iii) only the first ele-
ment of the suggested control sequence is applied
to the system. The cost function encompasses the
differences between the glucose predictions and
the desired glucose level.

MM of apatientwith TIDM:The MM ofa Type
1 diabetes patient consists of the following CMs:
1) an SC insulin absorption model, ii) a glucose
metabolism model, iii) a SC glucose absorption
model, and iv) a model for the glucose absorption
into the blood from the gut.

17.12. MODELING CHAOS
IN PHYSIOLOGY

Reductionists’ approach treated the body as a
machine in which the relationships among the
subsystems were governed by deterministic laws.
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Figure 13. A multicompartmental model of artificial pancreas that is based on neural networks
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Current research has proven that for a liveable
system to maintain its milieu intérieur, the internal
environment, a plethora of interrelated feedback
loops are miraculously putin place and in balance.
Onthe other hand, the phenomenological functions
of a biological subsystem, especially the ones
observed macroscopically, seem aperiodic and
unpredictable innature. The biological signals are
so variable that they appear as random or noisy.
To illustrate this “stochastic determinism”, we
consider a large cruising boat, full of passengers.
Any one of the passengers (processes) is free to
wonder around the boat (system), whereas the
boat itself has a determinate route, regardless of
the random movements of its passengers. The
paradigmillustrates that we are incredibly ordered
on several levels, but irregularly so. The human
body is not a deterministic machine, but an amaz-
ingly complex chaotic system.

Chaos (ydog¢)is an ancient Greek word given to
someone to show that he was preponderant of all
the others. Similarly, in science, chaos describes a
deterministic system thatis extremely complicated
for its observer to be fully understood. From the
point of view of an observer with limited capabili-
ties on data selection and information understand-
ing, achaotic systemis an inherently unpredictable
system due to its extraordinary sensitivity to its
internal conditions. For instance, in order to pre-

dict accurately the electrical activity in a certain
area of the brain, one has to have a complete and
precise description of everything that would have
an effect on that particular brain area. It is logical
to assume that for a human observer, the factors
contributing to the area’s activity are infinite. What
is more, each one of these factors plays a role in
creating the area’s activity. That explains why an
activity recorded from the brain of an individual
never looks the same, evenifthe subjectrepeatedly
executes the same function. Another characteristic
of such systems is the presence of order under the
absence of periodicity. The output of a chaotic
system, although follows a general pattern (called
strange attractor), it is random and never repeats
itself. Another characteristic aspect is the ability of
these systems to fall into the chaotic behavior and
come out of it, depending on the situation. When
the system instability becomes large enough, the
system splits and returns to order (the analysis
of such behaviors is called bifurcation analysis).

A chaotic system, although deterministic in its
structure, appears to be extremely variable. The
structure of a chaotic system is not required to be
complex. In fact, simple nonlinear deterministic
systems can exhibit chaotic behavior. Forexample,
chaotic solutions to cellular membrane equations
have been found (Chay, 1985).
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The heart is one of the prime chaotic physi-
ological systems (Biktashev & Holden, 1998;
Belair & Glass, 2003). A physician may judge upon
the healthy behavior of the heart by its periodic
beats. However, our hearts almost never beat the
same way twice. A more thorough study reveals
a varying interval between beats. More than one
reason exists for this variability. The natural pace-
maker of the heart, named the sinoatrial node (SA
node) and found in the right atrium of the heart,
is a group of cells that generates the normal sinus
rhythm. Stimulation of the parasympathetic fibers
thatreach the SAnode causes a decrease in the beat
rate. Onthe other hand, stimulation of sympathetic
fibers that reach the SA node causes an increase
in the SA node rate, and a subsequent increase
of both the heart rate and the force of the heart
contraction. The existence of the two antagonistic
systems (sympathetic and parasympathetic) cre-
ates the diversity observed in the temporal distance
between two subsequent beats. In addition, a third
system, the respiratory system, further increases
the heart rhythm variability since the beating of
the heart increases with increased inspiration.

However, the best place for someone to search
for chaotic behavior is the human brain. The
fundamental reductionist approach, proposed in
1891 by H. Waldeyer-Hartz, regarded the brain
functions to be fully modeled in the level of dis-
crete individual neurons. The neuron doctrine,
as this fundamental idea was named, is strongly
opposed by modern chaos theory. The brain pos-
sesses a large number of feedbacks that giverise to
internal uncertainties amplified over time, making
long term predictions of brain activity impossible
(Skarda & Freeman, 1990).

A question arises on whether the chaotic
behavior observed in physiological systems is
happening by accident or on purpose. It seems
that there are several deterministic reasons for the
existence of randomness in the biological systems.
Take for example the heart we discussed previ-
ously. There is more than one good implication
of the variations observed in heart thythm. By
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varying its rhythm, the heart relaxes for differ-
ent time periods per beat; this limits its fatigue.
Also, a chaotic system shows better adaptation
capabilities. The heart is able to compensate for
varying blood demands. From a person dreaming
of playing a soccer game to someone actually
running in a soccer field for 90 minutes, it is the
variance in beat rhythm and intensity that makes
the heart effective at any of the conditions met
in an unknown external environment. When the
body’s demands for blood increase, the heart is
able to pick up the slack without the shock of a
quick tempo change (Ward, 2001). In the brain,
chaos is related to the ability to learn. A never
seen before stimulus in the brain, moves the
underlying subsystems to an unpatterned chaotic
state. This chaos results in the ignition of a new
network assembly that is specifically associated
to the new stimuli. A chaotic system is also able
to reach new solutions. Such a system is able to
learn from its mistakes and create new pathways to
deal with old problems. Thus, what was regarded
as randomness in the brain, started to be proved
as an essential part of normal brain function.
Although the first and most general single
word definition of health was “balance”, it seems
that “out of balance” situations inside the body
are also connected to health. If we introduce to
a linear system an input that is slightly out of its
typical input range, the system’s output will most
probably be derailed. A nonlinear system, even if
it sees at its input a “bizarre” nudge, it will most
probably return to its starting point. Let us look
to what is happening in a diseased body. Take for
example Parkinson’s disease and the basal ganglia
system that controls motion. The amount of chaos
in the Parkinsonian brain actually decreases as
the loss of dopamine (a neurotransmitter used
in synapses) forces neurons in the basal ganglia
system to fire in synchrony. This synchrony is
present in recordings and results in a beta band
peak, observed in the local field potentials. The
peak is considered to emerge as the projection of
widespread synchronized beta band oscillations of
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the underlying neuronal elements (Boraud et al.,
2005; Brown & Williams, 2005). From Parkinson’s
disease to seizures, disease is recognized as an
acute attack of order against chaos. Physicians
have begun to classify a new order of “dynamical
diseases” caused by abnormally periodic order.
Epileptic seizures, Parkinson’s disease, heart at-
tack, and infantapnoea are justa few such dynamic
disorders. Even aging itself is related to a loss
of deterministic variability (Kaplan et al., 1991;
Kim & Stringer, 1992). In fact, neurosurgeons
are creating chaos in the brain as a form of treat-
ment of symptoms. Take, for example, the Deep
Brain Stimulation procedure used in Parkinsonian
patients. A stimulation lead is inserted into the
brain to deliver an electrical impulse and return
the brain to its previous chaotic state. It has re-
cently been found that the stimulation of the STN
results in the loss of beta synchronization in the
neurons inside the nucleus (Bronte-Stewart et al.,
2009). This is not the only application of chaos
in medicine. The opportunities are as infinite as
the dynamic systems themselves.

17.13. THE FUTURE OF
PHYSIOLOGICAL SYSTEMS
MODELING, SIMULATION,
AND CONTROL

Physiological modeling is increasingly providing a
sophisticated set of tools for processing measure-
mentinputs into clinically relevant outputs. Based
on a physical and biological understanding of the
underlying processes, models have the short-term
potential to be used to extract information that is
not directly available from the data itself, and,
thus, aid clinical diagnosis. However, various
challenges remain to be met in order to reach a
level of modeling that would take full control
of a physiological system. Substituting a physi-

ological system has significant potential to become
feasible, and indeed some preliminary studies
have shown significant improvement in body-
prosthetics that are controlled by models (see for
example Song et al., 2007; Lebedev & Nicolelis,
2006). To successfully implement this combined
approach, it is essential that the mathematical
models are sophisticated enough to capture the
key physiological features of the system. This is
a computational challenge in its own right; our
body has anisotropic and multi-scale properties
that must be realized in mathematical models and
solved on real time simulations. In addition, the
personalized physiological properties of each data
set should be reflected to a change of parameters
in the mathematical models; and, accordingly, the
physiological models mustbe customized through
inputting patient-specific structural and functional
information. Within initiatives such as the Physi-
ome and Virtual Physiologic Human projects,
the need to have universal simulation platforms,
software languages, and in general the necessity
to speak the same “modeling language” became
apparent. [t is also important to speak specifically
for the brain. For the first time in history of man-
kind, the human brain initiated a discussion with
itself. In this endeavor, it is extremely important
to mention the requirement to develop more ad-
vanced statistical techniques applied specifically
to brain modeling. The long-term aim should be
the embracement of the power of modeling and
the integration of simulations with clinically,
scientifically, and economically effective data
acquiring techniques in order to achieve the goal
of personalized treatment. Physiological models
that are able to combine patient specific data with
the personal opinion of a physician can become
a pivotal point in the healthcare system in terms
of'both prognosis and diagnosis. This will further
increase the opinion of the society that science
comes not only from but also for the human kind.
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17.14. PROFESSIONAL SOCIETIES
AND ORGANIZATIONS

Engineering in Medicine and Biology Society
(EMBS)

www.embs.org

NSR Physiome Project, National Simulation
Resource, Department of Bioengineering,
University of Washington, Seattle, WA, USA

http://'www.physiome.org/

Virtual Physiological Human Network of Excel-
lence

http://www.vph-noe.eu/

17.15. CHAPTER SUMMARY

In this chapter, a variety of techniques to model
physiological systems and study their underlying
functions are described. The potential and limita-
tions ofthe presented methodologies are discussed
and supported with appropriate examples. Com-
partmental analysis describes a biological system
with a finite number of compartments. Almost all
biological systems are inherently nonlinear, and a
purely linear model is, thus, partially satisfactory.
However, linear models show important advan-
tages due to their simplicity. Other approaches,
suchasnonlinearmodels and neural networks, may
lack the theoretical foundation upon which linear
modeling of physiological systems is based, but
promising theoretical developments have attested
the importance of these techniques for successful
simulation and control of biological processes.
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Bio-inspired computation

Biologically inspired computing (also bio-inspired computing) is a field of study that
loosely knits together subfields related to the topics of connectionism, social behavior and
emergence. It is often closely related to the field of artificial intelligence, as many of its
pursuits can be linked to machine learning. It relies heavily on the fields of biology,
computer science and mathematics. Biologically inspired computing is a major subset of
natural computation. The field of biocomputation has a twofold definition: the use of
biology or biological processes as metaphor, inspiration, or enabler in developing new
computing technologies and new areas of computer science; and conversely, the use of
information science concepts and tools to explore biology from a different theoretical
perspective. In addition to its potential applications, such as DNA computation,
nanofabrication, storage devices, sensing, and health care, biocomputation also has
implications for basic scientific research. It can provide biologists, for example, with an
IT-oriented paradigm for looking at how cells compute or process information, or help
computer scientists construct algorithms based on natural systems, such as evolutionary
and genetic algorithms. Biocomputing has the potential to be a very powerful tool.

The domain of bio-inspired computing is gradually getting prominence in the current
times. As organizations and societies are gearing towards a digital era, there has been
an explosion of data. This explosion of data is making it more and more challenging to
extract meaningful information and gather knowledge by using standard algorithms, due
to the increasing complexity of analysis. Finding the best solution increasingly becomes
very difficult to identify, if not impossible, due to the very large and dynamic scope of
solutions and complexity of computations. Often, the optimal solution for such a NP hard
problem is a point in the n-dimensional hyperspace and identifying the solution is
computationally very expensive or even not feasible in limited time. Therefore intelligent
approaches are needed to identify suitable working solutions.

In this context, intelligent meta-heuristics algorithms can learn and provide a suitable
working solution to very complex problems. Within meta-heuristics, bio-inspired
computing is gradually gaining prominence since these algorithms are intelligent, can
learn and adapt like biological organisms. These algorithms are drawing attention from
the scientific community due to the increasing complexity of the problems, increasing
range of potential solutions in multi-dimensional hyper-planes, dynamic nature of the
problems and constraints, and challenges of incomplete, probabilistic and imperfect
information for decision making. However, the fast developments in this domain is
increasingly getting difficult to track, due to different algorithms which are being
introduced very frequently. However, no study has attempted to identify these algorithms
exhaustively, explore and compare their potential scope across different problem
contexts.

In fact very few researchers are often familiar with the developments in the domain, where
more and more new algorithms are gaining acceptance and prominence. Therefore, with



limited visibility across algorithms, new researchers working in this domain tend to focus
on very limited and popular approaches, and therefore often “force-fit” algorithms rather
than exploring the most suitable one, based on the problem statement, due to limited
awareness. To address this gap, we review some of the popularly used bio-inspired
algorithms as well as introduce the newly developed algorithms which have a huge
potential for applications. Further to that, we also explore the potential scope of
applications of the algorithms in specific domains, based on published scientific literature.
While twelve of the slightly popular algorithms have been discussed, the scope of future
research in other bioinspired algorithms has been discussed. However, in depth
discussion about the implementation (e.g. pseudocode, etc) and enhancements in each
algorithm is beyond the scope of the current article. Further, specific detailed citations of
each application could not be provided, but we attempt to generalize whenever possible
based on other focused reviews.
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1. What is Life?

“What was life? No one knew. It was undoubtedly aware of itself, so soon as it was life; but it did not know
what it was”. Thomas Mann [1924]

Threshold of Complexity

“Seeking a connecting link, they had condescended to the preposterous assumption of structureless living
matter, unorganized organisms, which darted together of themselves in the albumen solution, like crystals in
their mother-liquor; yet organic differentiation still remained at once condition and expression of all life. One
could point to no form of life that did not owe its existence to procreation by parents”. Thomas Mann [1924].

