
Virtual University Pakistan

 1

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 23& 24

Virtual University Pakistan

 2

In previous lecture:

- Fragmentation

In this lecture:

- Reasons for Fragmentation

o Maximizes local access

o Reduces table size, etc.

- PHF using the SQL Server on same machine

- Implemented PHF in a Banking Environment

Fragmentation

• We know there are different types, we start with the simplest one and that is the

PHF

• Supposedly, you have already gone through the design phase and have got the

predicates to be used as basis for PHF, just as a reminder

• From the user queries, we first collect the simple predicates and then we form a

complete and minimal set of minterm predicates, a minterm predicate is ….., you

know that otherwise refer back to lecture 16, 17

• Lets say we go back to our Bank example, and lets say we have decided to place

our servers at QTA and PESH so we have two servers where we are going to

place our PHFs

• As before we register our servers and now at our Enterprise Manager we can see

two instances of SS

• At each of the three sites we define one database named BANK and also one

relation, normal base table, however, for the fragmentations to be disjoint (a

correctness requirement) we place a check on each table at three sites, how….

• We name our fragments/local tables as custQTA, custPESH

• Each table is defined as

create table custPESH(custId char(6), custName varchar(25), custBal

number(10,2), custArea char(5))

Virtual University Pakistan

 3

• In the same way we create 2 tables one at each of our two sites, meant for

containing the local users

• Users that fall in that area and the value of the attribute custArea is going to be the

area where a customer’s branch is, so its domain is {pesh, qta)

• To ensure the disjointness and also to ensure the proper functioning of the system,

we apply a check on the tables

• The check is

• Peshawar customers are allocated from the range C00001 to C50000, likewise

• QTA is C50001 to C99999

• So we apply the check on both tables/fragments accordingly, although they can be

applied while creating the table, we can also apply them later, like

• Alter table custPesh add constraint chkPsh check ((custId between ‘C00001’ and

‘C50000’) and (custArea = ‘Pesh’))

• Alter table custQTA add constraint chkQta check ((custId between ‘C50001’ and

‘C99999’) and (custArea = ‘Qta’))

• Tables have been created on local sites and are ready to be populated, start

running applications on them, and data enters the table, and the checks ensure the

entry of proper data in each table. Now, the tables are being populated

Example Data in PESH

C0001 Gul Khan 4593.33 Pesh

C0002 Ali Khan 45322.1 Pesh

C0003 Gul Bibi 6544.54 Pesh

C0005 Jan Khan 9849.44 Pesh

Example Data at QTA

Virtual University Pakistan

 4

C50001 Suhail Gujjar 3593.33 Qta

C50002 Kauser Perveen 3322.1 Qta

C50003 Arif Jat 16544.5 Qta

C50004 Amjad Gul 8889.44 Qta

• Next thing is to create a global view for the global access/queries, for this we have

to link the servers with each other, this is required

• You have already registered both the servers, now to link them

• You can link them using Enterprise Manager or alternatively through SQL, we do

here using SQL

Connect Pesh using Query Analyzer

• Then execute the stored procedure sp_addlinkedserver

• The syntax is

•

sp_addlinkedserver

 @server = ‘QTA',

@srvproduct = '',

 @provider = 'sqloledb', @datasrc = ‘mysystem\QTA‘

• You will get two messages, if successful, like ‘1 row added’ and ‘1 row added’

• You have introduced QTA as a linked server with PESH.

• We have to perform this operation on the other server, that is, we have to add

linked server PESH at QTA

• Setup is there, next thing is to create a partitioned view

• In SQL Server, a partitioned view joins horizontally partitioned data across

multiple servers

• The statement to create the partitioned view is

Virtual University Pakistan

 5

Create view custG as select * from custPesh

Union All

 select * from QTA.bank.dbo.custQTA

• Likewise, we have to apply same command at QTA

• Create view custG as

 select * from custQta

Union All

 select * from PESH.bank.dbo.custPesh

• Once it is defined, now when you access data from custG, it gives you data from

all four sites.

• It is also transparent

• Now lets say if you are connected with Pesh, and you give the command

Select * from custPesh

You get the output

• Same is the case with the users of the QTA server, they pose the query

Virtual University Pakistan

 6

• Select * from custQTA

• Like a local user

• The previous two examples represent access of a local user, now if the global

users, like from Management, want to access data across all sites, they will pose

the query against the global view, like

• Select * from custG

• All this is transparent from the user, that is, the distribution of data

• Global user gets the feeling, as if all the users’ data is placed on a single place

• For the administrative purposes they can perform analytical types of queries on

this global view, like

Summary:

Virtual University Pakistan

 7

We have discussed the fragmentation,

maximize local access and reduce table size etc. and also discussed the PHF using the

SQL Server on same machine.

Virtual University Pakistan

 8

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 25

Virtual University Pakistan

 9

In previous lecture:

- Reasons for Fragmentation

o Maximizes local access

o Reduces table size, etc.

- PHF using the SQL Server on same machine

- Implemented PHF in a Banking Environment

- DDBS layer is superimposed on the client sites

- Actual Data resides with the local sites

In this lecture:

- Derived Horizontal Fragmentation

Derived Horizontal Fragmentation

• Fragmenting/ partitioning a table based on the constraints defined on another table.

• Both tables are linked with each other through Owner-Member relation

Scenario

 a, b, c,

d

p, q, r, s,

a

TABLE

1

TABLE

2

Link

Owner

Member

Virtual University Pakistan

 10

Why DHF Here

• Employee and salary record is split in two tables due to Normalization

• Storing all data in EMP table introduces Transitive Dependency

• That causes Anomalies

PHF of TITLE table

• Predicates defined on the sal attribute of TITLE table

• p1 = sal > 10000 and sal <= 20000

• p2 = sal > 20000 and sal <= 50000

• p3 = sal > 50000

Conditions for the TITLE Table

• TITLE1 = σ (sal > 10000 and SAL ≤30000) (SAL)

• TITLE2 = σ (sal > 20000 and SAL ≤50000) (SAL)

• TITLE3 = σ (sal > 50000) (SAL)

 empId, empName, empAdres, titleId

titleId, titleName,

sal

EMP

TITLE

Link

Owne
r

Membe
r

Virtual University Pakistan

 11

Tables created with constraints

• create table TITLE1 (titleID char(3) primary key, titleName char (15), sal int

check (SAL between 10000 and 20000))

• create table TITLE2 (titleID char(3) primary key, titleName char (15), sal int

check (SAL between 20001 and 50000))

• create table TITLE3 (titleID char(3) primary key, titleName char (15), sal int

check (SAL > 50000))

TITLE

titleID titleName Sal

T01 Elect. Eng 42000

T02 Sys Analyst 64000

T03 Mech. Eng 27000

T04 Programmer 19000

TITLE1

titleID titleName Sal

T04 Programmer 19000

TITLE3

titleID titleName Sal

T02 Sys Analyst 64000

TITLE2

titleID titleName Sal

T01 Elect. Eng 42000

Virtual University Pakistan

 12

T03 Mech. Eng 27000

EMP table at local sites

create table EMP1 (empId char(5) primary key, empName char(25), empAdres char

(30), titleId char(3) foreign key references TITLE1(titleID))

Referential Integrity Constraint

• Null value in the EMP1.titleId is allowed

• This violates the correctness requirement of the Fragmentation, i.e., it will

violating the completeness criterion

Tighten Up the Constraint Around

• Further we need to impose the “NOT NULL” constraint on the EMP1.titleID

• Now the records in EMP1 will strictly adhere to the DHF

Revised EMP1 Definition

 empId, empName, empAdres, titleId

titleId, titleName, sal

EMP

TITLE

Link

PHF on
Owner

Member
Natural Join with Owner Fragments

Virtual University Pakistan

 13

create table EMP1 (empId

char(5) primary key, empName char(25), empAdres char (30), titleId char(3) foreign

key references TITLE1(titleID) not NULL)

Defining all three EMP

• create table EMP1 (empId char(5) primary key, empName char(25), empAdres

char (30), titleId char(3) foreign key references TITLE1(titleID) not NULL)

• create table EMP2 (empId char(5) primary key, empName char(25), empAdres

char (30), titleId char(3) foreign key references TITLE2(titleID) not NULL)

• create table EMP3 (empId char(5) primary key, empName char(25), empAdres

char (30), titleId char(3) foreign key references TITLE3(titleID) not NULL)

PHF of EMP at different sites

• create table EMP1 (empId char(5) primary key check (empId in ('Programmer')),

empName char(25), empAdres char (30), titleId char(3))

• create table EMP2 (empId char(5) primary key check (empId in (‘Elect.