“Nothing in biology makes sense without evolution”. Theodosius Dobzhansky [1973]

Biologically-inspired computing is an interdisciplinary field that formalizes processes observed in living
systems to design computational methods for solving complex problems, or simply to endow artificial
systems with more natural traits. But to draw more than superficial inspiration from Biology we need to
understand and discuss the concept of life. It should be noted that for the most part of the history of
humanity, the question of what life is was not an important issue. Before the study of mechanics became
important, everything was thought to be alive: the stars, the skies, the rivers and mountains, etc. There was
no non-life, so the concept was of no importance. It was only when people started to see the World as
determined by the laws of mechanics that the question arose. If all matter follows simple physical laws, then
what is indeed the difference between life and non-life, between biology and physics? Let us then start with
a current dictionary definition:

“life adj.— n.1. the general condition that distinguishes organisms from inorganic objects and dead organisms,
being manifested by growth through metabolism, a means of reproduction, and internal regulation in response to
the environment. 2. the animate existence or period of animate existence of an individual. 3. a corresponding state,
existence, or principle of existence conceived of as belonging to the soul. 4. the general or universal condition of
human existence. 5. any specified period of animate existence. 6. the period of existence, activity, or effectiveness
of something inanimate, as a machine, lease, or play. 7. animation; liveliness; spirit: The party was full of life. §.
the force that makes or keeps something alive; the vivifying or quickening principle.” [Random House Webster’s
Dictionary]

The definitions above fall into three main categories: (1) life as an organization distinct from inorganic matter
(with an associated list of properties), (2) life as a certain kind of animated behavior, and (3) life as a special,
incommensurable, quality—vitalism. Throughout this course we will see that all principles, and indeed all
controversies, associated with the study of life fall into one of these categories or the differences among them.
The third category has been discarded as a viable scientific explanation, because for science nothing is in
principle incommensurable. The question of whether life is organized according to a special design,
intelligent or mysterious, pertains to metaphysics. If the agent of design cannot be observed with physical
means, then it is by definition beyond the scope of science as it cannot be measured, and any theories derived
from such a concept cannot tested.

While metaphysical dispositions do not pertain to science, many scientists have observed that a naive
mechanistic decomposition of life may also fail to explain it. The traditional scientific approach has lead the
study of living systems into a reductionist search for answers in the nitty-gritty of the biochemistry of living
organisms. This alternative sees life as nothing more than the complicated physics of a collection of moving



bodies. However, the question remains unanswered since there are many ways to obtain some complicated
dynamics, but of all of these, which ones can be classified as alive? What kind of complexity are we looking
for? No one disputes that life is some sort of complex material arrangement, but when do we reach a
necessary threshold of complexity after which matter is said to be living? Is it a discrete step, or is life a fuzzy
concept? To understand it without meaningless reduction, must we synthesize organizations with the same
threshold of complexity (first category above), or is it enough to simulate its animated behavior (second
category above)?

Information Organizes and Breeds Life
“Life is a dynamic state of matter organized by information”. Manfred Eigen [1992]

“Life is a complex system for information storage and processing”. Minoru Kanehisa [2000]

Traditionally life has been identified with material organizations which observe certain lists of properties, e.g.
metabolism, adaptability, self-maintenance (autonomy), self-repair, growth, replication, evolution, etc. Most
living organisms follow these lists, however, there are other material systems which obey only a subset of
these rules, e.g. viruses, candle flames, the Earth, certain robots, etc. This often leads to the view that life is
at best a fuzzy concept and at worst something we are, subjectively, trained to recognize—Ilife is what we can
eat—and is thus not an objective distinction. The modern-day molecular biology view of life, on the other
hand, tends to see life as a material organization that if not completely defined by genomic information, is
at least fully controlled by it. Thus, when Craig Venter’s team [Gibson et al, 2010] recently produced a
bacteria with a “prosthetic genome” [a termed coined by Mark Bedau, see Nature | Opinion, 2010] copied
from another bacteria but synthesized in the lab, the momentous synthetic biology feat was announced as the
creation of the first synthetic or artificial life form.

The artificial life field, whose members tend to follow the fuzzy list of properties conception of life, does not
typically recognize Venter’s bacteria with a prosthetic genome as a bona fide synthesis of artificial life, since
it relies on the pre-existence of a working, naturally-obtained cell to implant a prosthetic genome into. Even
most molecular biologists will agree that we are nowhere near understanding, let alone synthesizing an
artificial cell from scratch [e.g. George Church, see Nature | Opinion, 2010]. Nonetheless, Venter’s
achievement begs at least the question of what is it about life’s design principle that makes it easier to
synthesize a working prosthetic genome than a working “prosthetic proteome or metabolome™? It also makes
us think about what does “understanding life”” mean for biology, biomedical technology, artificial life, and
informatics? Why is genetic information so important and how does it relate to information technology?

Life requires the ability to both categorize and control events in its environment in order to survive. In other
words, organisms pursue (or even decide upon) different actions according to information they perceive in
an environment. Furthermore, living organisms reproduce and develop from genetic information. More
specifically, genetic information is transmitted “vertically” (inherited) in phylogeny and cell reproduction,
and expressed “horizontally” within a cell in ontogeny for the functioning of living organisms as they interact
and react with their environments—we are now sure that genetic information can also be transmitted
horizontally between organisms and play an important role in evolution [Goldenfeld & Woese 2007; Riley,
2013]. Indeed, the difference between living and non-living organizations seems to stand on the ability of
the former to use relevant information for their own functioning. It is this “relevant” which gives life an extra
attribute to simple mechanistic interactions. When an organization is able to recognize and act on aspects of
its environment which are important to its own survival, we say that the mechanisms by which the
organization recognizes and acts are functional in reference to the organization itself (self-reference). Physics
is not concerned with function. A physical or chemical description of DNA is certainly possible, but will tell
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us nothing as to the function of a DNA molecule as a gene containing relevant information for a particular
organism. Only in reference to an organism does a piece of DNA function as a gene (e.g. an enzyme with
some effect in an environment).

Thus it is remarkable that in Venter’s experiment, a cell with a synthesized prosthetic genome from a similar
but distinct organism, was able to reproduce over and over resulting in a cell with a different phenotype from
the original, implanted cell—in effect, a cell re-programmed by a synthesized genome. Is life then a type of
computer that can be reprogrammed? This also leads us to question how general-purpose can such genomic
re-programming be? Will it be restricted to very narrow classes of similar organisms, or will it ever be
possible to re-program any prokaryotic or eukaryotic cell ?

Emergence and Explanation

“First, nothing in biology contradicts the laws of physics and chemistry; any adequate biology must be consonant
with the ‘basic’ sciences. Second, the principles of physics and chemistry are not sufficient to explain complex
biological objects because new properties emerge as a result of organization and interaction. These properties can
only be understood by the direct study of the whole, living systems in their normal state. Third, the insufficiency of
physics and chemistry to encompass life records no mystical addition, no contradiction to the basic sciences, but
only reflects the hierarchy of natural objects and the principle of emergent properties at higher levels of
organization”. Stephen Jay Gould [1984].

This issue could be rephrased in terms of the notion of emergence. Whatever (macro-level) organization exists
after the complexity threshold for life is passed, we may say that it is emergent because its attributes cannot
be completely explained by the (micro-) physical level. In particular, function, control, and categorization
cannot be explained by the mechanics and dynamics of the components of life alone. Notice, however, that
emergence does not imply vitalism or dualism. When we say that certain characteristics of life cannot be
explained by physics alone, we mean that they must be explained by different, additional models—namely,
informational, historical and functional descriptions. In other words, though biological function, control, and
categorization cannot be explained by physics alone, organisms, like anything else, must nonetheless follow
physical laws. But information is contextual, and therefore requires more than universal models: it requires
contingent, context-specific descriptions. In particular, the origin of life, is a problem of emergence of
information from a physical milieu under specific constraints [Eigen, 1992]. This is the crux of complex
systems: the interplay between micro- and macro-level descriptions determines their behavior, and both levels
(emergence) are required to understand complexity.

The definition of emergence as an epistemological, explanatory requirement, is related to the notion of
emergence-relative-to-a-model [Rosen, 1985; Cariani, 1989] or intensional emergence [Salthe 1991]. Tt
refers to the impossibility of epistemological reduction of the properties of a system to its components [Clark,
1996]. As an example, we can think of phase transitions such as that of water in its transition from liquid to
gas. Water and its properties cannot be rephrased it terms of the properties of hydrogen and oxygen, it needs
a qualitatively different model. Another example of complementary models of the same material systems is
the wave-particle duality of light.

Physicists understand the laws of nature (as best they can), but it takes engineers to control nature. The very
best physicists are the very best engineers, but those are exceedingly rare (e.g. Von Neumann). The goal of
complex systems is to understand organized complexity (life, society, cognition) in the same way physicists
understand nature [Weaver, 1948]. Biology, as a discipline, has not entirely “made up its mind” if it wants
to understand life as a physicist or control it as an engineer. Due to its focus on the micro-level of life, its
biochemistry, molecular biology follows essentially a (reverse-) engineering, black-box methodology



(knockouts, controls, etc.). This leads to a bit of a schizophrenic agenda: focusing exclusively on micro-level
experiments in order to suggest macro-level understandings. If the goal is control of biology, say for
biomedical advances, then we really need to focus on biotechnology engineering. Ifthe goal is understanding,
then we need to focus more on macro-level organized complexity. Ideally, a healthy life sciences program
would tie the need to understand with the need to control better—Ilike physicists and engineers do.

This is where complex systems, artificial life, and bio-inspired computing can contribute to a wider arena of
the life sciences; they can be used as laboratories for experimenting with theories of organized complexity,
and thus enrich our understanding of life. Artificial life concerns both the simulation and realization of life
in some artificial environment, usually the computer. At least regarding the second of its goals, artificial life
aims to understand the fundamental micro/macro-level interaction that leads to organized complexity. Bio-
inspired computing, as a more pragmatic endeavor, does not need to concern itself with synthesizing actual
life, but only with drawing analogies from life (real and artificial). Nonetheless, if the main motivation of bio-
inspired computing is that life with its designs has already solved versions of many complex engineering
problems we are interested in, then a thorough and accurate understanding of the essential characteristics of
life is inescapable. Moreover, by abstracting context-specific principles of life to make them relevant in other
settings, provides a useful laboratory to experiment with theoretical biology.
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2. The logical Mechanisms of Life

“The designs found in nature are nothing short of brilliant, but the process of design that generates them is utterly
lacking in intelligence of its own”. Daniel Dennett, NY Times 2005

Life-As-1t-Could-Be: but, what is non-life-as-it-could-be?

“Artificial Life [AL] is the study of man-made systems that exhibit behaviors characteristic of natural living systems.
It complements the traditional biological sciences concerned with the analysis of living organisms by attempting
to synthesize life-like behaviors within computers and other artificial media. By extending the empirical foundation
upon which biology is based beyond the carbon-chain life that has evolved on Earth, Artificial Life can contribute
to theoretical biology by locating life-as-we-know-it within the larger picture of life-as-it-could-be. [...] [AL] views
life as a property of the organization of matter, rather than a property of the matter which is so organized. Whereas
biology has largely concerned itself with the material basis of life, Artificial Life is concerned with the formal basis
oflife. [... It] starts at the bottom, viewing an organism as a large population of simple machines, and works upwards
synthetically from there — constructing large aggregates of simple, rule-governed objects which interact with one
another nonlinearly in the support of life-like, global dynamics. The ‘key’ concept in AL is emergent behavior.”
[Langton, 1989, pp 1-2]

“Artificial Life is concerned with tuning the behaviors of such low-level machines that the behavior that emerges
at the global level is essentially the same as some behavior exhibited by a natural living system. [...] Artificial Life
is concerned with generating lifelike behavior.” [Langton, 1989, pp 4 and 5]

The previous quotes indicate the goals of Artificial Life according to Chris Langton: the search for complex,
artificial, systems which instantiate some kind of lifelike organization. The field is interested in both
synthesizing an actual artificial living organization, as well as simulating lifelike behavior. The first goal is
more ambitious and related to the first definition of life introduced in lecture one, while the second goal is
related to the second definition. The methodology to reach either of these goals is also in line with the notion
of emergence mentioned in lecture one: from the non-linear interaction of simple, mechanistic, components,
we wish to observe the emergence of complicated, life-like, unpredictable, behavior. Natural living organisms
are likewise composed of non-living components. As pointed out in lecture one, the origin problem in biology
is precisely the emergence of life from non-living components. The material components follow, and are
completely described, by physical laws, however, a mechanistic explanation of the overall living system is
incomplete. Similarly, in Artificial Life, we have formal components obeying a particular set of axioms, and
from their interaction, global behavior emerges which is not completely explained by the local formal rules.
Clearly, the formal rules play the role of an artificial matter and the global behavior, if recognized as life-like,
plays the role of an artificial biology.

“Of course, the principle assumption made in Artificial Life is that the ‘logical form’ of an organism can be
separated from its material basis of construction, and that ‘aliveness’ will be found to be a property of the former,
not of the latter.” [Langton, 1989, page 11]

The idea is that if we are able to find the basic design principles of living organization, then the material
substrate used to realize life is irrelevant. By investigating these basic principles we start studying not only
biological, carbon-based, life — life-as-we-know-it— but really the universal rules of life, or life-as-it-could-
be. Moreover, from a better understanding of the design principles of life, we can use them to solve
engineering problems similar to those that living organisms face [Segel and Cohen, 2001; DeCastro and Von
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Zuben, 2005]. Several problems have been raised regarding this separation of matter from form, or the search
for a universality without matter [Cariani, 1992; Moreno et al, 1994], which will not be discussed here. What
needs to be made more explicit is the relationship between the two distinct goals of AL.

Looking at emergent behavior, obtained from formal complex systems, in search of interesting behavior leads
to a certain circularity. If AL is concerned with finding life-like behavior in artificial, universal, systems, we
are ultimately binding life-as-could-be to the behavior of life-as-we-know-it by virtue of some subjective
resemblance. This can hardly be accepted as the search for universal principles.

“They say, ‘Look, isn’t this reminiscent of a biological or a physical phenomenon!” They jump in right away as if
it’s a decent model for the phenomenon, and usually of course it’s just got some accidental features that make it look
like something.” [Jack Cowan as quoted in Scientific American, June 1995 issue, “From Complexity to Perplexity”,
by J. Horgan, page 104]

“Artificial Life — and the entire field of complexity—seems to be based on a seductive syllogism: There are simple
sets of mathematical rules that when followed by a computer give rise to extremely complicated patterns. The world
also contains many extremely complicated patterns. Conclusion: Simple rules underlie many extremely complicated
phenomena in the world. With the help of powerful computers, scientists can root those rules out.” [J. Horgan,
Scientific American, June 1995 issue, “From Complexity to Perplexity”, page 107]

“Artificial Life is basically a fact-free science”. [John Maynard Smith as quoted in Scientific American, June 1995
issue, “From Complexity to Perplexity”, by J. Horgan, page 107]

The problem is that Artificial Life must be compared to something, otherwise it becomes a factless
manipulation of computer rules with subjective resemblances to real life. Again, we are faced with many
possible types of emergent complex behaviors, this time formal, but what kinds of behaviors can be classified
as “life-as-could-be”? What is the formal threshold of complexity needed? In the natural world we are able
to distinguish life from non-life, biology from physics due to the known signatures of bio-chemistry. In the
logical realm, we likewise need a formal criteria to distinguish logical life from logical non-life, artificial life
from artificial physics.

“Artificial Life must be compared with a real or an artificial nonliving world. Life in an artificial world requires
exploring what we mean by an alternative physical or mathematical reality.” [Pattee, 1995]

The two goals of AL are usually described as hard and soft AL respectively. The first concerns the synthesis
of artificial life from computational or material (e.g. embodied robotics) components. The second is interested
in producing life-like behavior and is essentially metaphorical. To be accepted as a scientific field, Alife
cannot settle for subjective rules of what constitutes living behavior. Indeed, whether we want to synthesize
life or merely simulate a particular behavior of living organisms, we need investigate the rules that allow us
to distinguish life from non-life . Only by establishing an artificial physics, from which an artificial biology
can emerge, and a theory, or set of rules, distinguishing the two, can we aim at a proper science based on fact.
In other words, the methodology of Artificial Life requires existing theories of life to be compared against;
it can also contribute to the meta-methodology of Biology by allowing us to test and improve its theories
beyond the unavoidable material constraints, such as the incomplete fossil record or measurement of cellular
activity. Naturally, the requirements for hard AL are much stricter, as we are not merely interested in
behaviors that can be compared to real biological systems with looser or stricter rules, but the actual
realization of an artificial organization that must be agreed to be living against some theory. Soft AL, may
restrict itself to particular behavioral traits which need only to be simulated to a satisfactory degree.



Simulations, Realizations, Systemhood, Thinghood, and Theories of Life

“Boids are not birds; they are not even remotely like birds; they have no cohesive physical structure, but rather exist
as information structures — processes — within a computer. But — and this is the critical ‘but’— at the level of
behaviors, flocking Boids and flocking birds are two instances of the same phenomenon: flocking. [...] The
‘artificial’ in Artificial Life refers to the component parts, not the emergent processes. If the component parts are
implemented correctly, the processes they support are genuine — every bit as genuine as the natural processes they
imitate. [...] Artificial Life will therefore be genuine life —it will simply be made of different stuff than the life that
has evolved on Earth.” [Langton, 1989, pp. 32-33]

“Simulations and realizations belong to different categories of modeling. Simulations are metaphorical models that
symbolically ‘stand for’ something else. Realizations are literal, material models that implement functions.
Therefore, accuracy in a simulation need have no relation to quality of function in a realization. Secondly, the
criteria for good simulations and realizations of a system depend on our theory of the system. The criteria for good
theories depend on more than mimicry, e.g., Turing Tests.” [Pattee, 1989, page 63]

As Pattee points out, the bottom line is that a simulation, no matter how good it is, is not a realization.
Nonetheless, it may still be possible to obtain artificial living organisms (realizations) if, from an artificial
environment, we are able to generate, in a bottom-up manner, organizations which conform to some theory
of life we wish to test. Howard Pattee [1989] has proposed that if emergent artificial organisms are able to
perform measurements, or in other words, categorize their (artificial) environment, then they may be
considered realizations. Some claim that computational environments do not allow for this creative form of
emergence [see Cariani, 1992; Moreno, et all, 1994]. In any case, whatever artificial environment we may
use, computational or material, we need a theory allowing us to distinguish life from non-life.

Related to this issue, and in the context of complex systems science, is the search of those properties of the
world which can be abstracted from their specific material substrate: systemhood from thinghood. Systems
science is concerned with the study of systemhood properties, but there may be systems from which
systemhood cannot be completely abstracted from thinghood. Life is sometimes proposed as one of those
systems [see Rosen, 1986, 1991; Moreno et al, 1994; Pattee, 1995]. The difficulty for systems science, or
complexity theory, lies precisely in the choice of the appropriate level of abstraction. If we abstract enough,
most things will look alike, leading to a theory of factless, reminiscent analogies, exposed by Cowan and
Maynard-Smith above. If, on the other hand, we abstract too little, all fields of inquiry tend to fall into
increasingly specific niches, accumulating much data and knowledge about (context-specific) components
without much understanding of, or ability to control, the (general) macro-level organization. In the context
of life, we do not want to be tied uniquely to carbon-based life, or life-as-we-know-it, but we also do not want
life-as-could-be to be anything at all. The challenge lies precisely on finding the right amounts of systemhood
and thinghood, as well as the interactions between the two, necessary for a good theory of life, real or
artificial.
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3. Formalizing and Modeling the World

“When you can measure what you are speaking of and express it in numbers you know that on which
you are discoursing. But if you cannot measure it and express it in numbers. your knowledge is of a
very meagre and unsatisfactory kind.”. (Lord Kelvin)

The Nature of Information and Information Processes in Nature1

The word information derives from the Latin informare (in + formare), meaning to give form, shape, or
character to. Etymologically, it is therefore understood to be the formative principle of something, or to
imbue with some specific character or quality. However, for hundreds of years, the word information is used
to signify knowledge and aspects of cognition such as meaning, instruction, communication, representation,
signs, symbols, etc. This can be clearly appreciated in the Oxford English Dictionary, which defines
information as “the action of informing; formation or molding of the mind or character, training, instruction,
teaching; communication of instructive knowledge”.

When we look at the world and study reality, we see order and structure everywhere. There is nothing that
escapes description or explanation, even in the natural sciences where phenomena appear sometimes
catastrophic, chaotic and stochastic. A good example of order and information are our roads. Information
can be delivered by signs. Drivers know that signs are not distant things, but they are about distant things
in the road. What signs deliver are not things but a sense or knowledge of things — a message. For
information to work that way, there have to be signs. These are special objects whose function is to be about
other objects. The function of signs is reference rather than presence. Thus a system of signs is crucial for
information to exist and be useful in a world, particularly for the world of drivers!

The central structure of information is therefore a relation among signs, objects or things, and agents capable
of understanding (or decoding) the signs. An AGENT is informed by a SIGN about some THING. There
are many names for the three parts of this relation. The AGENT can be thought of as the recipient of
information, the listener, reader, interpretant, spectator, investigator, computer, cell, etc. The SIGN has been
called the signal, symbol, vehicle, or messenger. And the about-some-THING is the message, the meaning,
the content, the news, the intelligence, or the information.

The SIGN-THING-AGENT relation is often understood as a sign-system, and the discipline that studies sign
systems is known as Semiotics. In addition to the triad of a sign-system, a complete understanding of
information requires the definition of the relevant context: an AGENT is informed by a SIGN about some
THING in a certain CONTEXT. Indeed, (Peircean) semiotics emphasizes the pragmatics of sign-systems,
in addition to the more well-known dimensions of syntax and semantics. Therefore, a complete (semiotic)
understanding of information studies these three dimensions of sign-systems:

1. Semantics: the content or meaning of the SIGN of a THING for an AGENT; it studies all aspects
of the relation between signs and objects for an agent, in other words, the study of meaning.
2. Syntax: the characteristics of signs and symbols devoid of meaning; it studies all aspects of the
relation among signs such as their rules of operation, production, storage, and manipulation.
3. Pragmatics: the context of signs and repercussions of sign-systems in an environment; it studies

' This subsection is an excerpt of [Rocha and Schnell, 2005]
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how context influences the interpretation of signs and how well a signs-system represents some
aspect of the environment.

Signs carry information content to be delivered to agents. However, it is also useful to understand that some
signs are more easily used as referents than others. In the beginning of the 20™ century, Charles Sanders
Peirce defined a typology of signs:

1. Icons are direct representations of objects. They are similar to the thing they represent. Examples
are pictorial road signs, scale models, and of course the icons on your computer. A footprint on the
sand is an icon of a foot.

2. Indices are indirect representations of objects, but necessarily related. Smoke is an index of fire,
the bell is an index of the tolling stroke, and a footprint is an index of a person.

3. Symbols are arbitrary representations of objects, which require exclusively a social convention
to be understood. A road sign with a red circle and a white background denotes something which is
illegal because we have agreed on its arbitrary meaning. To emphasize the conventional aspect of the
semantics of symbols, consider the example of variations in road signs: in the US yellow diamond
signs denote cautionary warnings, whereas in Europe a red triangle over a white background is used
for the same purpose. We can see that convention establishes a code, agreed by a group of agents,
for understanding (decoding) the information contained in symbols. For instance, smoke is an index
of fire, but if we agree on an appropriate code (e.g. Morse code) we can use smoke signals to
communicate symbolically.

Clearly, signs may have iconic, symbolic and indexical elements. Our alphabet is completely symbolic, as
the sound assigned to each letter is purely conventional. But other writing systems such as Egyptian or Mayan
hieroglyphs, and some Chinese characters use a combination of phonetic symbols with icons and indices. Our
road signs are also a good example of signs with symbolic (numbers, letters and conventional shapes), iconic
(representations of people and animals) and indexical (crossing out bars) elements.

Finally, it is important to note that due to the arbitrary nature of convention, symbols can be manipulated
without reference to content (syntactically). This feature of symbols is what enables computers to operate.
As an example of symbol manipulation without recourse to content, let us re-arrange the letters of a word,
say “deal”: dale, adel, dela, lead, adle, etc. We can produce all possible permutations (4! = 4x3x2x1 =
24) of the word whether they have meaning or not. After manipulation, we can choose which ones have
meaning (in some language), but that process is now a semantic one, whereas symbol manipulation is purely
syntactic. All signs rely on a certain amount of convention, as all signs have a pragmatic (social) dimension,
but symbols are the only signs which require exclusively a social convention, or code, to be understood.

We are used to think of information as pertaining purely to the human realm. In particular, the use of
symbolic information, as in our writing system, is thought of as technology used exclusively by humans.
Symbols, we have learned, rely on a code, or convention, between symbols and meanings. Such a
conventional relation usually specifies rules created by a human community. But it can have a more general
definition:

“A code can be defined as a set of rules that establish a correspondence between two independent
worlds”. The Morse code, for example, connects certain combinations of dots and dashes with the letters
of the alphabet. The Highway Code is a liaison between illustrated signals and driving behaviours. A
language makes words stand for real objects of the physical World.” [Barbieri, 2003, page 94]
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We can thus think of a code as a process that implements correspondence rules between two independent
worlds (or classes of objects), by ascribing meaning to arbitrary symbols. Therefore, meaning is not a
characteristic of the individual symbols but a convention of the collection of producers and recipients of the
encoded information.

Interestingly, we can see such processes in Nature, where the producers and recipients are not human. The
prime example is the genetic code, which establishes a correspondence between DNA (the symbolic genes
which store information) and proteins, the stuff life on Earth is built of. With very small variations, the
genetic code is the same for all life forms. In this sense, we can think of the genetic system and cellular
reproduction as a symbolic code whose convention is “accepted” by the collection of all life forms.

Other codes exist in Nature, such as signal transduction from the surface of cells to the genetic system, neural
information processing, antigen recognition by antibodies in the immune system, etc. We can also think of
animal communication mechanisms, such as the ant pheromone trails, bird signals, etc. Unlike the genetic
system, however, most information processes in nature are of an analog rather than digital nature. Throughout
this course we will discuss several of these natural codes.

Formalizing Knowledge: Uncovering the Design Principles of Nature’

Once we create symbols, we can also hypothesize relationships among the symbols which we can later check
for consistency with what we really observe in the World. By creating relationships among the symbols of
things we observe in the World, we are in effect formalizing our knowledge of the World. By formalizing
we mean the creation of rules, such as verbal arguments and mathematical equations, which define how our
symbols relate to one another. In a formalism, the rules that manipulate symbols are independent of their
meaning in the sense that they can be calculated mechanically without worrying what symbols stand for.

It is interesting to note that the ability to abstract characteristics of the world from the world itself took
thousands of years to be fully established. Even the concept of number, at first was not dissociated from the
items being counted. Indeed, several languages (e.g. Japanese) retain vestiges of this process, as different
objects are counted with different variations of names for numbers. Physics was the first science to construct
precise formal rules of the things in the world. Aristotle (484-322 BC) was the first to relate symbols more
explicitly to the external world and to successively clarify the nature of the symbol-world (symbol-matter)
relation. “In his Physics he proposed that the two main factors which determine an object's speed are its
weight and the density of the medium through which it travels. More importantly, he recognized that there
could be mathematical rules which could describe the relation between an object's weight, the medium's
density and the consequent rate of fall.” [Cariani, 1989, page 52] The rules he proposed to describe this
relations were:

1. For freely falling or freely rising bodies: speed is proportional to the density of the medium.
2. In forced motion: speed is directly proportional to the force applied and inversely proportional
to the mass of the body moved

This was the first time that the relationships between observable quantities were hypothesized and used in
calculations. Such a formalization of rules as a hypothesis to be tested is what a model is all about.
Knowledge is built upon models such as this that sustain our observations of the World.

2 This subsection is an excerpt of [Rocha and Schnell, 2005b]
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“While these quantities were expressed in terms of numbers, they were still generally regarded as inherent
properties of the objects themselves. It was not until Galileo took the interrelationships of the signs
themselves as the objects of study that we even see the beginnings of what was to be progressive
dissociation of the symbols from the objects represented. Galileo's insight was that the symbols
themselves and their interrelations could be studied mathematically quite apart from the relations in the
objects that they represented. This process of abstraction was further extended by Newton, who saw that
symbols arising from observation [...] are distinct from those involved in representing the physical laws
which govern the subsequent motion”. [Cariani, 1989, page 52]
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Figure 1: The Modeling Relation between knowledge and reality according to Hertz
(adapted from Cariani, 1989)

“In 1894 Heinrich Hertz published his Principles of Mechanics which attempted [...] to purge mechanics of
metaphysical, mystical, undefined, unmeasured entities such as force and to base the theory explicitly on
measurable quantities. Hertz wanted to be as clear, rigorous, and concise as possible, so that implicit, and
perhaps unnecessary, concepts could be eliminated from physical theories, [which he thought should be based
solely on measurable quantities].” [Cariani, 1989, page 54]. Since the results of measurements are symbols,
physical theory should be about building relationships among observationally-derived symbols, that is, it
should be about building formal models, which Hertz called "images™:

“The most direct and in a sense the most important, problem which our conscious knowledge of
nature should enable us to solve is the anticipation of future events, so that we may arrange our
present affairs in accordance with such anticipation. As a basis for the solution of this problem we
always make use of our knowledge of events which have already occurred, obtained by chance
observation or by prearranged experiment. In endeavoring thus to draw inferences as to the future
from the past, we always adopt the following process. We form for ourselves images or symbols of
external objects; and the form which we give them is such that the necessary consequents of the
images in thought are always the images of the necessary consequents in nature of the things pictured.
In order that this requirement may be satisfied, there must be a certain conformity between nature and
our thought. Experience teaches us that the requirement can be satisfied, and hence that such a
conformity does in fact exist. When from our accumulated experiences we have succeeded in
deducing images of the desired nature, we can then in a short time develop by means of them, as by
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means of models, the consequences in the external world which only arise in a comparatively long
time, or as a result of our own interposition. We are thus enabled to be in advance of the facts, and to
decide as to present affairs in accordance with the insight so obtained. The images which we here
speak are of our conceptions of things. With the things themselves they are in conformity in one
important respect, namely, in satisfying the above mentioned requirement. For our purpose it is not
necessary that they should be in conformity with the things in any other respect whatever. As a matter
of fact, we do not know, nor do we have any means of knowing, whether our conceptions of things
are in conformity with them in any other than the one fundamental respect. [Hertz, 1894 pp. 1-2]”

A model is any complete and consistent set of verbal arguments, mathematical equations or computational
rules which is thought to correspond to some other entity, its prototype. The prototype can be a physical,
biological, social psychological or other conceptual entity.