Engr’,’Mech. Engr’)), empName char(25), empAdres char (30), titleId char(3))

• create table EMP3 (empId char(5) primary key check (empId in (' Sys Analyst ')),

empName char(25), empAdres char (30), titleId char(3))

Adding a new record in TITLE

titleID titleName Sal

T01 Elect. Eng 42000

T02 Sys Analyst 64000

T03 Mech. Eng 27000

Virtual University Pakistan

 14

T04 Programmer 19000

T05 Assist Supr 16000

All three predicates of PHF defined in the two slide a couple of slides ago

create table EMP1 (empId char(5) primary key check (empId in ('Programmer‘, ‘Assist

Supr’)), empName char(25), empAdres char (30), titleId char(3))

Original EMP Table

empId empName empAdres titleId

E1 T Khan Multan T01

E2 W Shah Islamabad T02

E3 R Dar Islamabad T03

E4 K Muhammad Lahore T04

E5 F Sahbai Lahore T02

E6 A Haq Multan T01

E7 S Farhana Lahore T03

E8 M Daud Jhelum T02

DHFs of EMP Table

EMP1

empId empName empAdres titleId

E4 K Muhammad Lahore T04

EMP3

empId empName empAdres titleId

E2 W Shah Islamabad T02

E5 F Sahbai Lahore T02

E8 M Daud Jhelum T02

EMP2

empId empName empAdres titleId

Virtual University Pakistan

 15

E1 T Khan Multan T01

E3 R Dar Islamabad T03

E6 A Haq Multan T01

E7 S Farhana Lahore T03

Transactional Replication

• Data replicated as the transaction executes

• Preferred in higher bandwidth and lower latency

• Transaction is replicated as it is executed

• Begins with a snapshot, changes sent at subscribers as they occur or at timed

intervals

• A special Type allows changes at subscribers

From the Enterprise Manager, select Replication, after a couple of nexts, we get this

screen

Virtual University Pakistan

 16

Virtual University Pakistan

 17

Publication has been created that can be viewed from Replication Monitor or from

Replication, like this

Virtual University Pakistan

 18

It has also created snapshot and log

reader agents, which won’t work until we create a subscription. For this, we select the

publication from replication monitor, right click it, and then select Push new subscription.

You select the particular database where you want to subscribe, we have created a new

one.

Virtual University Pakistan

 19

A couple of more nexts and then

Virtual University Pakistan

 20

After this we run the snapshot agent, that creates a snapshot, you can verify this from

snapshot agent history, or you can go to subscriber database and have a look, like this

We delete a record from our publication and we see that it is expressed in

Virtual University Pakistan

 21

This will be automatically being

transferred to Subscription. If this activity could not be performed on subscriber, then the

replication monitor will generate an error. You have to trap it and tune your application.

Merge Replication

From replication, start a new publication, a few next, and once again our old familiar

screen.

After a few next, the merge publication will be created.

Virtual University Pakistan

 22

Now you execute the snapshot agent of this replication. It will create the snapshot, and

then you subscribe a database. We find the original data in the subscriber

After this if we make any change on either side, it will be reflected on the other side. In

case of merge replication, we have to be careful about the constraints, like Primary Key,

or other constraints.

Summary

We have discussed the Derived Horizontal Fragmentation.

Virtual University Pakistan

 23

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 26

Virtual University Pakistan

 24

In this lecture:

- Transaction Management

o Basics

o Properties of Transaction

Database and Transaction Consistency

The concept of transaction is used within the database domain as a logical unit of work.

A database is in a consistent state if it obeys all of the consistency (integrity) constraints

defined over it state changes occur due to modifications, insertions and deletions

(together called updates). The database can be temporarily inconsistent during the

execution of a transaction. The important point is that the database should be consistent

when then transaction terminates as shown in figure 1

Figure 1: A Transaction Model

Transaction consistency refers to the actions of concurrent transactions. Transaction

Management is difficult in case of the concurrent access to the database by multiple users.

Multiple read-only transactions cause no problem at all, however, if one or more of

Begin
Transaction T

Consistent
State of DB

May be
Temporarily
Inconsistent

Consistent
State

Execution of
Transaction T

End of
Transaction T

Virtual University Pakistan

 25

concurrent transactions try to update

data that may cause problem. A transaction is considered to be a sequence of read or/and

write operations; it may even consist of a single statement.

Transaction Example T-SQL

 Transaction BUDGET_UPDATE

 begin

 EXEC SQL UPDATE J

 SET BUDGET = BUDGET * 1.1

 WHERE JNAME = “CAD/CAM"

 end

The Begin_transaction and end statements delimit a transaction. The use of delimiters is

not enforced in every DBMS.

Example Database

 Airline Reservation System

– FLIGHT(fNo, fDate, fSrc, fDest, stSold, fCap)

– CUST(cName, cAddr, cBal)

– FC(fNo, fDate, cName, cSpecial)

Let us consider a simplified version of a typical reservation application, where a travel

agent enters the flight number, the date, and a customer name and asks for a reservation.

The transaction to perform this function can be implemented as follows, where database

accesses are specified in embedded SQL notation:

Begin_transaction Reservation

 input(flight_no, dt, c_name);

 EXEC SQL Select stSold, cap into temp1, temp2

 where fNo = flight_no and date = dt

 if temp1 = temp2 then

Virtual University Pakistan

 26

 output("no free

seats"); Abort

 else

 EXEC SQL update flight

 set stSold = stSold + 1 where

 fNo = flight_no and date = dt;

 EXEC SQL insert into FC values (flight_no,

 dt, c_Name, null); Commit;

 output("reservation completed")

 end

The transaction on

Line 1: is to input the flight number, the date and the customer name.

Line 2: updates the number of sold seats on the requested flight by one.

Line 3: inserts a tuple into the FC relation here we assume that customer is old one so its

not necessary to have an insertion into the CUST relation.

Line 4: reports the result of the transaction to the agent’s terminal.

Termination conditions of Transaction

If transaction can complete its task successfully, we say that the transaction commits. If a

transaction stops without completing its tasks, we say that it aborts when a transaction is

aborted its execution is stopped and all of its already executed actions are undone by

returning the database to the state before their execution. This is also known as rollback.

Characterization of Transaction

Read and Write are major operations of database concern in a transaction.

Read set (RS): The set of data items that are read by a transaction.

Write set (WS): The set of data items whose values are changed by this transaction

Virtual University Pakistan

 27

The read set and write set of a

transaction need not be mutually exclusive. Finally, the unions of the read set and write

set of a transaction constitutes its base set

 (BS = RS U WS)

Formalization of the Transaction Concept

Let Oij(x) be some operation Oj of transaction Ti operating on data item x, where Oj €

{read,write} and Oj is atomic. Let OSi denote the set of all operations in Transaction Ti,

OSi = Uj Oij. We denote by Ni the termination condition for Ti, where Ni €

{abort,commit}.

Transaction Ti is a partial order Ti = {∑i, <i} where

1- ∑i = OSi U {Ni }

2- For any two operations Oij, Oik € OSi , if Oij = R(x) and Oik = W(x) for any data item

x, then either Oij∝iOik or Oik <i Oij.

3- V Oij € OSi, Oij <i Ni

The first condition specify the domain as the set of read and write operation that make up

the transaction, plus the termination condition, which may be commit or abort. The

second condition specifies the ordering relation between the conflicting read and write

operations of the transaction, while the final condition indicates that the termination

condition always follows all other operations.

There are two points about this definition

First the ordering relation < is given and the definition does not attempt to construct it.

Second, condition two indices that the ordering between conflicting operations has to

exist within <.

Conflicting Operations

Two operations Oi(x) and Oj(x) are said to be in conflict, Oi = write or Oj = write (at

least one of them is write and they access the same data item).

Example

Virtual University Pakistan

 28

Consider a transaction T that

consists following steps:

Read(x)

Read(y)

x = x + y

Write(x)

Commit

ACID Properties of a Transaction

The consistency and reliability aspects of transactions are due to our properties:

1- Atomicity: also known as “all or none” property

– refers to the atomicity of entire Tr rather than an individual operation

– It requires from system to define some action in case of any interruption in

execution of Tr.

– Two types of failures requiring procedures from Transaction Recovery or

Crash Recovery

2- Consistency: refers simply to the correctness of a transaction

– A Tr should transform the DB from one consistent state to another

consistent state.

– Concern of Semantic Integrity Control and Concurrency Control

– Classification of consistency for Trs uses the term “Dirty Data”; data that

has been updated by a Tr before its commitment.