The etymological roots of the word model lead us to the Latin word “modulus”, which refers to the act of
molding, and the Latin word “modus” (a measure) which implies a change of scale in the representation of
an entity. The idea of a change of scale, can be interpreted in different ways. As the prototype of a physical,
social or natural object, a model represents a change on the scale of abstraction: certain particularities have
been removed and simplifications are made to derive a model.

In the natural sciences, models are used as tools for dealing with reality. They are caricatures of the real
system specifically build to answer questions about it. By capturing a small number of key elements and
leaving out numerous details, models help us to gain a better understanding of reality and the design
principles it entails.

Computational Models®

“Insofar as the propositions of mathematics are certain they do not refer to reality; and insofar as
they refer to reality, they are not certain”. Albert Einstein

Computation is the ultimate abstraction of a formal mathematical system, or an axiomatic system. It is defined
by the purely syntactic process of mapping symbols to symbols. Such mapping is the basis of the concept of
mathematical function, and it is all that computers do. This abstraction requires that all the procedures to
manipulate symbols are defined by unambiguous rules that do not depend on physical implementation, space,
time, energy considerations or semantic interpretations given to symbols by observers. Formal computation
is, by definition, implementation-independent.

Modeling, however, is not entirely a formal process. The Hertzian modeling paradigm clearly relates formal,
computational models to measurements of reality against which they must be validated. The measuring
process transforms a physical interaction into a symbol — via a measuring device. The measuring process
cannot be formalized as it ultimately depends on interacting with a specific (not implementation-independent)
portion of reality. We can simulate a measurement process, but for that simulation to be a model we will need
in turn to relate it to reality via another measurement. This important aspect of modeling is often forgotten
in Artificial Life, when the results of simulations are interpreted without access to real world measurements.

? This section is indebted to many writings of Howard Pattee, including lecture notes and personal communications.
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Likewise, a computer is a physical device that implements a particular abstract computational model as
precisely as possible. Modern day computers are so successful because they can implement general-purpose
computations almost independently of their specific physics. We do not have to worry about the specific
physical architecture of the device as we compute, even though small errors in our computations do occur due
to the physical elements of the computing device.

In summary, a computation is a process of rewriting symbol strings in a formal system according to a program
of rules. The following characteristics are important: (1) Operations and states are syntactic. (2) Symbols
follow syntactical rules. (3) Rate of computation is irrelevant. (4)Program determines result, not speed of
machine (Physical implementation is irrelevant).
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4. Self-Organization and Emergent Complex Behavior

Self-organization is usually understood as the process by which systems of many components tend to reach
a particular state, a set of cycling states, or a small volume of their state space (attractor basins), with no
external interference. This attractor behavior is often recognized at a different level of observation as the
spontaneous formation of well-organized structures, patterns, or behaviors, from random initial conditions
(emergent behavior). The systems used to study this behavior are referred to as dynamical systems or state-
determined systems, since every trajectory is perfectly determined by its initial state. Dynamical systems are
traditionally studied by continuous variables and sets of discrete-time difference equations (such as the
logistic map) or continuous-time differential equations (such as models of the motion of bodies under
gravitational forces). However, self-organization is more easily studied computationally with discrete
dynamical systems (DDS) such as Boolean networks or cellular automata.

The state-determined transition rules of DDS are interpreted as the laws of some physical system [Langton,
1986] where the state of each component depends on the states of its neighbor (or related) components at the
previous time instance. DDS possess a large number of components or variables, and thus very large state
spaces. However, when started with random initial conditions (note: not from special initial conditions) they
tend to converge, or self-organize, into small sets of attractor states in this space. Attractors may be chaotic
in which case the emergent behavior is sensitive to initial conditions. But even chaotic attractors tend to be
restricted to small volumes of their state-space (e.g. chaotic in a subset of dimensions of the state-space),
therefore we still consider the convergence of a dynamical system into a chaotic basin of attraction to be a
form of self-organization.

Since material systems are accurately modeled by dynamical systems, it follows from the observed attractor
behavior [Wuensche and Lesser, 1992] of these systems that there is a propensity for matter to self-organize
(e.g., [Kauffmann, 1992]). In this sense, matter is described by the (micro-level) dynamics of state transitions
and the observed (emergent or macro-level) attractor behavior of self-organization. In general, attractors
manifest or emerge as global patterns that involve many of components of the dynamical system, and are not
easily describable in terms of their state-determined transition rules. For instance, the simple transition rules
of the automata in Conway's Game of Life cannot describe what the emergent patterns of "blinkers" and
"gliders" are. These emergent patterns pertain to a different, complementary level of observation of the same
system [Pattee, 1978]. The process of self-organization is often interpreted as the evolution of order from
random initial conditions. However, notice that this evolution is limited to the specific attractor landscape of
a given dynamical system. Unless its parameters are changed (structural perturbation), no dynamical system
can escape its own attractor landscape. This limitation will become more apparent when we approach the
problem of self-replication.

Life on the Edge of Chaos?

Another interesting aspect of the behavior of dynamical systems concerns the concept of bifurcation or phase
transition. When the parameters of a dynamic system are changed gradually its trajectories and attractors
typically change gradually, however, for certain parameter values sudden changes in the dynamic behavior
can occur. It is at this critical point that complicated spatio-temporal organization may occur (e.g. from a
steady-state to a limit cycle attractor). Close to bifurcations the system also becomes increasingly more
sensitive to parameter and initial condition changes. It is often proposed that bifurcations offer a selection
mechanism [Prigogine, 1985], as a dynamical system may respond very differently to very small changes in
their parameters.
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However, if the parameter space is divided by many bifurcations, the system becomes increasingly sensitive
to initial conditions and small parameter changes; in this sense its behavior becomes chaotic. It has been
argued that the most useful behavior lies instead in between full order and chaos. Langton [1990, 1992] has
shown (for one-dimensional cellular automata) that it is in this range of behavior that dynamical systems can
carry the most complicated “computations”. Computation here is used in a loose sense—not as the rate-
independent, symbolic manipulation of Turing-machines—meaning that information exchange between
elements of these systems is maximized in this range. In other words, Langton showed that the highest
correlation among the automata in a cellular lattice occur at this stage.

Kauffman [1993,] likewise hypothesized that “living systems exist in the [ordered] regime near the edge of
chaos, and natural selection achieves and sustains such a poised state”. This hypothesis is based on Packard’s
[1988] work showing that when natural selection algorithms are applied to dynamical systems, with the goal
of achieving higher discriminative power, the parameters are changed generally to lead these systems into
this transitional area between order and chaos. This idea is very intuitive, since chaotic dynamical systems
are too sensitive to parameter changes, that is, a single perturbation or mutation (structural perturbation) leads
the system into another completely different behavior (sensitive to damage). By contrast, ordered systems are
more resilient to damage, and a small parameter change will usually result in a small behavior change which
is ideal for smooth adaptation. However, even though very ordered systems can adapt by accumulation of
useful successful variations (because damage does not propagate widely), they may not be able ‘step out’ of
their particular organization in the presence of novel demands in their environment.

It is here that systems at the edge of chaos were thought to enter the scene; they are not as sensitive to damage
as chaotic systems, but still they are more sensitive than fully ordered systems. Thus, most mutations cause
only minor structural changes and can accumulate, while a few others may cause major changes in the
dynamics enabling a few dramatic changes in behavior. These characteristics of simultaneous mutation
buffering (to small changes) and dramatic alteration of behavior (in response to larger changes) is ideal for
evolvability [Conrad, 1983, 1990]. However, many of the real gene networks that have been successfully
modeled with dynamical systems (e.g. the network of segment polarity genes in Drosophila melanogaster
[Albert and Othmer, 2003]), exist in a very ordered regime, being very robust to structural changes [Chaves,
Albert and Sontag, 2005; Willadsen&Wiles, 2007; kauffman et al, 2003]. Still, other genetic regulatory
network models do operate close to criticality [Balleza et al, 2008]. It appears that evolution favors ordered,
very robust regimes of self-organization in gene networks — at least the ones involved in very conserved
regulatory pathways — though there is also evidence of near-critical regimes for increased evolvability.

Complex Self-organization

We have studied several computational systems said to be self-organizing in the sense described above. The
discrete logistic equation observes several ranges of ordered behavior according to its parameter r. For r <
3, the system converges to a single point steady state (independently of its initial value). For 3 < r < 4 the
system enters a series of bifurcations, meaning that it changes its attractor behavior, first from a steady-state
into a two-state limit cycle, and then progressively doubling the number of states in an attractor limit cycle
as r increases. Close to r = 4, the limit cycle becomes chaotic. That is, in the chaotic range, the slightest
change in the initial value, will lead to a completely different trajectory (though similarly chaotic). The
system goes from being independent to strongly dependent of initial conditions, though, in each range, the
attractor behavior of the equation is the same for random initial conditions. Thus, we can see the logistic
equation as self-organizing.
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But there is another aspect of the logistic equation that should be understood. In all of its ranges of behavior,
from full order to full chaos, the system is (fairly) reversible. That is, I can always obtain a specific initial
condition which caused some behavior, by formally running the system backwards. This means the system
is deterministic in both temporal directions. Formally, this means the state transition function is invertible.
(This is actually only true, if we decide to work on the lower half of its state space, since the logistic equation
is a quadratic function, it has always two possible solutions for the previous value of the current state, these
values are symmetric about the middle point of its state space). Some, resist calling this kind of reversible
systems self-organizing because they are not sufficiently complex. They reason that if a system is self-
organizing, when ran backwards it should be self-disorganizing, that is, it should lead to random initial
conditions, or to an incomplete knowledge of possible initial states. Indeed, complexity is typically equated
with the inability to describe the behavior of a system from the behavior of its components or predecessors.
This way, we ought to reserve the term self-organization to those irreversible systems whose behaviors must
be evaluated statistically. The logistic map shows “hints” of this backwards self-disorganization, but we can
still work out effectively its backwards trajectory to an initial condition by restricting the quadratic solutions
to half of its state space.

Random Boolean Networks are much more complicated than this. They are completely deterministic since
a certain state will always lead to the same next state (state-determinacy), however, we cannot usually know
exactly what the predecessor of a current state was. Systems like this are usually studied with statistical tools.
Even though the rules that dictate the next state of its components are simple and deterministic, the overall
behavior of the system is generally too complicated to predict and statistical analysis has to be performed.
For instance, Kauffman has shown that when K=2 (number of inputs to each node), his networks will have
on average /N basins of attraction with a length of /N states; if the output of one node is switched to the
other boolean value (perturbation), the trajectory returns to that cycle 85% of the time, while on the remaining
15% of the time it will “jump” into a different basin of attraction. Cellular automata (CA) fall into this same
category of deterministic, irreversible, self-organization.
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5. Reality is Stranger than Fiction

Updated from a presentation in the “Biocomplexity” discussion section at the 9" European Conference on
Artificial Life, September 12, 2007 in Lisbon, Portugal

What can Artificial Life do about Advances in Biology?

“By extending the empirical foundation upon which biology is based beyond the carbon-chain life
that has evolved on Earth, Artificial Life can contribute to theoretical biology by locating life-as-we-
know-it within the larger picture of life-as-it-could-be”. [Langton, 1998, page 1]

From Langton’s original artificial life manifesto, the field was largely expected to free us from the confines
of “life-as-we-know-it” and its specific biochemistry. The idea of “life-as-it-could-be” gave us a scientific
methodology to consider and study the general principles of life at large. The main assumption of the field
was that instead of focusing on the carbon-based, living organization, life could be better explained by
synthesizing its “logical forms” from simple machines [Langton, 1989, page 11]—where, “fictional”
machines substituted real biochemistry. The expectation was that this “out-of-the-box”, synthetic
methodology would gain us a wider scientific understanding of life. We would be able to entertain alternative
scenarios for life, challenge the dogmas of biology, and ultimately discover the design principles of life.

Interestingly, during the 20 years since the first artificial life workshop, biology witnessed tremendous
advances in our understanding of life. True, biology operates at a completely different scale of funding and
in a much larger community base than artificial life (the impact factors of key journals in both fields differ
by an order of magnitude). But, still, it is from biology, not artificial life, that the strangest and most exciting
discoveries and design principles of life arise today. Consider looking at the [September 6, 2007] number of
Nature, with the quite apropos editorial title “Life as We Know it” [Vol. 449, 1], arguing for a comparative
genomics approach, with articles, for instance, moving towards evolutionary principles of gene duplication
[Wapinski et al, 2007]. Publications in the [September 2007 issue of] PL0S. Biol., also presented new
evidence towards updating or discovering general principles of life: for instance, Venter’s sequencing of his
diploid genome, which updates our expectations of differences in chromosome pairs [Levy et al, 2007]), and
the Ahituv et al [2007] study that challenges the idea that utraconserved DNA (across species) must be
functional. Since then, many advances, often enabled by big data approaches of computational biology, keep
being discovered; for instance, from large-scale comparative genomics, it has been found that retroviral
genomic sequences account for 6 to 14% of host genomes—~8% of human DNA is from endogenous
retroviruses, which comprises more DNA than the human proteome [Weiss & Stoye, 2013].

It is good to notice that this sort of work is not so much an exception, but has been a signature of research in
the biosciences in the last couple of decades. Consider cases such as the discovery of DNA transfer from
bacteria to the fly [Dunning Hotopp, 2007], extra-genomic inheritance in Arabidopsis [Lolle et al, 2005], or
the profound importance of non-coding RNA in life which is a major player in, among other features,
patterning [Martello et al, 2007] , essential gene regulation [Mattick, 2005], development [Mattick, 2007],
epigenetic neural development and modulation [Mehler & Mattick, 2007; Mattick & Mehler, 2008],
eukariotic complexity [Taft et al, 2007], etc. Moreover, advances such as these do not seem to be mere
epiphenomena of a specific life form. Indeed, they point at important organization principles—as those that
artificial life was supposed to provide. When we discover that non-transcribed RNA is involved in extra-
genomic inheritance or that most of the evolutionary innovation responsible for differences between
marsupials and placental mammals occurs in non-protein coding DNA [Mikkelsen et al, 2007], some
fundamental principles of the living organization are to be re-thought: the simple, generalized genotype-
phenotype mappings on which most of artificial life is based on, are just not enough to capture the principles



of life as we know it. More intricate genomic structure, and its principles, need to be modeled and theories
need to be built to understand life.

One could go on and on about many other advances in biology. We can also point to themes at the forefront
of (bio)complexity theory that go largely overlooked in artificial life—though not completely (i.e. [Calabretta
et al, 2000; Hintze & Adami, 2007]). Perhaps the key topic in complexity theory today is that of modularity
in evolution [Schlosser & Wagner, 2004 ] and in networks [Newman, 2006; Guimera et al 2007].
Nonetheless, looking at the papers accepted for the main sections of the latest Alife and ECAL conferences,
it is easy to see that most papers, not only do not discover or even address such issues, but largely trade in
biological and computational concepts that have not changed much since the field’s inception (see list of top
themes and terms in appendix). Is artificial life trapped in the (evolutionary) biology of twenty years ago?
Why is reality stranger and more surprising than fiction?

Clearly, there has been very widely successful artificial life research. First and foremost, artificial life has
been most successful as a means to study animal behavior, learning and cognition. Certainly, evolutionary
robotics and embodied cognition have had an impact in cognitive science. But is artificial life simply a better
way to do artificial intelligence? Moreover, one could argue that given the embodied nature of evolutionary
robotics, it would seem that it is bound to some kind of material reality, rather than synthesized by constituent
“logical forms” as Langton initially suggested.

But what to do about the organization of life itself? Surely the idea of explaining the living organization was
behind the origin of the field. For the purposes of this discussion, we must question ourselves why artificial
life does not produce more and surprising results about the living organization? Certainly, there is sound
research in the field with impact outside of it [e.g. Adami, 2006; Hintze & Adami, 2007]. But even the most
successful research in artificial life rarely goes beyond showing that artificial organisms can observe the same
behaviors as their real counterparts (i.e. selective pressures, epistasis, etc.). A problem for the field is that
as biotechnology gains more and more control of cellular processes, it is reasonable to ask what can one do
with artificial organisms that one cannot do with real bacteria? For instance, recent studies of the evolutionary
speed towards beneficial mutations were quite effectively done with E-coli [Perfeito et al, 2007], pointing
to a much larger rate of beneficial mutations in bacteria than previously thought, and shedding new light on
the general principal of clonal interference.

The point of this short statement is to discuss at this conference [ECAL 2007], how biocomplexity is dealt
within artificial life, twenty years after the field’s inception. Certainly the community can think of a variety
of responses to this lack of new principles of life coming out of research in artificial life—even in theoretical
biology. One concept that I venture may need updating in artificial life is its view of the genotype/phenotype
relationship. Langton proposed that we generalize this relationship, but this meant that research in the field
largely regarded the two as indistinguishable. While this move at fist glance seems appropriate to deal with
the complexity of genomic-proteomic interaction, it prevents us from studying the specific roles each plays
in the living organization. Genotype and phenotype are intertwined in a complex manner, but each operates
under different principles that are often overlooked in artificial life. Thus, artificial life rarely approaches
issues of genomic structure and regulation, or the co-existence of DNA and RNA as different types of
informational carriers. This could well be because artificial life models seem to trade most often on the
concept of Mendelian gene than on the molecular biology gene. In other words, artificial life models tend to
regard genes solely as mechanisms of generational (vertical) inheritance, rather than as (informational)
mechanisms of ontogenetic (horizontal) development, regulation, maintenance, phenotypic plasticity, and
response to environmental change. This way, most artificial life models do not test, or even deal with,
possible genomic structure architectures and their impact on development and evolution. This is a big
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shortcoming in the field since, as we have seen in the last two decades, the molecular biology gene and the
genomic structure it implies are behind many essential principles of life—from hypersomatic mutation in
vertebrate immunity to speciation.

Additionally, it is most often the case that artificial organisms in artificial life models are designed with many
top-down features, rather than emerging out of artificial biochemical machines. For instance, typically the
genes of artificial organisms encode pre-defined computer operations. Not only is the encoding pre-defined,
but the function of individual genes is also pre-programmed, rather than emergent from some artificial
chemistry—what is typically emergent is the behavior of a collection of such “atomic” genes and genotypes.

It is interesting to note that when biologists were looking for the location of genetic information for
inheritance, they naturally assumed that it would reside in proteins. They knew of DNA chemically, but its
sheer inertness deemed it unfit for the job. It took some time to realize that relative inertness was really the
point--- from Griffith’s experiment in 1928 to Avery’s in 1944, the implications of which were only fully
accepted much later , probably costing Avery a deserved Nobel [Judson, 2003]. This episode illustrates how
reality very often surprises the best scientific expectations of the day—a big problem for Artificial Life, as
long as it defines itself as the study of life-as-it-could-be, since it implies a science built on what scientists
think life is and not on what experiments show it is. For instance, the biochemical difference between highly
inert memory molecules and highly reactive, functional ones, while often overlooked in artificial life as a
design principle, is ultimately the hallmark of life [Rocha and Hordijk, 2005; Brenner, 2012]. Indeed,
Venter’s achievement in successfully replicating a living cell with a “prosthetic genome” until the original
organism’s phenotype is fully re-programmed (see chapter 1), should lead Artificial Life scientists to ponder
at least the question of what is it about life’s design principle that makes it easier to synthesize a working
prosthetic genome than a working “prosthetic” proteome or metabolome? Perhaps, Langton’s view of
artificial life being built-up from simple machines, may have clouded the fact that life as we know it is made
of biochemical constituents with very different chemical and functional roles: chiefly, DNA (long-term,
random-access memory), RNA (short-term memory and symbol processing) and proteins (functional
machines). Perhaps more attention should be directed to the “logical forms” of these lower level, structural
constituents that produce life, before we can tackle “life-as-it-could-be”.
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APPENDIX:

Top themes extracted from all abstracts accepted to ECAL 2007, produced the
Leximancer (courtesy of Janet Wiles)

o pt AbsoluteRelative

Count Count
model 119 100%
system 95 79.8%
evolution 92 T73%
results 64 53.7%
environment 58 48.7%
behavior 57 47.8%
present 37 478%
networlc 36 47%
robot 35 46.2%
agents 52 43.6%
simulation 50 42%
process 49 41.1%
simple 46 38.46%
show 43 36.1%
mechanism 41 34 4%
complex 41 34 4%
dvnamics 39 32.7%
artificial 39 32.7%
problem 39 32.7%
based 36 30.2%
learning 36 30.2%
approach 33 27.7%
population 31 26%
study 31 26%
genetic 30 252%
individual 30 252%
neural 28 23.5%
selection 28 23.5%
organisms 27 22.6%
method 26 218%
conditions 26 21.8%
level 26 21.8%
information 25 21%
social 25 21%
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Top Themes produced from Leximancer set at 65% coverage themes (courtesy of Janet
Wiles)

Kerations=-1000

Top co-occurring (stemmed) word pairs in abstracts

neural--network
chang--environ
artifici--life
simul--result
autonom--robot
evolutionari--algorithm
evolutionari--robot
comput--simul
genet--algorithm
robot--mobil
cellular--automata
interact--between
artifici--chemistri
agent--adapt
pressur--select
neural--control

24



6. Von Neumann and Natural Selection

“Turing invented the stored-program computer, and von Neumann showed that the description is
separate from the universal constructor. This is not trivial. Physicist Erwin Schrodinger confused the
program and the constructor in his 1944 book What is Life?, in which he saw chromosomes as
“architect's plan and builder's craft in one”. This is wrong. The code script contains only a description
of the executive function, not the function itself.” [Brenner, 2012]

6.1 Von Neumann’s Self-Reproduction Scheme

Von Neumann thought of his logical model of self-

. ‘ 1.\Z\) reproduction as an answer to the observation that,
P(A,B.C) \ W‘%\ ; unlike machines, biological organisms have the

™

their complexity without limit. Mechanical
artefacts are instead produced via more
complicated factories (as opposed to self-

C ability to self-replicate while seemingly increasing

() B.C) production) and can only degenerate in their

D(A.B,C) B g complexity. He was searching for a complexity

D(A,B,C) B threshold beyond which systems may self-

BABC) A C C reproduce (with no outside control) while possibly
Y increasing their complexity.

M\A

B 7 >, Von Neumann concluded that this threshold entails
s

a memory-stored description ®(X) that can be
interpreted by a universal constructor automaton
A to produce any automaton X; if a description of
A, O(A), is fed to A itself, then a new copy of A is
obtained. However, to avoid a logical paradox of self-reference, the description, which cannot describe itself,
must be both copied (uninterpreted role) and translated (interpreted role) into the described automaton. This
way, in addition to the universal constructor, an automaton B capable of copying any description, ®(X), is
included in the self-replication scheme. A third automaton C is also included to perform all the manipulation
of descriptions necessary—a sort of operating system. To sum it up, the self-replicating system contains the
set of automata (A + B + C) and a description ®(A + B + C); the description is fed to B which copies it three
times (assuming destruction of the original); one of these copies is then fed to A which produces another
automaton (A + B + C); the second copy is then handled separately to the new automaton which together with
this description is also able to self-reproduce; the third copy is kept so that the self-reproducing capability
may be maintained (it is also assumed that A destroys utilized descriptions). Notice that the description, or
program, is used in two different ways: it is both translated and copied. In the first role, it controls the
construction of an automaton by causing a sequence of activities (active role of description). In the second
role, it is simply copied (passive role of description). In other words, the interpreted description controls
construction, and the uninterpreted description is copied separately, passing along its stored information
(memory) to the next generation. This parallels the horizontal and vertical transmission of genetic
information in biological organisms, which is all the more remarkable since Von Neumann proposed this
scheme before the structure of the DNA molecule was uncovered by Watson and Crick[1953]—though after
the Avery-MacLeod-McCarty [1944] experiment which identified DNA has the carrier of genetic
information.
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“The concept of the gene as a symbolic representation of the organism—a code script—is a funda-
mental feature of the living world and must form the kernel of biological theory.” [Brenner, 2012]

The notion of description-based self-reproduction implies a language. A description must be cast on some
symbol system while it must also be implemented by some physical or a logical structure. When A interprets
a description to construct some automaton, a Semantic code is utilized to map instructions into construction
commands to be performed. When B copies a description, only its syntactic aspects are replicated. Now, the
language of this semantic code presupposes a set of primitives (e.g. parts and processes) for which the
instructions are said to “stand for”. Descriptions are not universal insofar as they refer to these building blocks
which cannot be changed without altering the significance of the descriptions. The building blocks ultimately
produce the dynamics, behavior, and/or functionality of the overall system, and may be material or
computational. In Biology, we can think of the genetic code as instantiating such a language. Genes are
descriptions that encode specific parts: amino acids chains. In a computational setting, parts are typically
logical operations, but they can also be, for example, the building blocks of neural networks coded by genetic
algorithms and L-Systems. Von Neumann [1966] (posthumously aided by Arthur Burks) produced a
specification of a universal constructor using a 29-state cellular automaton. Implementations of this
automaton appeared only fairly recently [e.g. Pesavento, 1995, see Sipper, 1998]

6.2 Open-ended evolution and natural selection

“Biologists ask only three questions of a living organism: how does it work? How is it built? And
how did it get that way? They are problems embodied in the classical fields of physiology,
embryology and evolution. And at the core of everything are the tapes containing the descriptions
to build these special Turing machines.” [Brenner, 2012]

Perhaps the most important consequence of separate descriptions in Von Neumann’s self-reproduction
scheme (and Turing’s Tape) is its opening the possibility for open-ended evolution [Rocha, 1998; McMullin,
2000]. As Von Neumann [1966] discussed, if the description of the self-reproducing automata is changed
(mutated), in a way as to not affect the basic functioning of (A + B + C) then, the new automaton (A+B +
C)" will be slightly different from its parent. Von Neumann used a new automaton D to be included in the
self-replicating organism, whose function does not disturb the basic performance of (A + B + C); if there is
a mutation in the D part of the description, say D’, then the system (A+B+C+D)+®A+B+C+D")
will produce (A+B+C+ D")+ ®(A+ B+ C+ D). Von Neumann [1966, page 86] further proposed that
non-trivial self-reproduction should include this “ability to undergo inheritable mutations as well as the ability
to make another organism like the original”, to distinguish it from “naive” self-reproduction like growing
crystals.

Notice that changes in (A + B + C + D) are not heritable, only changes in the description, ®(A + B + C + D),
are inherited by the automaton’s offspring and are thus relevant for evolution. This ability to transmit
mutations (vertically) is precisely at the core of the principle of natural selection of modern Darwinism.
Through variation (mutation) populations of different organisms are produced; the statistical bias these
mutations impose on reproduction rates of organisms will create survival differentials (fitness) on the
population which define natural selection. In principle, if the language of description is rich enough, an
endless variety of organisms can be evolved: open-ended evolution.

The evolvability of a self-reproducing system is dependent on the parts used by the semantic code. If the parts

are very simple, then the descriptions will have to be very complicated, whereas if the parts possess rich
dynamic properties, the descriptions can be simpler since they will take for granted a lot of the dynamics that
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otherwise would have to be specified. In the genetic system, genes do not have to specify the functional
characteristics of the proteins produced, but simply the string of amino acids that will produce that
functionality “for free” [Moreno et al, 1994]. Furthermore, there is a trade-off between programmability and
evolvability [Conrad, 1983, 1990] which grants some self-reproducing systems no evolutionary potential
whatsoever. When descriptions require high programmability they will be very sensitive to damage. Low
programmability grants self-reproducing systems the ability to change without destroying their own
organization, though it also reduces the space of possible evolvable configurations [Rocha, 2001].