Degree 3: Transaction T sees degree 3 Consistency if:

1- T does not overwrite dirty data of other transactions

2- T does not commit any writes until it completes all its writes (i.e., until end of

transaction)

3- T does not read dirty data from other transactions

Virtual University Pakistan

 29

4- Other transactions do not

dirty any data read by T before T completes

Degree 2: Transaction T sees degree 2 Consistency if:

1- T does not overwrite dirty data of other transactions

2- T does not commit any writes until it completes all its writes (i.e., until end of

transaction)

3- T does not read dirty data from other transactions

Degree 1: Transaction T sees degree 1 Consistency if:

1- T does not overwrite dirty data of other transactions

2- T does not commit any writes until it completes all its writes (i.e., until end of

transaction)

Degree 0: Transaction T sees degree 0 Consistency if:

1- T does not overwrite dirty data of other transactions

3- Isolation

- A transaction cannot reveal its results to other transactions before commitment

- Required in particular when one of the transactions is updating a common data

item

Example

Consider two concurrent transactions T1 and T2 both access data item x. assume that the

value of x before they start executing is 50.

- T1: Read(X) T2: Read(x)

x = x+1 x = x+1

Write(x) Write(x)

Commit Commit

Virtual University Pakistan

 30

Two possible serial executions are

T1, T2 or T2, T1. First transaction gets 50 and makes it 51, other makes it 52. In any case

it will be 52 at the end of both transactions. An interleaved execution may result “Lost

Update”.

Like

 (T1:Read(x), T1:x =x+1,

 T2:Read(x), T1:Write(x),

 T2:x=x+1, T2:write(x),

 T1:commit, T2:commit)

Summary

 We have discussed the transaction management, its basics and the properties of

transaction (ACID).

Virtual University Pakistan

 31

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 27

Virtual University Pakistan

 32

In previous lecture:

- Defined Transaction Formally

- ACID Properties of a Transaction

In this lecture:

- ACID Properties

- Types of Transaction

- Transaction in DDBS

ACID Properties

3- Isolation

Isolation and consistency are interrelated, one supports other. Degree 3 provides full

isolation. SQL-92 identified isolation levels based on following phenomena.

Dirty Read: A transaction reads the written value of another transaction before its

commitment, like,

 --, W1(x), ----, R2(x), --- ,C1(or A1)-----, C2(or A2).

Non-repeatable or Fuzzy Read: Two reads of same data item by same transaction and a

write by another transaction on the same data item

--, R1(x), ----, W2(x), --- ,C2-----, R1(x)----

Phantom: T1 performs a read on a predicate, T2 inserts tuples that satisfy the predicate

--, R1(P), ----, W2(yinP), --- ,C2(orA2)-----, C1(orA1)---

Isolation levels

• Read Uncommitted: all three phenomena possible

• Read Committed: fuzzy read, phantoms possible; DR not possible

• Repeatable Read: Only phantoms possible

• Anomaly Serializable: None of the phenomena possible

4- Durability:

Virtual University Pakistan

 33

Durability refers to that property of

transaction which ensures that once a transaction commits, its results are permanent and

can not be erased from the database.

Types of Transactions

Transactions have been classified according to a number of criteria one criterion is the

duration of transaction. Transaction may be classified as

• on-line (short-life)

• batch (long-life)

Online transactions are characterized by very short execution/response times and by

access to a relatively small portion of the database. Examples are banking and airline

reservation transactions.

Batch transactions are CAD/CAM databases, statistical applications, report generation,

complex queries and image processing.

Another classification is with respect to the organization of the read write actions if the

transactions are restricted so that all the read actions are performed before any write

action, the transaction is called a two-step transaction.

If transaction is restricted so that a data item has to be read before it can be updated

(written), the corresponding class is called restricted (or read-before-write).

If a transaction is both two-step and restricted, it is called a restricted two-step transaction.

Transactions can be classified according to their structure. Four broad categories

– flat (or simple) transactions

– closed nested transactions

– open nested transactions

– workflow models

Virtual University Pakistan

 34

1) Flat transaction

• Consists of a sequence of primitive operations embraced between a begin and end

markers.

• Begin_transaction Reservation

• …

• end.

2) Nested transaction

• The operations of a transaction may themselves be transactions.

• Begin_transaction Reservation

 …

 Begin_transaction Airline

 …

 end {Airline}

 end {Reservation}

• Have the same properties as their parents; may themselves have other nested

transactions.

• Introduces concurrency control and recovery concepts within the transaction.

Closed nesting

• Sub transactions begin after their parents and finish before them

• Commitment of a sub transaction is conditional upon the commitment of

the parent (commitment through the root)

Open nesting

• Sub transactions can execute and commit independently.

• Compensation may be necessary.

3) Workflows

• Flat transaction model suits relatively small and simple environments

• Certain environments need combination of open and nested models.

• A candidate definition “ a collection of tasks organized to accomplish some

business activity”

Virtual University Pakistan

 35

• Different types of workflows.

• Workflows generally involve long transactions, like a reservation transaction that

may include Airline, Hotel, Auto reservations and bill generation.

• Workflows exhibit open nesting semantics

• So permits access to the results of sub-activity before the commitment of the

major activity.

• Some components are declared as vital, main activity aborts if a vital component

aborts, otherwise it may commit even if a non-vital component aborts, like

• Compensating Transactions

• Contingency Transactions.

That concludes our basic discussion on Transactions.

Distributed Concurrency Control

Concurrency control concerns synchronizing concurrent transactions maintaining

consistency of the database and maximizing degree of concurrency.

Schedule or History

An order in which the operations of a set of transactions are executed. A schedule

(history) can be defined as a partial order over the operations of a set of transactions.

T1:

Read(x)

Write(x)

Commit

T2:

Write(x)

Write(y)

Read(z)

Commit

T3:

Read(x)

Read(y)

Read(z)

Commit

Complete Schedule

A complete schedule S over a set of transactions T={T1, …, Tn} is a partial order

• SCT(ΣT, <T) where

• ΣT = Ui Σi , for i = 1, 2, …, n

• <T ⊇ U <i , for i = 1, 2, …, n

Virtual University Pakistan

 36

• For any two conflicting

operations Oij, Okl € ΣT, either Oij <T Okl or Okl <T Oij

T1:

Read(x)

Write(x)

Commit

T2:

Write(x)

Write(y)

Read(z)

Commit

T3:

Read(x)

Read(y)

Read(z)

Commit

Σ1 = {R1(x), W1(x), C1}

Σ2 = {W2(x), W2(y), R2(z), C2}

Σ3 = {R3(x), R3(y), R3(z), C3}

Σ = Σ1 U Σ2 U Σ3

= {R1(x), W1(x), C1, W2(x), W2(y), R2(z), C2, R3(x), R3(y), R3(z), C3}

A schedule is a prefix of a complete schedule such that only some of the operations and

only some of the ordering relationships are included.

Serial Schedule

If all the transactions included in it execute one after another. A serial schedules always

leaves the database in a consistent state. They may end up with a different final state of

DB each one of them being consistent. If we have three transactions, T1, T2, T3 then one

serial schedule may be: T1 <S T3 <s T2 or T1 T3 T2

Interleaved Schedule

A schedule is in which operations from different transactions are mixed with each other

in execution.

Like

 S1 ={W2(x), R1(x), R3 (x), W1(x),C1, W2(y), R3(y), R2(z),C2 ,R3 (z), C3} is

an interleaved schedule.

Virtual University Pakistan

 37

Summary

We have discussed the ACID properties and the types of transaction. The types are flat

transaction, nested transaction and workflow. Also we have discussed the transaction in

DDBS.

Virtual University Pakistan

 38

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 28

Virtual University Pakistan

 39

In previous lecture:

- Types of Transaction

- Transaction in DDBS

- Serial Transactions

- Conflicting Transactions

In this lecture:

- Serializability Theory

- Serializability Theory in DDBS

Equivalent Schedules

Two schedules S1, S2 defined over same T are equivalent if they have same effect on the

database, that is, leave database in same final state. Formally, if for each pair of

conflicting operations

 Oij and Okl (i ≠ k) if Oij <1 Okl then Oij <2 Okl

The phenomenon is also called conflict equivalence.

Serializable Schedule

If it is conflict equivalent to a serial schedule, i.e., the final state in which it leaves the

database is equivalent to a serial schedule-

• Ss ={W2(x), W2(y), R2(z), C2, R1(x), W1(x), C1, R3(x), R3(y), R3(z), C3}

• S1 = {W2(x), R1(x), R3 (x),W1(x),C1, W2(y), R3(y), R2(z),C2 ,R3(z), C3}

• Ss ={W2(x), W2(y), R2(z), C2, R1(x), W1(x), C1, R3(x), R3(y), R3(z), C3}

• S2 ={W2(x), R1(x), W1(x), C1, R3(x), W2(y), R3(y), R2(z), C2, R3(z), C3}

The function of the concurrency controller is to generate serializable schedule.

Fragmented Databases

Virtual University Pakistan

 40

The serializability is straight forward.

Local transaction is independent of each other; each concerns local data. In case of global

transactions local sub transactions will be treated as different transactions.

Replicated Databases

T1:

Read(x)

x = x + 5

Write(x)

Commit

T2:

Read(x)

x = x*10

Write(x)

Commit

LS1={R1(x), W1(x),C1, R2(x), W2(x), C2}

LS2={R2(x), W2(x), C2, R1(x), W1(x), C1}

All values of replicated data should be same

1. Local Schedule same

2. Conflicting Ops in same relative order on all sites.

3. Logical and physical data items

4. User issues Ops on logical data items

5. Replica control maps to physical ones-

6. ROWA Protocol

7. Reduces availability in case of failure

8. Different algorithms, different replications.

Concurrency Control Algorithms

• Different categorizations possible

• Like, mode of distribution, network topology-

• Synchronization primitive is the most common

• Locking and Ordering

• Pessimistic & Optimistic.

Virtual University Pakistan

 41

• Pessimistic approach

synchronizes transactions early

• Optimistic do this late in execution life cycle of transactions

• Pessimistic

• Locking-based

• Centralized Locking

• Primary Copy Locking

• Distributed Locking-

• Timestamp Ordering (TO)

• Basic TO

• Multiversion TO

• Conservative TO

• Hybrid

• Optimistic

• Locking-based

• Timestamp ordering-based.

Locking based Concurrency Control

• Basic idea is that data items accessed by conflicting operations are accessed by

one operation at a time

• Data Items locked by Lock Manager

• Two major types of locks,

• read lock

• write lock

• Transaction need to apply lock first.

Virtual University Pakistan

 42

• For improved accessibility,

compatibility of locks to be established

 rli(x) wli(x)

rlj(x) Yes No

wlj(x) No No

• Locking is job of DDBMS, not the user

• Scheduler is the Lock Manager

• TM and LM interact.

Summary

We have discussed the basics of serializability theory and serializability theory in

distributed database.

Virtual University Pakistan

 43

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 29

Virtual University Pakistan

 44

In previous lecture:

- Serializability Theory

- Serializability Theory in DDBS.

In this lecture:

- Locking based CC

- Timestamp ordering based CC.

Locking based Concurrency Control Algorithm

The locking algorithm will not unfortunately properly synchronize transaction executions.

This is because to generate serializable schedules, the locking and releasing operations of

transactions also need to be coordinated.

Example

Consider the following two transactions:

T1: Read(x) T2: Read(x)

x = x+1 x = x*2

Write(x) Write(x)

Commit Commit

 Read(y) Read(y)

 y = y-1 y = y*2

 Write(y) Write(y)

 Commit Commit

The following is the valid schedule that a lock manager employing the algorithm may

generate:

S = {wl1(x), R1(x), W1(x), lr1(x), wl2(x), R2(x), W2(x), lr2(x), wl2(y), R2(y), W2(y),

lr2(y), C2, wl1(y), R1(y), W1(y), lr1(y), C1)

Virtual University Pakistan

 45

Here lri(z) indicate the release of the

lock on z that transaction Ti holds. S is not a serializable schedule. The problem with the

schedule S in example is the following:

The locking algorithm releases the locks that are held by a transaction as soon as the

associated database command (read or write) is executed, and that lock unit no longer

needs to be accessed. Even though this may to be advantageous from the viewpoint of

increased concurrency, it permits transaction to interface with one another, resulting in

the loss of total isolation and atomicity. Hence the argument for two-phase locking (2PL).

Two-Phase Locking

A transaction must not attain a lock once it releases a lock or, it should not release any

lock until it is sure it won’t need any lock. 2PL algorithm executes transactions in two

phases:

• Growing phase

• Shrinking phase

Each transaction has a growing phase where it obtains locks and accesses data items, and

shrinking phase, during which it releases lock as shown in figure 1. The lock point

determines end of growing phase and start of shrinking phase. Any transaction that

follows 2-PL is serializable.

Figure 1: 2PL Lock Graph

Virtual University Pakistan

 46

This 2-PL is difficult to implement because

• Lock manager has to know that a transaction has attained all locks

• Its not going to need a released item again

So we have strict 2-PL which releases all the locks together when the transaction

terminates (commits or aborts). Thus the lock graph is as shown in figure 2.

Figure 2: Strict 2PL Lock Graph

Centralized 2PL

The locking job is designated to a single site so only one site has the Lock Manager. The

communication between the cooperating sites in executing a transaction according to a

centralized 2PL (C2PL) algorithm is depicted in figure 3.

Virtual University Pakistan

 47

Figure 3: Communication Structure of Centralized 2PL

This communication is between the transaction manager at the site where the transaction

is initiated (called the coordinating TM), the lock manager at the central site, and the data

processing (DP) at the other participating sites. Central site may become a bottleneck in

case of too many accesses. Primary Copy 2-PL is one solution.

Primary Copy 2-PL

It is a straightforward extension of centralized 2PL in an attempt to counter the latter’s

potential performance problems. It implements lock managers at a number of sites and

makes each lock manager responsible for managing the locks for a given set of lock units.

The TM then sends their lock and unlock requests to the lock managers that are

responsible for that specific lock unit.

Distributed 2-PL

Distributed 2PL (D2PL) expects the availability of lock managers at each site. If the

database is not replicated, distributed 2PL degenerates into primary copy 2PL algorithm.

If data is replicated the transaction implements the ROWA replica control protocol.

The communication between cooperating sites that execute a transaction according to the

distributed 2PL protocol is depicted in figure 4.

Virtual University Pakistan

 48

Figure 4: Communication Structure of Distributed 2PL

Timestamp based concurrency control

Unlike the locking based algorithms, timestamp based concurrency control algorithms do

not attempt to maintain serializabiltiy by mutual exclusion. They select a serialization

order and execute transactions accordingly to establish this ordering, the transaction

manager assigns each transaction Ti a unique timestamp, ts(Ti), at its initiation.

A timestamp is a simple identifier that serves to identify each transaction uniquely and to

permit ordering

Properties of timestamp

• Uniqueness

• Monotonically

There are number of ways that timestamps can be assigned. One method is to use global

(system wide) monotonically increasing counter.

It is simple to order the execution of the transactions operations according to their

timestamps. The timestamp ordering (TO) rule can be specified as follows:

Timestamp Ordering (TO) Rule

Given two conflicting operations Oij, Okl of Ti and Tk, Oij is executed first iff ts(Ti) <

ts(Tk). In this case Ti is said to be the older transaction and Tk is said to be the younger

one. A scheduler that enforces the TO rule checks each new operation against conflicting

operations that have already been scheduled. If a new operation is younger ones then the

operation is accepted otherwise it is rejected. A TO scheduler is guaranteed to generate

Virtual University Pakistan

 49

serial order. However, needs to

know all operations in advance. If operations come to the scheduler one at a time, it is

necessary to be able to detect if an operation has arrived out of sequence. Each data item

x is assigned two timestamps: a Read timestamp rts(x) and a write timestamp wts(x).

For a write request, if an older transaction has read or written the data item, then

operation is rejected.

For a read request, if an older transaction has written the data item, then operation is

rejected.

TO does not generate deadlocks

Conservative TO

• Basic TO generates too many restarts

• Like, if a site is relatively calm, then its transactions will be restarted again and

again

• Synchronizing timestamps may be very costly

• System clocks can used if they are at comparable speeds

• In con-TO, operations are not executed immediately, but they are buffered

• Scheduler maintains queue for each TM.

• Operations from a TM are placed in relevant queue, ordered and executed later

• Reduces but does not eliminate restarts

Multiversion TO

• Another attempt to reduce the restarts

• Multiple versions of data items with largest r/w stamps are maintained.

• Read operation is performed from appropriate version

• Write is rejected if any older has read or written a data item

That was all about Pessimistic CC algorithms, now we move to Optimistic approaches.

Optimistic concurrency control

The execution of any operation of a transaction follows the sequence of phases:

• Validation (V)

Virtual University Pakistan

 50

• Read (R)

• Computation (C)

• Write (W)

The phases are shown in figure 5.

Figure 5: Phases of Pessimistic Transaction Execution

 Optimistic assumes less chances of conflict, so validation is done at the last stage as

shown in figure 6.

Figure 6: Phases of Optimistic Transaction Execution

Each transaction Ti is divided into sub-transactions that execute independently. Let us

denote Tij a sub transaction of Ti that executes at site j. until the validation phase each

local execution follows the sequence depicted in figure 6. at that point a timestamp is

assigned to the transaction which is copied to all its subtransactions. The local validation

of Tj is performed according to the following rules, which are mutually exclusive.

• Rule1: If all transactions Tk, where ts(Tk)<ts(Tij) have completed their write

phase before Tij started its read, validation succeeds as shown in figure 7(a)

Figure 7: (a)

Validate Read Compute Write

 Read Compute Validate Write

Virtual University Pakistan

 51

• Rule2: If there is any Tk,

where ts(Tk)<ts(Tij) which completes its write while Tij is in its read phase then

validation succeeds if WS(Tk) ∩ RS(Tij) = Ø as shown in figure 7(b)

Figure 7: (b)

• Rule3: If Tk completes its read phase before Tij completes its read phase, then

validation succeeds if

 WS(Tk) ∩ RS(Tij) = Ø and

 WS(Tk) ∩ WS(Tij) = Ø

 Need more storage for the validation tests

• Repeated failure for longer transactions.