Turing and Von Neumann were the first to correctly formalize the required inheritance mechanism behind
neo-Darwinian evolution by Natural Selection. This understanding of the most fundamental design principle
of life, puts Turing and Von Neumann on the Parthenon of great thinkers in Biology, alongside Darwin and
Mendel. The dovetailing of computational thinking and biology, inherent in the cybernetics movement of
Turing, Von Neumann, Shannon, Wiener and others, emphasizes how (material) control of symbolic
information is the hallmark of both computation and biocomplexity.
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7. Modeling Evolution: Evolutionary Computation

“How does evolution produce increasingly fit organisms in environments which are highly uncertain for
individual organisms? How does an organism use its experience to modify its behavior in beneficial ways (i.e.
how does it learn or ‘adapt under sensory guidance’)? How can computers be programmed so that problem-
solving capabilities are built up by specifying ‘what is to be done’ rather than ‘how to do it’?” [Holland, 1975,

page 1]

These were some of the questions concerning John Holland when he thought of Genetic Algorithms (GA’s)
in the 1960's. All these questions were shown to be reducible to a problem of optimizing multi-parameter
functions. Nature’s “problem” is to create organisms that reproduce more (are more fit) in a particular
environment: the environment-organism coupling dictates the selective pressures, and the solutions to these
pressures are organisms themselves. In the language of optimization, the solutions to a particular problem
(say, an engineering problem), will be selected according to how well they solve that problem. GA’s are
inspired by natural selection as the solutions to our problem are not algebraically calculated, but rather found
by a population of solution alternatives which is altered in each time step of the algorithm in order to increase
the probability of having better solutions in the population. In other words, GA’s, or other Evolutionary
Strategies (ES) such as Evolutionary Programming (EP), explore the multi-parameter space of solution
alternatives for a particular problem, by means of a population of encoded strings (standing for alternatives)
which undergo variation (crossover and mutation) and are reproduced in a way as to lead the population to
ever more promising regions of this search space (selection) [Goldeberg, 1989; Mitchell, 1999; De Jong,
2006].

7.1 Evolutionary Strategies and Self-Organization

The underlying idea of computational ES is the separation of solutions for a particular problem (e.g. a
machine) from descriptions of those solutions (memory). GA’s work on these descriptions and not on the
solutions themselves, that is, variation is applied to descriptions, while the respective solutions are evaluated,
and the whole (description-solution) selected according to this evaluation. Such machine/description
separation follows von Neumann’s self-reproducing scheme (see chapter 6) which is able to increase the
complexity of the (organization of) machines described. Therefore, the form of organization evolved by GA’s
is not self-organizing in the sense of a boolean network or cellular automata (see chapter 4). Even though the
solutions are obtained from the interaction of a population of elements, and in this sense following the general
rules usually observed by computationally emergent systems (e.g. Langton [1988], Mitchell [1992]), they
do not self-organize since they rely on the selective pressures of some environment (in ES, defined by an
explicit or implicit fitness function). The order so attained is not a result of the internal dynamics of a
collection of interacting elements, but is instead dictated by the external selection criteria. In this sense, ES
follow an organizing scheme that is driven by external selection of encoded symbolic descriptions (a “Turing
tape” ). It is perhaps useful to think that ES are modeling the most fundamental design principle of biological
systems: natural selection. While self-organizing systems model the dynamical characteristics of matter, ES
model the existence of, external, selective pressures on populations of symbolic descriptions of some system.
While self-organization models material dynamics, ES models the selection of information about dynamics.

7.2 Development and morphogenesis: self-organization and selection come together
Since the original introduction of GA’s, many subsequent developments had to do with the inclusion of a

developmental stage, or intermediate layers between genotype and phenotype; in other words, the creation
of some artificial morphogenesis or regulation. The idea has been to encode rules that will themselves self-
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organize to produce a phenotype, rather than the direct encoding of the phenotype itself, or the introduction
of gene regulation . As discussed in class, these rules often use L-System grammars which dictate production
system programs [Wilson, 1988] leading to some phenotype. The most important advantage of this
intermediate stage, as explored by Kitano [1990], Gruau [1993], Belew [1992] and others, is the ability to
code for much larger structures than a direct encoding allows. In practical terms, they have solved some of
the scalability problems of encoding (e.g.) neural networks in GA’s, by reducing the search space
dramatically.

L-system grammars are higher-level descriptions of self-organizing developmental processes. However, these
first approaches used solely context-free, state-determined, L-System grammars, compromising epistasis (or
mutual, non-linear, influence of genetic descriptions amongst each other) in the simulation of self-organizing
development. Dellaert and Beer [1994] and Kitano [1994], for instance, used Boolean networks to simulate
genetic epistasis and self-organization. In other words, the GA encodes rules which construct Boolean
networks whose nodes stand for aspects of the phenotypes we wish to evolve on some physical simulation.
In Dellaert and Beer’s model, the nodes stand for cell mitosis and other characteristics. This way, the
solutions of the GA are self-organizing systems whose attractor behavior dictates pre-defined phenotypic
traits.

These approaches in effect offer an emergent morphology, that is, they encode rules which will themselves
self-organize into some phenotype (instead of strict programming of morphology). The indirect encoding
further allows the search to occur in a reduced space, amplified through development. An interesting side
effect has to do with the appearance of modularity traits on the evolved phenotypes [Wagner, 1995].
Subsequent developments paid even more attention to the contextual regulation that indirect encodings afford
to the search [Rocha 1995, 1997]. More recently, given our expanded view of genomics, other intermediate
layers between genotype and phenotype have been explored, such as transcription regulation [Reil, 1999;
Hallinan & Wiles, 2004] and RNA Editing [Rocha etal, 2006]. The inclusion of more sophisticated regulation
of genetic information prior to translation, while not necessarily including a self-organizing component,
allows us to model a much more realistic genotype/phenotype/environment interaction. Instead of genotypes
used exclusively for Mendelian inheritance (see chapter 5) of (directly encoded) phenotypic traits, ES with
genotype regulation allow us to model the contextual, plastic development of phenotypes we have come to
understand via modern Genomics—thus also learning additional design principles for bio-inspired
computation [Huang et al, 2007].

The most important aspect of GA’s with emergent morphologies is the utilization in the same model of an
external selection engine (the GA) coupled to a particular self-organizing dynamics (e.g. Boolean networks)
standing for some materiality. Such schemes bring together, computationally, the two most important aspects
of evolutionary systems: self-organization and selection. These models belong to a category of self-
organization referred to as Selected Self-Organization which is based on symbolic memory [Rocha, 1996,
1997, 1998]. Selected Self-Organization with distributed memory is also possible in autocatalytic structures,
though its evolutionary potential is much smaller than the local memory kind [Rocha, 2001][Vasas, 2010].
The reason lies in Von Neumann’s notion of self-reproduction (see chapter 6). The introduction of symbolic
descriptions allows a much more sophisticated form of communication: structures are constructed from static
descriptions and do not have to reproduce through some complicated, and limited process of self-inspection.
In other words, separate descriptions can be used to reliably construct any kind of structure in an open-ended
manner, while self-inspection relies on only those structures that happen to be able to make copies of
themselves. As an example, a non-genetic protein-based life form, would have to rely only on those proteins
that could make direct copies of themselves [Rocha, 2001].
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genera:ed which replace the parents in the NeXiructural. “Consequently, arbitrary  non-linear
generation. interactions between features during evaluation are

Figure 3: Subtree Crossover of Parents a & b
to form Offspring ¢ & d



expected which forces a more holistic approach to A typical selection method is to select all the
evolving solutions” (Angeline, 1996, p. 4). individuals in the population to be the N parents, to
The main reproduction operator in evolutionarymutate each parent to form N offspring, and to
strategies isGaussian mutatignin which a random probabilistically select, based upon fitness, N survivors
value from a Gaussian distribution is added to eacfrom the total 2N individuals to form the next
element of an individual's vector to create a newgeneration.
offspring (see Figure 4). Another operator that is used i§
intermediate recombinatigin which the vectors of two - Current Issues
parents are averaged together, element by element, to In current research, the line distinguishing these
form a new offspring (see Figure 5). The effects ofdifferent approaches has started to blur. Researchers in
these operators reflect the behavioral as opposed ®&ach technique have begun to examine more complex
structural interpretation of the representation sinceepresentation schemes and to apply a variety of
knowledge of the values of vector elements is used teelection methods. Many genetic algorithm researchers
derive new vector elements. are examining the use variable-length representations
and analyzing how such representations grow in size
over the course of evolution (Wu & Lindsay, 1996).
Many genetic algorithms now use selection methods,
such aslitist recombinationin which parents compete
with their offspring for survival into the next generation
(Thierens, 1997). Some genetic programming
researchers have begun to examine the effects of
) L3072 “epresentation.  The. benells of suoh strongly typec
éC)|1'0|0'4|0'5|1'4|0'5|1'2| genetic programming are only beginning to be explored
b) 10.80.5[1.0[1.1j0.2}1.2) (Haynes et al., 1996).
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3.4 EVOLUTIONARY BIOLOGY

Evolutionary biology 1s a science concerned, among other things, with the study
of the diversity of life, the differences and similarities among organisms, and the
adaptive and non-adaptive charactenstics ol organisms. [ts importance are mani-
fold, from the health sciences to the understanding ol how the living organisms
adapt to the environment thev inhabit. I'or instance, evolutionary biologv helps
in the understanding of disease epidemics. population dynamics, and the produc-
tion of 1mproved cultures. Over roughly the last 60 years. compuler scientists
and engincers realized that evolutionary biology has various interesting 1deas lor
the development of theoretical models of evolution (some of them being rather
abstract models) that can be uselul to oblamn solutions to complex real-world
problems.

The word evolution is originated from the Latin evelvere, which means to un-
fold or unroll. Broadly speaking, evolution 1s a synonyvm for ‘change’. But what
type of change? We do not usually employ the word evolution to refer to the
changes suffered by an individual during 1ts hifetime. Instead, an evolving sys-
tem corresponds to the one 1n which there 15 a descent ol entities over ime, one
generation alter the other, and in which charactenistics of the entities dilfer
across generations (Futuyma, 1998). Therefore, evolution can be broadly defined
as descent with modification and olten with diversification. Many systems can
be classified as evolutionary: languages. cellular reproduction in immune sy s-
tems, cuisines, automobiles, and so on.

Any evolutionary system presents a number of features:

o Population(s): i all evolutionary systems there are populations, or
groups, of entities, generally termed individuals,

s Reproduction: in order for evolution o occur, the individuals ol the popu-
lation(s) must reproduce either sexually or asexually.

o  [ariation: there 1s variation n one or more characteristics ol the ndi-
viduals of the population(s).

o Hereditary similarity, parent and offspring individuals present simmlar
characteristics. Over the course of generations, there may be changes m
the proportions of individuals with different characteristies within a popu-
lation; a process called descent with modification.

o Sorting of variations: among the sorting processes, it can be emphasized
chance (random varation n the survival or reproduction of different
vanants), and mnafural selection (consistent, non-random differences
among variants in their rates of survival and reproduction).

Adaptation as a result of variation plus natural selection leads to improvement
in the function of an organmism and 1ts many component parts. “Biological or
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groups of such populations, over the course of generations.” (Futuvma. 1998; p.
4}. Note that according to this definition ol evolution, individual organisms do
not evolve and the changes of a population of individuals that are assumed to be
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evolutionary are those resultant from mheritance, via the genetic materal, from
one generation to the other.

The history of evolutionary biology 1s marked by a number of hypotheses and
theories about how life on carth appeared and evolved. The most influential the-
ory to date 1s the one proposed by Charles Darwin and [ormalized mn his book
Cn the Origins of Species by Means of Natural Selection, or the Preservation of
Favoured Races in the Struggle for Life (Darwin, 1839). Iistorically. Alfred
Wallace 1s also one of the proponents of the theory of evolution by means of
natural selection. but 1t was Darwin’'s book, with its hundreds of instances and
arguments supporting natural selection, the landmark f(or the theory of evolution,

Among the many preDarwinmian hypotheses for the origin and development of
beings, the one proposed by Jean Baptist Pierre Antoine de Monet, chevalier de
Lamarck, was the most influential. According to Lamarck, every species ongi-
nated individually by spontaneous generation. A ‘nervous fluid” acts within each
species, causing 1l o progress up the chain over time, along a single predeter-
mined path that every species i1s destined to follow. No extinction has occurred:
fossil species are still with us, but have been transformed. According to La-
marck, species also adapt to their environments, the more strongly exercised
organs attract more of the nervous fluid, thus getting enlarged; conversely, the
less used organs become smaller. These alterations, acquired durimg an mdivid-
ual’s hifetime through 1ts activities, are mhented. Like evervone at that time,
[.amarck believed in the so-called inheritance of acquired characteristics.

The most famous example of Lamarck’s theory 1s the giratfe: according to
Lamarck, giraffes need long necks to reach the foliage above them: because they
are constantly stretching upward, the necks grow longer; these longer necks are
inherited; and over the course of generations the necks of girafles get longer and
longer. Note that the theory of inheritance of acquired characternistics 1s not La-
marck’s original, but an already established supplement to his theory of “organic
progression’ in which spontaneous generation and a chain of beings (progression
from manimate to barely animate forms of life, through plants and invertebrates,
up to the higher forms) form the basis. Lamarck’s theory may also be viewed as
a transformational theory, i which change 1s programmed into every member
of the species.

3.4.1. On the Theory of Evolution

Darwin’s studies of the natural world showed a striking diversity of observations
over the amimal and vegetal kingdoms. His examples were very wide ranging,
from domestic pigeons, dogs, and horses, to some rare plants. His research that
resulted in the book Origin of Species took literally decades to be concluded and
formalized.

In contrast to the Lamarckian theory. Darwin was certam that the direct ef-
feets of the conditions of life were unimportant for the variability of species.

“Seedlings from the same fruit, and the young of the same litter, some-

times differ considerably from each other, though both the young and the
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parents ... have apparently been exposed to exactly the same conditions of
life; and this shows how unmimportant the direct effects of the conditions of
life are in comparison with the laws of reproduction. and of growth, and of
inheritance:; for had the action of the conditions been direct, if any of the
voung had varied. all would probably have varied in the same manner.”
(Darwin, 1859, p. 10)

Darwin starts his thesis of how species are formed [ree i nature by suggesting
that the most abundant species (those that range widely over the world) are the
most diffused and which often produce well-marked varieties of individuals over
the generations. He describes some basic rules that promote improvements
orgamsms: reproduce, change and compete for survival,

Natural selection was the term used by Darwin to explain how new characters
arising from wvariations are preserved. Ile starts thus paving the ground to his
theory that shight differences in organisms accumulated over many successive
generations might result in the appearance ol completely new and more adapted
species to their environment. As defended by himself

(45

. as a general rule. | cannot doubt that the continued selection of shght
variations ... will produce races diuffering [rom each other ...”7 (Darwin,
1859, p. 28) and ... I am convinced that the accumulative action of Selec-
tion, whether applied methodically and more quickly, or unconsciously and
more slowly, but more efficiently, 15 by [ar the predominant Power.” (Dar-
win, 1859; p. 33)

In summary, according to Darwin’s theory, evolution 1s a resull ol a popula-
tion of individuals that suffer:

¢« Reproduction with mheritance,
o  Vanation.
e  Natural selection.