Deadlock Management

• Locking based concurrency control generates deadlock

• T1 waits for data item being held by T2, and other way round as shown in figure 8.

• A tool in analyzing deadlocks is a Wait-for Graph (WFG).

• A WFG represents the relationship between transactions waiting for each other to

release data items.

T2 T5 T3

T7

Virtual University Pakistan

 52

Figure 8: Deadlock

There are three methods for handling deadlocks:

• Prevention

• Avoidance

• Detection and resolution

Summary

We have discussed the locking based concurrency control and the timestamp ordering

based on concurrency control.

Virtual University Pakistan

 53

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 30

Virtual University Pakistan

 54

In previous lecture:

- Locking based CC

- Timestamp ordering based CC

- Concluded TM

In this lecture:

- Basic Concepts of Query Optimization

- QP in centralized and Distributed DBs

Introduction

Distributed database design is of major importance for query processing since the

definition of fragments is based on the objective of increasing reference locality and

sometimes parallel execution for the most important queries. The role of distributed

query processor is to map a high level query on a distributed database into a sequence of

database operations on relation fragments.

Query processing problem

The main function of a relational query processor is to transform a high level query into

an equivalent lower level query. The low level query actually implements the execution

strategy for the query. The transformation must achieve both correctness and efficiency.

It is correct if the low level query has the same semantics as the original query, i.e. if both

queries produce the same result.

Example

Consider the following relations

• EMP(eNo, eName, title)

• ASG(eNo, pNo, resp, dur)

• PROJ(pNo, pName, budget, loc)

Virtual University Pakistan

 55

Query: Get the names of employees who are managing a project

SELECT eName

FROM EMP, ASG

 WHERE EMP.eNo = ASG.eNo

 AND resp = ‘Manager’

Two equivalent relational algebra queries that are correct transformation of the query

above are

• πeName(σresp=‘Manager’ ^ EMP.eNo = ASG.eNo) (EMPxASG)

And

• πeName(EMP ⋈ (σresp=‘Manager’ (ASG)))

It is obvious that the second query, which avoids the Cartesian product of EMP and ASG

consumes much less computing resource than the first and thus should be retained.

Centralized QP

In a centralized query execution strategies can be well expressed in an extension of

relational algebra. The main role of a centralized query processor is to choose, for a given

query, the best relational algebra query among all equivalent ones.

Distributed QP

In distributed system relational algebra is not enough to express execution strategies. It

must be supplemented with operations for exchanging data between sites.

The distributed QP must also select the best sites to process data, and possibly the way

data should be transformed. This increases the solution space from which to choose the

distributed execution strategy, making distributed query processing significantly more

difficult.

Example

Virtual University Pakistan

 56

Consider the same query in of

previous example

Suppose EMP and ASG are Horizontally Fragmented as

• EMP1 = σeNo ≤ ‘E3’ (EMP)

• EMP2 = σeNo > ‘E3’ (EMP)

• ASG1 = σeNo ≤ ‘E3’ (ASG)

• ASG2 = σeNo > ‘E3’ (ASG)

Further suppose these fragments are stored at site 1, 2, 3 and 4 and result at site 5

ASC1’=σresp = ‘Manager(ASG1)

EMP1’=EMP1 ⋈(ASG1’)

Site

Site

ASC2’=σresp = ‘Manager(ASG2)

EMP2’=EMP2 ⋈(ASG2’)

Site

Site

ASG1’ ASG2’

result = EMP1’ U EMP2’ Site

EMP1’ EMP2’

result = (EMP1 U EMP2) ⋈ eNo

σ resp = ‘Manager’ (ASG1 U ASG2)

Site 1 Site 2 Site 3 Site 4

ASG1 ASG2 EMP

EMP

Virtual University Pakistan

 57

Figure 1: Equivalent Distributed

Execution Strategies

Two equivalent distributed execution strategies for the query are shown in figure 1. an

arrow from site I to site j labeled with R indicates that relation R is transferred from site I

to site j.

Strategy A exploits the fact that relations EMP and ASG are fragmented the same way in

order to perform the select and join operation in parallel.

Strategy B centralizes all the operand data at the result site before processing the query

as shown in figure 1.

To evaluate the resource consumption of these two strategies we use a cost model. Let’s

Assume

• size(EMP)

• size(ASG)

400

1000

• tuple access cost

• tuple transfer cost

1 unit

10 units

• There are 20 Managers

• Data distributed evenly at all sites

Strategy 1

The cost of strategy A can be derived as follows:

• produce ASG': 20*1 20

• transfer ASG' to the sites of E: 20 * 10 200

• produce EMP': (10+10) *1*2 40

• transfer EMP' to result site: 20*10 200

Total 460

Virtual University Pakistan

 58

Strategy 2

The cost of strategy B can be derived as follows:

• Transfer EMP to site 5: 400 * 10 4000

• Transfer ASG to the site 5 1000 * 10 10000

• Produce ASG‘ by selecting ASG 1000

• Join EMP and ASG’ 8000

Total 23000

In strategy B we assumed that the access methods to relations EMP an ASG based on

attributes RESP and ENO are lost because of data transfer. This is reasonable assumption.

Strategy A is better by a factor of 50, which is quite significant. It provides better

distribution of wok among sites. The difference would be higher if we assumed slower

communication and/or high degree of fragmentation.

Objective of Query Processing

The objective of query processing in a distributed context is to transform a high level

query on a distributed database. An important of query processing is query optimization.

Query Optimization

Many execution strategies are correct transformations of the same high level query the

one that optimizes (minimizes) resource consumption should be retained.

A good measure of resource consumption is the total cost that will be incurred in

processing the query. Total cost is the sum of all times incurred in processing the

operations of the query at various sites.

In a distributed database system, the total cost to be minimized includes CPU, I/O and

communication costs. The first two components (I/O and CPU costs) are the only factors

considered by centralized DBMSs. Communication Cost will dominate in WAN but not

that dominant in LANs. Query optimization can also maximize throughput

Operators’ Complexity

Virtual University Pakistan

 59

Relational algebra is the output of

query processing. The complexity of relational algebra operations, which directly affects

their execution time, dictates some principles useful to a query processor. Figure 2 shows

the complexity of unary and binary operations.

• Select, Project (without duplicate elimination)

O(n)

• Project (with duplicate elimination), Group

O(nlogn)

• Join, Semi-Join, Division, Set Operators

O(nlog n)

• Cartesian Product O(n2)

Figure 2: Complexity of Unary and Binary Operations

Characterization of Query Processors

There are some characteristics of query processors that can be used as a basis for

comparison.

• Types of Optimization

– Exhaustive search for the cost of each strategy to find the most optimal

one

– May be very costly in case of multiple options and more fragments

– Heuristics

• Optimization Timing

– Static: during compilation

• Size of intermediate tables not known always

• Cost justified with repeated execution

– Dynamic: during execution

• Intermediate tables’ size known

• Re-optimization may be required

Virtual University Pakistan

 60

• Statistics

– Relation/Fragment: Cardinality, size of a tuple, fraction of tuples

participating in a join with another relation

– Attribute: cardinality of domain, actual number of distinct values

• Decision Sites

– Centralized: simple, need knowledge about the entire distributed database

– Distributed: cooperation among sites to determine the schedule, need only

local information

– Hybrid: one site determines the global schedule, each site optimizes the

local sub queries

Summary

We have discussed the basic concepts of query processing and the query optimization in

centralized and distributed databases.

Virtual University Pakistan

 61

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 31

Virtual University Pakistan

 62

In previous lecture:

- Basic concepts of query optimization

- Query processing in centralized and distributed DBs

In this lecture:

- Query decomposition

- Its different phases

Virtual University Pakistan

 63

Query Decomposition:

Query decomposition transforms an SQL (relational calculus) query into relational

algebra query on global relations. The information needed for this transformation is

found in the global conceptual schema.

Steps in query decomposition:

It consists of four phases:

1) Normalization:

Input query can be complex depending on the facilities provided by the language. The

goal of normalization is to transform the query to a normalized form to facilitate further

processing. This process includes the lexical and analytical analysis and the treatment of

WHERE clause. There are two possible normal forms.

Conjunctive NF:

This is a conjunction (∧ predicate) of disjunctions (∧ predicates) as follows:

(p11 ∧p12 ∧…∧p1n) ∧…∧(pm1 ∧pm2 …∧pmn)

Disjunctive NF:

This is disjunction (∧ predicate) of conjunctions (∧ predicates) as follows:

(p11 ∧p12∧…∧p1n) ∧…∧(pm1∧pm2 ∧…∧pmn)

The transformation of the quantifier-free predicate is using equivalence rules.