These very same processes constitute the core of all evolutionary algorithms.
Belore going into the details as to how reproduction and variation happen within
mdividuals and species of individuals, some comments about why Darwin’s
theory was so revolutionary and ‘dangerous” at that time (and, to some people,
until nowadays) will be made.

3.4.2. Darwin’s Dangerous ldea

Darwin’s theory of evolution 1s controversial and has been refuted by manv be-
cause 1t presents a sound argument for how a “Nonintelhgent Artificer” could
produce the wonderful forms and orgamisms we see n nature. To D, Dennett
(1991), Darwin's dangerouns idea 1s that evolution, thus lhife. can be explained as
the product of an algorithmic process, not ol a superior being (God) creating
everything that might look wonderful to our eves. But the reason there 15 a sec-
tion on Dennett’s book here 1s not to discuss particular beliets. Instead. to dis-
course aboul some kev nterpretations of evolution. from a computational per-
spective, presented by . Dennett 1n his book Darwin’s Dangerous Idea: Fvo-
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lution and the Meanings of Life. These are not only interesting, but also useful
for the understanding of why the theory of evolution 1s swtable for the
comprehension and development ol a class ol search techniques known as
evolutionary algorithms,

Dennelt defines an algorithm as a certam sort of formal process thal can be
counted on (logically) to yield a certain sort of result whenever it 1s run or in-
stantiated. I1e emphasizes that evelution can be understood and represented in an
abstract and common termmology as an algorithmic process. 1t can be hifted out
of 1ts home base in biology. Evolutionary algorithms are thus those that embody
the major processes mvolved n the theory of evolution: a population of mdi-
viduals that reproduce with inheritance, and sufter variation and natural selec-
tion,

Dennett also discusses what can be the outcomes of evolution and its probable
implications when viewed as an engineering process. Ile stresses the importance
ol genetic vanation and selection, and quoles an mnleresting passage [tom M
Eigen (1992).

“Selection 18 more hke a particularly subtle demon that has operated on
the different steps up to hife. and operates todav at the different levels of
life, with a set of highly onginal tricks. Above all, it 1s highly active, driven
by an internal feedback mechanism that searches in a very discriminating
manner for the best roule to optimal performance. not because 1l possesses
an mherent drive towards any predestined goal, but simply by virtue ol 1ts
inherent non-linear mechamsm, which gives the appearance ol goal-
directedness.” (Higen, 1992; quoted by Dennett, 1991, p. 195)

Another important argument 1s that evolution requires adapiation (actually 1t
can also be seen as adaptation plus selection, as discussed in the previous chap-
ter). From an evolutionary perspective, adaptation is the reconstruction or pre-
diction of evolutionary events by assuming that all characters are established by
direct natural selection of the most adapted state, 1.e the state that 15 an “opti-
mum solution” to a “problem” posed by the environment. Another defuition 1s
that under adaptation, orgamisms can be viewed as complex adaptive systems
whose parts have (adaptive) functions subsidiary to the [tness-promoting [unc-
t1ion of the whole

The kev 1ssue to be kept in mind here 1s that evolution can be viewed as an al-
gorithmic process that allows - via reproduction with inhentance, variation and
natural selection - the most adapted organisms to survive and be driven to a state
of high adaptanlity (optimality) to their environment. These are the inspiring
principles of evolutionary algorithms; the possibility of modeling evolution as a
search process capable ol producing individuals (candidate solutions to a prob-
lem) with increasingly better “performances’ in their environments.

3.4.3. Basic Principles of Genetics

The theory of evolution used in the development of most evolutionary algo-
rithms 1s based on the three main aspects raised by Darwin as being responsible
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for the evolution of species: reproduction with inheritance, variation, and selec-
tion. However, the origins of heredity along with variations, which were some of
the main mgredients for the natural selection theory, were unknown at that time.
This section explores the genetic basis of reproduction and vanation in order to
provide the reader with the necessarv biological background o develop and un-
derstand evolutionary algorithms. in particular genetic algorithms. The union of
genetics with some notions of the selection mechanisms, together with Darwin’s
hypotheses led to what 1s currently known as neo-Darwinism.

Gregor Mendel's paper establishing the foundations of genetics (a missing bt
for a broader understanding of the theory of evolution) was published only 1n
1865 (Mendel, 1865), but it was publicly 1gnored until about the 1900. He per-
formed a series of careful breeding experiments with garden peas. In summary,
Mendel selected strains of peas that differed m particular traits (characteristics).
As these differences were clearly distinguishable. their phenotypes (measurable
attributes, or observable physical or biochemical characteristics of an organism)
were 1dentlified and scored. For mslance, the pea seeds were either smooth or
wrinkled, the pod shape was either inflated or constricted, and the seed color
was etther yellow or green. Then, Mendel methodically performed crosses
among the many pea plants. counted the progeny, and interpreted the results.
From this kind of data, Mendel concluded that phenotypie traits were controlled
by factors, later called Mendelian factors, and now called genes. Genotype 15 the
term currently used to describe the genetic makeup of a cell or organism, as dis-
tinguished from its physical or biochemical characteristics (the phenotype).
Figure 3.4 summarnizes the first experiment performed by Mendel.

The basic structural element of all orgamisms 1s the cell. Those orgamsms
whose genetic malerial 1s located in the mclens (a discrete structure within the
cell that 15 bounded by a nuclear membrane) of the cells are named enkaryores.
Prokaryotes are the organisms that do not possess a nuclear membrane sur-
rounding their genetic material. The description presented here focuses on eu-
karyolic organisms.

Parent peas ﬂj Q Parents gametes: eE x e E
e Gametes O O
&l EE e E

e E S
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Generation 1 Generation 2

Figure 3.4: Iirst expenment of Mendel, When crossing a normal pea with a wrinkled
pea. a normal pea was generated (generation 1). By crossing two daughters from genera-
ion 1. three normal peas were generated plus one wrinkled pea. Thus, there 1s a recessive
gene (e) that only manifests itself when there 1s no dominant gene together. Furthermore,
there 15 a genetic mmhentance [rom parents to oflspring: those oflspring that carry a lactor
that expresses a certain characteristic may have offspring with this characternistic.
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(d)

Figure 3.5: Enlargement of an organism to focus the genetic matenal. (a) Human organ-
1sm. (b) Cells composing the organism. (¢) Each cell nucleus contains chromosomes, (d)
Fach chromosome 1s composed of a long [DNA segment, and the genes are the functional
portions of DNA. (¢) The double helix of DNA. (Modified with permission from [Gnl-
fiths et al., 1996], © W. I Freeman and Company.)

In the cell nucleus, the genelic material 1s complexed with protemn and 1s or-
ganized into a number of linear structures called chromosemes, which means,
‘colored body’, and 15 so named because these threadlike structures are visible
under the hight microscope only after they are stained with dves. A gene 1s a
segment ol a helix molecule called deoxyribonucleic acid. or DNA for short,
FEach cukaryotic chromosome has a single molecule of DNA going from one end
to the other. Each cell nucleus contains one or two sets of the basic DNA com-
plement, called genome. The genome itself 1s made of one or more chromo-
somes. The genes are the functional regions of DNA. Figure 3.5 depicts a series
of enlargements of an organism to focus on the genetic material,

It 1s now known that the DNA 1s the basis for all processes and structures of

life. The DNA molecule has a structure that contributes to the two most funda-
mental properties of life: reproduction and development. DNA 15 a double helix
structure with the inherent feature of being capable of replicating itself belore
the cell multiplication, allowing the chromosomes to duphcate into chromatids,

§ _ . Offspring
chromosomes

Figure 3.6: When new cells are formed, the DNA replication allows a chromosome o
have a pair of oftspring chromosomes and be passed onto the offspring cells
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Figure 3.8: Asexuval reproduction in haploids. The chromosome replicates itsell, the cell
nucleus 1s divided through a process named mitosis, and then the cell 15 divided imto two
identical progeny.

Sexuwal reproduction 1s the fusion of two haploid gametes (sex cells) to pro-
duce a single diploid zygote cell. An important aspect of sexual reproduction 1s
that 1t involves genelic recombination; that 1s. 1t generates gene combinations n
the offspring that are distinet from those m the parents. Sexually reproducing
orgamsms have two sorts of cells: somatic (body) cells, and germ (sex) cells. All
somalic cells reproduce by a process called mitosis that 1s a process ol nuclear
division followed by cell division. Figure 3.9 illustrates the process ol sexual
reproduction.
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Figure 3.9: Sexual reproduction. A diploid chromosome replicates itself, then the homo-
logues are separated generating haplond gametes. The gametes from each parent are fused
to generate a diplod zygote.
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Figure 3.10: Crossing over between two loci in a cell undergoing the first meiotic divi-
ston. Of the four chromatids, two will have new combinations and two will retain the
parental combination ol alleles.

In the classical view of the melosis process in sexual reproduction, homolo-
gous chromosomes [irst undergo the formation of a very tight association of
homologues, and then the reciprocal physical exchange of chromosome seg-
ments at corresponding positions along pairs of homologous chromosomes, a
process termed crossover (Russel, 1996). Crossing-over 15 a mechanism that can
give rise to genetic recombination, a process by which parents with different
genetic characters give birth to progenv so that genes are associated 1in new
combmations. Figure 3,10 depicts the crossing-over process,

The dilferences among organisms are outcomes of the evolutionary processes
of mutation (a change or deviation in the genetic material). recombination or
crossover (exchange ol genetic matenial between chromosomes, sce ligure
3.10), and selection (the favoring of particular combmations of genes in a given
environment). With the exception of gametes, most cells of the same eukarvotic
organism characteristically have the same number of chromosomes. Further, the
organization and number of genes on the chromosomes of an organism are the
same from cell to cell. These characteristics of chromosome number and gene
organization are the same for all members of the same species. Deviations are
known as mutations: these can arise spontaneously or be induced by chemical or
racdiation mutagens. Several types of mutation exist, for instance point mutation,
deletion, translocation. and inversion. Point mutation. deletion and inversion are
lustrated m Figure 3,11,
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Figure 3.11: Some tvpes of chromosomal mutation. namelv, point mutation, deletion,
and inversion,



g2 Evolutionary Biology

3.4.4. Evolution as an Outcome of Genetic Variation Plus Selection

So far we have seen the two types ol reproduction, sexual and asexual. and some
of the main mechanisms that alter the genetic makeup of a population of mdi-
viduals, emphasizing crossover and mutation. It stull remains to discuss the
process by which these altered individuals survive over the generations.

Populations of individuals change over time. The number of mmdividuals may
merease or decrease, depending on food resources, climate, weather, availability
of breeding areas, predators, and so forth. At the genetic level, a population may
change due to a number ol [actors. such as mutation and selection. These proc-
esses not only alter allele [requencies, bul also result mn changes in the adapia-
tion and diversity of populations, thus leading to the evolution of a species
(Gardner et al.. 1991).

The wviability and fertility of an individual are associated with fitness, a term
that 15 used to describe the overall ability of an orgamism to survive and repro-
duce. In many populations, survival and reproductive ability are vanable traits.
Some mndividuals die before they have a chance to reproduce, whereas others
leave many progeny. In a population ol stable size, the average number of off-
spring produced by an mdividual 1s one.

Variation in fitness 1s partially explamed by the underlying genetic differences
ol individuals. The crossing-over of parental genetic material and mutation can
increase or decrease fitness. depending on their effects on the survival and re-
productive capabilities of the individuals. Thus, genetic recombimation and mu-
tation can create phenotypes with different htness values. Among these, the
most it will leave the largest number of offspring. This differential contribution
of progeny implies that alleles associated with superior fitness will increase mn
frequency 1n the population. When thus happens, the population 1s said to be
undergomg selection.

As Darwin made a series of observations of domestic animals and plants. and
also those existing free in nature, he used the term natural selection to describe
the latter 1in contrast to men’s selection capabilities of domestic breeds. To our
purposes, the more general term selection 1s assumed 1n all cases. bearing n
mind that selection under nature has been originally termed natural selection,
and selection made by men has been sometimes termed artificial selection.

Under the evolutionary biology perspective, adapiation 1s the process by
which traits evolve making organisms more suiled to therr immediate environ-
ment; these traits increase the organisms” chances of survival and reproduction,
Adaptation 1s thus responsible for the many extraordinary traits seen n nature,
such as eves that allow us to see. and the sonar 1n bats that allow their gumidance
through the darkness. Note however, that, more accurately speaking. adaptation
1s a result of the action of both, vanation and selection. Variation by itself does
not result in adaptation; there must be a way (1.e., selection) of promoting the
maintenance of those advantageous variations.

S, Wnight (1968-1978) mtroduced the concept of adaptive landscapes or fit-
ness landscapes, largely used mn evolutionary biology. In his model. each po-
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pulation of a species (reproductively 1solated group) 1s symbolized by a point on
a fopographic map, or landscape. The contours of the map represent different
levels of adaptation to the environment (fiiness). Populations at high levels
(peaks) are more adapted to the environment, and populations at low levels (val-
leys) are less adapted. Al any one time. the position of a population will depend
on s genelic makeup. Populations with alleles that improve fitness will be at a
higher peak than populations without these alleles. Consequently, as the genetic
makeup of a population changes, so will its position on the adaptive landscape.
Figure 3.12 depicts a landscape representing the different levels of adaptation of
the populations in relation to the environment.