Equivalence rules: Some of equivalence rules are:

1. p1∧ p2 ∧ p2∧ p1

2. p1∧ p2 ∧ p2∧ p1

3. p1 ∧ (p2∧ p3) ∧ (p1∧p2) ∧ p3

4. p1 ∧ (p2∧ p3) ∧ (p1∧p2) ∧ p3

5. ¬(¬ p1) ∧ p

…

Example

Virtual University Pakistan

 64

The query expressed in SQL is

SELECT ENAME

FROM EMP,ASG

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=’P1’

AND DUR=12

OR DUR=24

The qualification in conjunctive NF is

EMP.ENO = ASG.ENO ∧ ASG.PNO=”P1” ∧ (DUR=12 ∧ DUR=24)

The qualification in disjunctive NF is

(EMP.ENO = ASG.ENO ∧ ASG.PNO=”P1” ∧ DUR=12) ∧

(EMP.ENO = ASG.ENO ∧ ASG.PNO=”P1” ∧ DUR=24)

2) Analysis:

Query analysis enables rejection of normalized queries for which further processing is

either impossible or necessary. The main reasons for rejection are that the query is type

incorrect or semantically incorrect.

Type incorrect

• If any of its attribute or relation names are not defined in the global schema

• If operations are applied to attributes of the wrong type

Semantically incorrect

• Components do not contribute in any way to the generation of the result

• Only a subset of relational calculus queries can be tested for correctness

• Those that do not contain disjunction and negation

• To detect through Connection graph (query graph) and Join graph

Query Graph

This graph is used for most queries involving select, project, and join operations. In a

graph, one node represents the result relation and any other node represents an operand

relation. An edge between two nodes that are not results represents a join, whereas an

edge whose destination node is the result represents a project.

Virtual University Pakistan

 65

Example

Consider the following query in SQL;

SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO = ASG.ENO

AND ASG.PNO = PROJ.PNO

AND PNAME = “CAD/CAM”

AND DUR >= 36

AND TITLE = “PROGRAMMER”

Figure1: Query graph

Join graph

This is the graph in which only joins are considered.

Figure2: Join graph

If the query graph is not connected, the query is wrong.

Virtual University Pakistan

 66

Example

Consider the SQL query;

SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO = ASG.ENO

AND PNAME = “CAD/CAM”

AND DUR >= 36

AND TITLE = “PROGRAMMER”

The query graph is shown in figure is disconnected; whish tell us that the query is

semantically incorrect.

Figure 3: Disconnected query graph

3) Elimination of redundancy:

A user query expressed on a view may be enriched with several predicates to achieve

view-relation correspondence and ensure semantic integrity and security. The enriched

query qualification may then contain redundant predicates. Such redundancy may be

eliminated by simplifying the qualification with the following well-known idempotency

rules:

1. p1∧¬(p1) ∧false

2. p1∧(p1∧p2) ∧p1

3. p1∧false ∧p1

Virtual University Pakistan

 67

…

Example

Consider SQL query:

SELECT TITLE

FROM EMP

WHERE EMP.ENAME = “J. Doe”

OR(NOT(EMP.TITLE = “Programmer”)

AND(EMP.TITLE = “Programmer”

OR EMP.TITLE = “Elect. Eng.”)

AND NOT(EMP.TITLE = “Elect. Eng.”))

After simplification the query becomes

SELECT TITLE

FROM EMP

WHERE EMP.ENAME = “J. Doe”

4) Rewriting:

This process is divided into two steps:

• Straightforward transformation of query from relational calculus into relational

algebra

• Restructuring of relational algebra to improve performance

Operator tree is used to represent the algebra query graphically.

Operator tree

It is a tree in which a leaf node is a relation and a nonleaf node is an intermediate relation

produced by a relational algebra operator. The transformation of a tuple relational

calculus query into an operator tree can easily be achieved as follows. First, a different

leaf is created for each different tuple variable. In SQL, the leaves are immediately

Virtual University Pakistan

 68

available in the FROM clause.

Second, the root node is created as a project operation and these are found in SELECT

clause. Third, the SQL WHERE clause is translated into the sequence of relational

operations (select, join, union, etc.).

Example

Consider the SQL query:

SELECT ENAME

FROM PROJ, ASG, EMP

WHERE ASG.ENO = EMP.ENO

AND ASG.PNO = PROJ.PNO

AND ENAME = “J.DOE”

AND PROJ.PNAME = “CAD/CAM”

AND (DUR = 12 OR DUR = 24)

Figure 4: Example of operator tree

By applying transformation rules many different trees may be found.

Transformation Rules

Virtual University Pakistan

 69

• Commutativity of binary

operations

R × S ∧ S × R

R S ∧ S R

• Associativity of binary operations

(R × S) × T ∧ R × (S × T)

(R S) T ∧ R (S T)

There are other rules that we will discuss in next lecture.

Summary:

Query processing has four different phases and the first phase is the Query

Decomposition. The steps of query decomposition are normalization, analysis,

simplification and rewriting. Our goal in every process is same to produce a correct and

efficient query. We have studied an equivalence rules, idempotency rules and some of

transformation rules.

Virtual University Pakistan

 70

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 32

Virtual University Pakistan

 71

In previous lecture:

- Query decomposition

- Its different phases

In this lecture:

- Final phase of Query decomposition

- Next phase of query optimization: Data localization

Virtual University Pakistan

 72

Transformation Rules:

First two transformation rules have discussed in previous lecture and we are going to

discuss other rules.

• Idempotence of unary operations

o ΠA’(ΠA’’(R)) ⇔ ΠA’(R)

o σp1(A1)(σp2(A2)(R)) ⇔σp1(A1) ∧ p2(A2)(R)

• Commuting selection with projection

o πA1, ….,An(σp(Ap)(R)) ⇔ πA1, ….,An((σp(Ap) πA1, ….,An, Ap(R)))

• Commuting selection with binary operations

o σp(A)(R×S) ⇔ (σp(A) (R)) ×S

o σp(Ai)(R(Aj,Bk)S) ⇔ (σp(Ai) (R)) (Aj,Bk)S

• Commuting projection with binary operations

o ΠC(R×S) ⇔ΠA’(R) ×ΠB’(S)

o ΠC(R(Aj,Bk)S) ⇔ΠA’(R) (Aj,Bk)ΠB’(S)

These rules enables the generation of many equivalent trees. In optimization phase, one

can imagine comparing all possible trees based on their predicted cost. The excessively

large number of possible trees makes this approach unrealistic. The above rules can be

used to restructure the tree in a systematic way so that the bad operator trees are

eliminated. These rules can be used in four different ways:

• They allow the separation of unary operations, simplifying the query expression.

• Unary operations on the same relation may be grouped together

• Unary operations can be commuted with binary operations

• Binary operations can be ordered

Example

Consider the SQL query:

SELECT ENAME

Virtual University Pakistan

 73

FROM PROJ, ASG, EMP

WHERE ASG.ENO = EMP.ENO

AND ASG.PNO = PROJ.PNO

AND ENAME = “Saleem”

AND PROJ.PNAME = “CAD/CAM”

AND (DUR = 12 OR DUR = 24)

Figure1: Equivalent operator tree

ASG PROJ
EMP

x

⋈ pNo^eNo

σ (pName = ‘CAD/CAM’)^ (dur = 12 v dur = 24)^ eName ≠’Saleem’

π eName

Virtual University Pakistan

 74

Figure 2: Rewritten operator tree

This concludes query decomposition and restructuring. Now we move towards the second

phase of query optimization or query processing that is Data Localization.

Data Localization:

The localization layer translates an algebraic query on global relations into an algebraic

query expressed on physical fragments. Localization uses information stored in the

fragment schema. Fragmentation is defined through fragmentation riles, which can be

expressed as relational queries. A global relation can be reconstructed by applying the

reconstruction rules and deriving a relational algebra program whose operands are the

fragments, this process is called localization program.

A native way to localize a distributed query is to generate a query where each global

relation is substituted by its localization program. This can be viewed as replacing the

PROJ ASG EMP

σpName = ‘CAD/CAM’ σdur=12 v dur = 24 σeName != ‘Saleem’

π pNo’ π pNo, eNo π eNo, eName

π pNo, eName

π eName

Virtual University Pakistan

 75

leaves of the operator tree of

distributed query with sub trees corresponding to the localization programs. The query

obtained in this way is called a generic query. Here we are going to present reduction

techniques for each type of fragmentation.

Reduction for primary horizontal fragmentation:

The horizontal fragmentation function distributes a relation based on selection predicates.