The adaptive (fitness) landscape corresponds to the response surface discussed
n Section 3.2.1 in the context of problem solving via search in a search space,
Note that, under the evolutionary perspective, the search performed 1s lor indi-
viduals with increased survival and reproductive capabilities (fitness) in a given
environment ([itness landscape),

M miche can thus be defined as the region consisting of the set of possible en-
vironments i which a species can persist; members ol one species occupy the
same ecological niche. In natural ecosystems, there are many different ways in
which amimals may survive (grazing, hunting, on water, etc.), and cach survival
strategy 15 called an ecological niche. [Towever, 1t 1s generally recognized that
the miche of a single species may vary widely over its geographical range. The
other fundamental concept of niche was proposed by Elton (1927) “The niche of
an animal means 1ls place 1 the biotic environment, 1ts relabions to food and
enemies;” where the term biotic refers to life. living organisms, Thus, niche in
this case 1s being used to describe the role of an animal in 1ts communty (Krebs,
1994),

Figure 3.12: An example of an adaptive landscape. The topographic map (landscape or
surface) corresponds to the different levels of adaptation of the populations (points i the
landscape) to the environment. The populations or individuals at each peak are assumed
to be reproductively 1solated, 1.e., they onlv breed with individuals in the same peak. thus
forming species inhabiting distinet miches.
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It has been discussed that evolution 1s an outcome of genetic vanation plus se-
lection. In order for continwing evolution to occur, there must be mechamsms
that mncrease or create genetic variation and mechanmisms that decrease 1t. We
have also seen that recombination and mutation cause differences among (vara-
tions 1) organisms. Other two important mechanisms of evolution are the so-
called genetic drift (chance [luctuations that resull in changes 1n allele [requen-
cies) and gene flow (spread of genes among populations via migration). It 1s
known that selection and genetic drnft decrease variation, while mutation, re-
combination, and gene flow increase genetic vanation (Colby, 1997).

Natural selection sifts through the genetic vanations m the population, pre-
serving the beneficial ones and ehminating the harmful ones. As it does this,
selection tends to drive the population uphill in the adaptive or fitness landscape,
By contrast, the random genetic drift will move the population i an unpredict-
able fashion. The effect of all these mechanisms (mutation, recombimation, ge-
netic drift. gene tlow, plus selection) will bring the population to a state of “ge-
netic” equilibrium, corresponding to a point near or at a peak on the adaptive
landscape. Actually, the population will hover around a peak because ol [Tuctua-
tions caused by genetic drift. Note also, that, under nature, the environment 1s
constantly changing. hence the population 1s also adapting to the new landscape
resultant from the new environment, in a never-ending process of variation and
selection.

3.4.5. A Classic Example of Evolution

A classic example of evolution comes from species that hive in disturbed habi-
tats. In the particular example of the evolution of melanie (dark) forms of moths,
human activity has altered the environment and there has been a corresponding
change in the species that inhabit this environment. The peppered moth, Biston
hetularia. 1s found 1in wooded areas 1n Great Britain, where 1t exists in two color
forms, light and dark, hght being the typical phenotype of this species, The dif-
ference between the two forms 1s belhieved to mnvolve a single gene. Since 1850,
the lrequency of the dark form has mcreased n certain areas m England, i par-
ticular in industrialized parts of the country. Around heavily industriahized cities,
such as Manchester and Birmingham, the frequency of the dark form has in-
creased drastically [rom 1 to 90% in less than 100 vears. In other areas ol Eng-
land, where there 1s little industrial activity, the dark [orm has remained very
rare (Gardner et al., 1991).

The rapid spread of the dark form in industrialized areas has been attributed
to natural selection. Both, light and dark forms are active at night. During the
day, the moths remain still, resting on tree trunks and other objects 1n the wood-
lands. Since birds may find the moths and eat them during their resting period,
camouflage 1s their only defense against predation. On white or gray tree bark,
the light moths are protectively colored, especially 1f the bark 1s overgrown with
lichens, However, in industriahized areas most of the lichens have been killed by
pollution and the tree bark 1s oftenest darkened by soot. Such conditions olfer
little or no cover for the hight moths. but make 1deal resting spots for the dark



Evolutionary Systems

All biological systems result from an evolutionary process. The sophistication, robustness, and
adaptability of biological systems represent a powerful motivation for replicating the mechanisms
of natural evolution in the attempt to generate software and hardware systems with characteristics
comparable to those of biological systems. More than 40 years ago, computer scientists and
engineers began developing algorithms inspired by natural evolution (Rechenberg 1965; Fogel et
al. 1966; Holland 1975) to generate solutions to problems that were too difficult to tackle with
other analytical methods. Evolutionary computation rapidly became a major field of machine
learning and system optimization and, more recently, it spread into the area of hardware design by
exploiting new technologies in reconfigurable electronic circuits, computer-assisted
manufacturing, material production tech nologies, and robotics. Before delving into the features
of natural and artificial evolution, we wish to emphasize that there is a major, and often neglected,
difference between these two processes. Whereas natural evolution does not have a predefined
goal and is essentially an open-ended adaptation process, artificial evolution is an optimization
process that attempts to find solutions to predefined problems. Therefore, while in natural
evolution the fitness of an individual is defined by its reproductive success (number of offspring),
in artificial evolution the fitness of an individual is a function that measures how well that
individual solves a predefined problem. The consequence of this difference is that artificial
evolution, as it is formulated today, cannot possibly hope to match the diversity and creativity
generated by natural evolution because, by definition, artificially evolved systems will all tend to
satisfy the predefined problem.

1.1 Pillars of Evolutionary Theory

Biology is making continuous progress in the description of the components
that make up living organisms and of the ways in which those components
work together. However, the ultimate explanation is to be found in the the-
ory of natural evolution. As Dobzhansky (1973) put it, “nothing in biology
makes sense except in the light of evolution.” A bewildering number of
books and articles have been written on the theory of natural evolution, but
its foundations are rather simple and elegant.

The theory of natural evolution rests on four pillars: population, diver-
sity, heredity, and selection. The premise for evolution is the existence of a

pOPULATION  population, which here we will loosely define as a pool of two or more indi-
viduals. In other words, we cannot speak of evolution of a single organism.

pIVERSITY  Diversity means that the individuals of the population vary from one another
to some extent. Individual diversity, both within and between species, has

HEREDITY  been observed and described for thousands of years. Heredity indicates that

individual characters can be transmitted to offspring through reproduction.
The notion that individual characters are hereditary was suggested in the



seLecTION  eighteenth century by Maupertuis (1753). Selection indicates that only part
of the population is capable of reproducing and transmitting its characters
to future generations. Natural selection, put forward by Darwin (1859) and
Wallace (1870) in the nineteenth century, is based on the premise that individ-
uals tend to make several offspring and that not all of them may reproduce.
The selection of individuals that can reproduce is not completely random,
but regulated by environmental constraints. For example, if an environment
contains too many individuals for the available food , those individuals that
are better or faster at gathering food will have a higher chance of survival
and reproduction.

Natural selection is the most debated, often misunderstood, and abused
pillar of natural evolution. In the engineering community, it is commonly de-
scribed as selection of the fittest; “fittest” is often associated with “best”; and
selective reproduction of the best is often associated with progress. However,
organisms are not always selected for how well they score individually. For
example, some animal societies maintain a number of altruistic individuals
that pay a cost in terms of reproduction for the good of their society. Further-
more, selective reproduction of the fittest does not necessarily imply progress

PROGRESs  in the two common meanings of the word. One meaning of progress is that
new individuals are better than previous ones. However, natural selection

has no comparative memory. The only way in which selection operates is
here and now. Individuals are selected against the environment and /or their
peers at a specific point in space and time. For example, prey at a given point
in evolutionary time may be very good at escaping the current generation of
coevolving predators they are confronted with, but may not be better than
prey of previous generations when predators were different. In general, any
change in the environment over time creates different selection conditions
and therefore does not guarantee that recent generations are comparatively
better than older generations selected in different environmental conditions.
The other meaning of progress is that individuals tend to become better in
the future. This notion of progress implies a final goal or optimal state of
matter. However, natural evolution has no goal, no plan, and no end. In
the best case, the combination of variety, heredity, and selection can increase
today the rate of individuals whose parents had more suitable characteristics
yesterday.

Where does population diversity come from? From an evolutionary per-
spective, generation of diversity takes place during reproduction. Offspring
are copies of selected parents with small variations. This error-prone copy
process can generate individuals with new or modified characteristics. Some



NEUTRAL EVOLUTION

of these characteristics will have an effect on the ability of the organism to
survive and reproduce. Those new or modified features that give the organ-
ism a better ability to cope with the environment with respect to its peers
and therefore to reproduce, have a higher probability of being transmitted
to future generations. However, also those new or modified features that do
not negatively affect the reproduction rate of the organism can be transmit-
ted to future generations (although not at a higher rate). In this latter case,
we speak of neutral evolution to indicate that the population is changing over
generations in ways that do not affect its reproduction rate (Huynen et al.
1996).

The generation of diversity provides adaptation power to evolving pop-
ulations. Without continuous generation of diversity and given a constant
environment, evolution would simply result in the growth of the number of
individuals with suitable characteristics for that environment. The appear-
ance of new characteristics allows individuals to sample new functionalities,
behaviors, morphologies, and environmental niches. Although error-prone
copy is a random process, natural selection makes sure that characteristics
that affect the organism negatively have less probability of being transmitted
to the next generations. Other new characteristics instead propagate through
generations and, if beneficial to the survival of the species, spread at a higher

rate through the population.

Again, evolutionary adaptation does not necessarily imply progress in the two meanings of the
word described earlier. Natural evolution may simply increase diversity by continuously
generating new organisms that occupy new environmental niches. Or, it may increase complexity
by incrementally adding new features to previous ones, provided that previous features do not
represent a cost for the organism, do not interact negatively with new features, or simply have a
higher probability to be preserved than to be replaced by the error-prone copy mechanism.
Considering the enormous explanatory power and relative simplicity of the basic tenets of
evolutionary theory, we might expect to find in the literature a compact and universal model that
formally describes the evolution of populations, something akin to the laws of thermodynamics or
to Newton’s laws of physics. In practice, the complexity of the factors that affect the mechanisms
and dynamics of evolution has not yet been sufficiently understood to allow the development of a
universal formalism. Nonetheless, several formal models have been developed to address specific
issues, mainly in the field of population genetics. It is worth pointing out that the great majority of
these formal models describe evolutionary phenomena in terms of their ef fect on the variation rate
of the population size or of a given character of the evolving individuals. In other words, formal
measures of evolution, if we may liberally call them so, describe frequencies of the occurrence of
given characters, or of given types of organism, over generations. For example, these models
predict that in a relatively stable environment the percentage of individuals with fitter
characteristics will gradually grow until they dominate the population (Fisher 1930). These models
do not address the notion of performance and progress in evolving populations, but only the change
in proportion of organisms of a certain type.



The Genotype

So far, we have not yet explained how individual characters can be inherited and
modified. In 1865 Mendel arrived at the conclusion that individuals reproduce by
transmitting specific particles, now known as genetic material, to their own offspring.
Recent progress in genetics (the discipline studying the structure and behavior of
genes) and in functional genomics (the discipline studying the role of genes in
organisms) has provided several clues to the molecular mechanisms and processes that
support inheritance and variation. Although Darwin was probably not aware of
Mendel’s conclusions when he formulated the theory of evolution, genetics has
become an integral part of modern evolutionary theories.

GENOTYFE
PHENOTYFE

PROTEINS

DNA

The genetic material of an individual is known as the genotype, whereas its
manifestation as an organism is known as the phenotype. Natural selection
operates solely on the phenotype, but the genotype is the ultimate vehicle of
inheritance. The extent to which we are determined by our genotype or phe-
notype and the relationship between these two aspects of our individuality
is a complex and much debated issue (S.]. Gould 1977; West-Eberhard 2003).

In what follows, we will introduce genes, adopting the rather conventional
framework described in most textbooks. We will then point to recent results
that, at the time of writing, are changing our perspectives on the role of genes
in the development and evolution of organisms.

The conventional story involves three types of molecules and goes as fol-
lows. Cells contain a class of molecules, known as proteins, whose shape,
concentration, and behavior determine the properties of the cell. For exam-
ple hair cells and muscle cells are different because they are composed of
different proteins. The definition of specific proteins depends on another
molecule, known as DNA (deoxyribonucleic acid), which in turn relies on
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Figure 1.1 Structure of a piece of DNA molecule showing the two strands with
matching nucleotides. The numbers 5 and 3 refer to the atomic structure of the
molecule and affect the way in which the molecule sequence is translated into a pro-
tein. The order of translation always proceeds in the direction from 5" to 3".



RNA
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CHROMOSOMES

MITOSIS

proteins to become operative and on the mediation of a third type of mol-
ecule, known as RNA (ribonucleic acid), which is structurally similar to the
DNA molecule.

The DNA is the genetic material that is transmitted over generations. It

is often enclosed within the nucleus of the cell and all cells in the organ-
ism have the same genetic material. DNA molecules (figure 1.1) are long
chains of complementary strands composed of four types of chemical units
(nucleotides or bases): adenine (A), cytosine (C), guanine (G), and thymine
(T). The two strands stick together because nucleotides can lock to each other:
Adenine binds to thymine and cytosine binds to guanine. This specific bind-

ing means that the two DNA strands are perfectly complementary. If we
find the sequence ACA on one strand, we know that the corresponding part
of the complementary strand will display the sequence TGT (although some
mismatch may occur very rarely).

The genetic material is organized in several separated DNA molecules,
called chromosomes. Furthermore, in several organisms chromosomes oc-
cur in pairs (also known as diploid organisms in contrast to haploid organ-
isms). The two chromosomes in a pair are approximately homologous in the
sense that corresponding areas produce proteins with a similar functional-
ity in similar cells. The number of chromosome pairs and total length of the
DNA molecules vary from species to species. For example, humans have 23
pairs of chromosomes totaling several hundreds of millions of nucleotides
(International Human Genome Sequencing Consortium 2001). The redun-
dant structure of the genetic material (two chromosomes, two strands) allows
replication of DNA molecules during cell replication.

There are two types of cell replication: mitosis and meiosis (figure 1.2). Mi-
tosis occurs during growth of the organism when a cell divides by producing
a copy with the same number of chromosomes (23 times 2 in humans). Dur-
ing mitosis, the two strands of the 46 DNA molecules are separated and each

Mitosis Meiosis

Division into identical Division produces
daughter cells haploid sex cells

Fusion into diploid
cell during fecundation

Figure 1.2 Cell replication during mitosis and meiosis. For the sake of simplicity,
only a pair of homologous chromosomes are shown.



MEIOSIS

strand goes to one cell. Each strand then rebuilds the missing strand by re-
cruiting the complementary nucleotides. The process ends with two exact
copies of the double-stranded DNA molecule, one for each cell. Meiosis oc-
curs during the production of sex cells (sperm and eggs). Sex cells receive
only one chromosome for each pair. In diploid organisms the pairs of chro-
mosomes are recombined during fecundation of the egg cell (containing the
set of chromosomes from the mother) by the sperm cell (containing the set of
chromosomes from the father). Although the chromosomes from the mother
and father sex cells are homologous, their sequences may be slightly differ-
ent and produce different proteins for the same functionality. This may result
in the expression of features that belong either to the mother or to the father.
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