Consider an example:

Example:

Relation EMP(eNo, eName, title) can be split into three horizontal fragments.

• EMP1 = σeNo ≤ ‘E3’ (EMP)

• EMP2 = σ’E3’<eNo ≤ ‘E6’ (EMP)

• EMP3 = σeNo > ‘E6’ (EMP)

The localization program for a horizontally fragmented relation is the union of

fragments.e.g.

 EMP = EMP1 U EMP2 U EMP3

Horizontal fragmentation can be exploited to simplify both selection and join operations.

Reduction with selection:

Selections on fragments that have a qualification contradicting the qualification of the

fragmentation rule generate empty relations. The rule can be stated as:

Rule 1:

 σpi (Rj) = Ø if ∧x in R: ¬(pi(x) ^ pj(x))

where pi and pj are selection predicates, x denotes a tuple, and p(x) denotes “predicate p

holds for x”.

Example:

Consider a query

SELECT *

FROM EMP

Virtual University Pakistan

 76

WHERE ENO = ‘E7’

 Generic query Reduced query

Figure 3: Reduction for horizontal fragmentation (with selection)

Reduction with join:

Joins on horizontally fragmented relations can be simplified when the joined relations are

fragmented according to the join attribute. The simplification consists of distributing

joins over unions and eliminating useless joins. The distribution of join over union can be

stated as:

(R1UR2) ∧ S= (R1 ∧ R3) U (R2 ∧ R3)

Where Ri are fragments of R and S is a relation.

With this transformation, unions can be moved up in the operator tree so that all possible

joins of fragments are exhibited. Useless joins of fragments can be determined when the

qualifications of joined fragments are contradicting. Assuming the fragments Ri and Rj

are defined, according to predicates pi and pj on the same attribute the simplification rule

can be stated as follows:

Rule2:

Ri∧Rj = Ø if for all x in Ri and for all y in Rj:¬(pi(x) ^ pj(y))

EMP3

σeNo = ‘E7’

EMP1 EMP2 EMP3

U

σeNo = ‘E7’

Virtual University Pakistan

 77

The determination of useless joins

are thus be performed by looking only at the fragment predicates. The application of this

rule permits the join of two relations to be implemented as parallel partial joins of

fragments. It is not always the case that the reduced query is better than the generic

query. The generic query is better when there are a large number of partial joins in the

reduced query.

Example:

Assume relation ASG is fragmented as:

• ASG1 = σeNo ≤ ‘E3’ (ASG)

• ASG2 = σ’eNo > ‘E3’ (ASG).

Consider a query:

SELECT eName

FROM EMP, ASG

WHERE EMP.eNo = ASG. eNo

The equivalent generic query is given in figure4. The query reduced by distributing joins

over unions and applying rule 2 can be implemented as a union of three partial joins that

can be done in parallel (figure5).

Figure 4: Generic query

EMP1 EMP2 EMP3

U

⋈eNo

ASG1 ASG2

U

Virtual University Pakistan

 78

Figure 5: Reduced query

Reduction for vertical fragmentation:

The vertical fragmentation function distributes a relation based on projection attributes.

Since the reconstruction operator for vertical fragmentation is the join, the localization

program for a vertically fragmented relation consists of the join of the fragment on the

common attribute.

Example:

Relation EMP can be divided into VFs where the key attribute ENO is duplicated.

• EMP1 = πeNo, eName (EMP)

• EMP2 = πeNo, title (EMP)

Relation R defined over attributes A = {A1, ..., An} vertically fragmented as Ri = πA' (R)

where A' ⊆ A

Rule3:

πD,K(Ri) is useless if the set of projection attributes D is not in A‘.

Example:

Consider a query: Select eName from EMP

EMP1

U

⋈eNo

ASG1 EMP2

⋈eNo

ASG2 EMP3

⋈eNo

ASG2

Virtual University Pakistan

 79

 Generic query Reduced query

Figure 6: Reduction for vertical fragmentation

Reduction for derived fragmentation:

Relation R is fragmented based on the predicate on S. Derived fragmentation should be

done for hierarchical relationship between R and S.

Example:

Assume ASG and EMP relations can be indirectly fragmented according to the following

rules:

• ASG1: ASG ∧ ENO EMP1

• ASG2: ASG ∧ ENO EMP2

• EMP1: σ title= ‘Programmer’ (EMP)

• EMP2: σ title ≠“Programmer’ (EMP)

Consider a query:

EMP1

⋈eNo

EMP2

π eName

EMP1

π eName

Virtual University Pakistan

 80

SELECT * FROM EMP, ASG

WHERE ASG.eNo = EMP.eNo AND EMP.title = "Mech. Eng."

Generic query

Query after pushing selection down

ASG1

⋈eNo

U

ASG2 EMP1 EMP2

U

σtitle = ‘Mech

ASG1

⋈eNo

U

ASG2 EMP2

σtitle = ‘Mech Eng.’

Virtual University Pakistan

 81

Figure 7: Query after moving unions up

Figure 8: Reduced query after eliminating the left sub tree

Summary

We have discussed final phase of Query decomposition and next phase of query

optimization i.e. Data localization.

ASG1

⋈eNo

U

EMP2

ASG2

EMP2

σtitle = ‘Mech Eng.’
σtitle = ‘Mech Eng.’

⋈eNo

ASG2 EMP2

σtitle = ‘Mech Eng.’

⋈eNo

Virtual University Pakistan

 82

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 33

Virtual University Pakistan

 83

In previous lecture:

- Final phase of QD

- Data Localization: for HF, VF and DF

In this lecture:

- Data Localization for Hybrid Fragmentation

- Query Optimization

Reduction for hybrid fragmentation:

Hybrid fragmentation contains both types of Fragmentations. The goal of hybrid

fragmentation is to support, efficiency, queries involving projection, selection and join.

Example:

Here is an example of hybrid fragmentation of relation EMP:

• EMP1=σeNo ≤ E4 (πeNo, eName (EMP))

• EMP2=σeNo > E4 (πeNo, eName (EMP))

• EMP3=πeNo, title (EMP)

Consider a SQL query

Select eName from EMP where eNo = “E5”. Generic query is shown in figure 1. and

reduced query is shown in figure 2.

Virtual University Pakistan

 84

Figure 1: Generic query

Figure 2: Reduced query

Summary of what we have done so far

• Query Decomposition: generates an efficient query in relational algebra

– Normalization, Analysis, Simplification, Rewriting

EMP2

π eName

σeNo = E5

EMP1

⋈eNo

EMP2

π eName

EMP3

U

σeNo = E5

Virtual University Pakistan

 85

• Data Localization: applies

global query to fragments; increases optimization level

• So, next is the cost-based optimization

Query optimization:

Query optimization refers to the process of producing a query execution plan (QEP)

which represents an execution strategy for the query. The selected plan minimizes an

objective cost functions. A query optimizer, the software module that performs query

optimization, is usually seen as three components:

1. Search space

2. Search strategy

3. Cost model

1) Search Space

The search space is the set of alternative execution plans to represent the input query.

These plans are equivalent, in the sense that the same result but they differ on execution

order of operations and the way these operations are implemented. Search space consists

of equivalent query trees produced using transformation rules. Optimizer concentrates on

join trees, since join cost is the most effective.

Example:

Select eName, resp

From EMP, ASG, PROJ where EMP.eNo = ASG. eNo and ASG.pNo = PROJ.pNo.

The Equivalent join trees are shown in figure 3.

Virtual University Pakistan

 86

EMP

x

PROJ

ASG

⋈pNo, eNo

PROJ

⋈pNo

ASG

EMP

⋈eNo

EMP

⋈eNo

ASG

PROJ

⋈pNo

Virtual University Pakistan

 87

Figure 3: Equivalent join trees

For a complex query the number of equivalent operator trees can be very high. For

instance, the number of alternative join trees that can be produced by applying the

commutativity and associativity rules is O(N!) for N relations. Query optimizers restrict

the size of the search space they consider. Two restrictions are:

1- Heuristics

- Most common heuristic is to perform selection and projection on base relations

- Another is to avoid Cartesian product

2- Shape of join Tree

Two types of join trees are distinguished:

- Linear Tree: At least one node for each operand is a base relation

- Bushy tree: May have operators with no base relations as operands (both operands

are intermediate relations)

2) Search Strategy

• Most popular search strategy is Dynamic Programming

• That starts with base relations and keeps on adding relations calculating cost

• DP is almost exhaustive so produces best plan

• Too expensive with more than 5 relations

• Other option is Randomized strategy

• Do not guarantee best

3) Cost Model:

An optimizer’s cost model includes cost functions to predict the cost of operators,

statistics, and base data and formulas to evaluate the sizes of intermediate results.

Cost function:

• The cost of distributed execution strategy can be expressed with respect to either

the total time or the response time.

• Total time = CPU time + I/O time + tr time

• In WAN, major cost is tr time

Virtual University Pakistan

 88

• Initially ratios were 20:1 for

tr and I/O, for LAN it is 1:1.6

• Response time = CPU time + I/O time + tr time

• TCPU = time for a CPU insts

• TI/O = a disk I/O

• TMSG = fixed time for initiating and recv a msgs

• TTR = transmit a data unit from one site to another

Example:

Figure 4

Assume that TMSG and TTR are expressed in time units. The total cost of transferring x

data units from site 1 to site 3 as shown in figure 4 and y data units from site 2 to site 3 is

• Total Time = 2TMSG + TTR*(x+y)

• Response Time = max{TMSG + TTR*X, TMSG + TTR*Y}

Site 1

Site 2

Site 3

X units

Y units

Virtual University Pakistan

 89

Database Statistics

The main factor affecting the performance of an execution strategy is the size of the

intermediate relations that are produced during the execution. When a subsequent

operation is located at a different site, the intermediate relation must be transmitted over

the network. There is a direct trade-off between the precision of the statistics and the cost

of managing them, the more precise statistics being the more costly. For each relation

R[A1, A2, …, An] fragmented as R1, …, Rr,the statistical data typically are the following:

1. Length of each attribute: length(Ai)

2. The number of distinct values for each attribute in each fragment: card(πAi(Rj))

3. Maximum and minimum values in the domain of each attribute: min(Ai), max(Ai)

4. The cardinalities of each domain: card(dom[Ai]) and the cardinalities of each

fragment: card(Rj)

5. Join selectivity factor for some of the relations SFJ (R,S) = card(R ⋈ S)/ (card(R)

∗ card(S))

Cardinalities of Intermediate Results

Database statistics are useful in evaluating the cardinalities of the intermediate results of

queries. Two simplifying assumptions are commonly made about the database. The

distribution of attribute values in a relation is supposed to be uniform, and all attributes

are independent, meaning that the value of an attribute does not affect the value of any

other attribute. The following are the formulas for estimating the cardinalities of the

result of the basic relational algebra operations.

Selection Operation:

• Card(σF(R))=SFS(F) * card(R)

• SFS(A = value) = 1/card(πA(R))

• SFS(A > value) = max(A) – value/(max(A) – min(A))

• SFS(A < value) = value - min(A) /(max(A) – min(A))

• SFS(A < value) = max(A) – value /(max(A) – min(A))

• SFS(p(Ai) ^ p(Aj)) = SFS(p(Ai)) *(SFSp(Aj))

Virtual University Pakistan

 90

• SFS(p(Ai) v p(Aj)) =

SFS(p(Ai)) + SFS(p(Aj))–(SFS(p(Ai))* SFS(p(Ai))).

Cardinality of Projection:

• Hard to determine precisely

• Two cases when it is trivial

1- When a single attribute A,

 card(πA(R)) = card (A)

2- When PK is included

card(πA(R)) = card (R)

Cartesian Product:

• card(RxS) = card (R) * card(S)

Cardinality of Join:

• No general way to test without additional information

• In case of PK/FK combination

 Card(R ⋈ S) = card (S)

Semi Join:

• SFSJ(R ⋉AS)= card(πA(S))/ card(dom[A])

• card(R ⋉AS) = SFSJ(S.A) * card(R)

Union:

• Hard to estimate

• Limits possible which are card(R) + card(S) and max{card (R) + card (S))

Difference:

• Like Union, card (R) for (R-S), and 0

Centralized Query Optimization

Virtual University Pakistan

 91

A distributed query is transformed

into local ones, each of which is presented in centralized way. Distributed query

optimization techniques are often extensions of the techniques for centralized systems.

Centralized query optimization is simpler problem; the minimization of communication

costs makes distributed query optimization more complex. Two popular query

optimization techniques:

• INGRES

• Dynamic optimization

• Recursively breaks into smaller ones

• System R

• Static optimization

• Based on exhaustive search using statistics about the database

Maximum DBMs uses static approach s here our focus is on static approach that is

adopted by system R.

Summary

We have discussed the final phase of data localization the concepts of query optimization

and the components of query optimization: search space, cost model and search strategy.

For cost calculation database information and statistics are required.

Virtual University Pakistan

 92

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 34

Virtual University Pakistan

 93

In previous lecture:

- Concluded Data Localization

- Query Optimization

o Components: Search space, cost model, search strategy

o Search space consists of equivalent query trees

o Search strategy could be static, dynamic or randomized

o Cost model sees response and total times…

o Transmission cost is the most important

o Another major factor is size of intermediate tables

o Database statistics are used to evaluate size of intermediate tables

o Selectivity factor, card, size are some major figures

In this lecture:

- Query Optimization

- Centralized Query optimization

o Best access path

o Join Processing

- Query optimization in Distributed Environment

Centralized Query Optimization:

System R:

System R performs static query optimization based on the exhaustive search of the

solution space. The input to the optimizer of system R is a relational algebra tree resulting

from the decomposition of an SQL query. The output is an execution plan that

implements the “optimal” relational algebra tree.

The optimizer assigns a cost to every candidate tree and retains the one with the smallest

cost. The candidate trees are obtained by a permutation of the join orders of the n

relations of the query using the commutativity and associativity rules. To limit the

overhead of optimization, the number of alternative trees is reduced using dynamic

Virtual University Pakistan

 94

programming. The set of alternative

strategies is considered dynamically so that when two joins are equivalent by

commutativity, only the cheapest one is kept.

Two major steps in Optimization Algorithm

• Best access path for individual relation with predicate

• The best join ordering is eliminated

An important decision with either join method is to determine the cheapest access path to

internal relation. There are two methods:

1) Nested loops

2) Merge join

1) Nested loops:

It composes the product of the two relations. For each tuple of the external relation, the

tuples of the internal relation that satisfy the join predicate are retrieved one by one to

form the resulting relation. An index on the join attribute is very efficient access path for

internal relation. In the absence of an index, for relations of n1 and n2 pages resp. this

algorithm has a cost proportional to n1*n2 which may be prohibitive if n1 & n2 are high.

2) Merge join:

If consists of merging two sorted relations on the join attribute as shown in figure 1.

Indices on the join attribute may be used as access paths. If the join criterion is equally

the cost of joining two relations n1 and n2 pages, resp. is proportional to n1+n2. this

method is always chosen when there is an equi join, and when the relations are previously

sorted.

Example:

Select eName From EMP, ASG, PROJ Where

 EMP.eNo = ASG.eNo & PROJ.pNo = ASG.pNo & pName = ‘CAD/CAM’

We assume the following indices:

• EMP has an index on eNo

• ASG has an index on pNo

• PROJ has an index on pNo and an index on pName

Virtual University Pakistan

 95

Figure 1: Join graph of query

We assume that the first loop of the algorithm selects the following best single relation

access paths:

• EMP: sequential scan (no selection on EMP)

• ASG: sequential scan (no selection on ASG)

• PROJ: index on pName (there is a selection on PROJ based on pName)

The dynamic construction of tree of alternative strategies is shown in figure. The

maximum number of join orders is 3!. The operations that are underlined are dynamically

eliminated. The first level of the tree indicates the best single-relation access method. The

second level indices for each of these, the best join method with any other relation as

shown in figure 2.

Figure 2: Alternative join orders

EMP x PROJ

EMP ASG

PROJ

EMP⋈ASG

ASG⋈EMP

PROJ x EMP
PROJ⋈ASG

ASG⋈PROJ

(ASG⋈EMP)⋈PROJ

(PROJ⋈ASG)⋈EMP

EMP PROJ

eNo
pNo

ASG

Virtual University Pakistan

 96

Join Ordering in Fragmented

Queries:

Ordering joins is an important aspect of centralized query optimization. Join ordering in a

distributed context is even more important since joins between fragments may increase

the communication time. Two basic approaches exist to order joins in fragment queries.

• Optimize the ordering of joins

• Replaces joins by combination of semi-joins to minimize communication cost

Join Ordering:

Some algorithms optimize the ordering of joins directly without using semijoins.

Distributed INGRES and R* algorithms are representative of algorithms that use joins

rather than semijoins.

Example:

Let us consider a simpler problem of operand transfer in a single join. The query is R ∧ S,

where R and S are relation stored at different sites as shown in figure 3. The obvious

choice of the relation to transfer is to send the smaller relation to the site of the larger one,

which gives rise to two possibilities as shown in figure. To make this choice we need to

evaluate the size of R and of S. we now consider the case where there are more than two

relations to join. As in the case of single join, the objective of the join-ordering algorithm

is to transmit smaller operands. Estimating the size of join results is mandatory, but also

difficult. A solution is to estimate the communication cost of all alternative strategies and

to choose the best one. The number of strategies grows rapidly with the number of

relations.

Figure 3: Transfer of operands in binary operation

Example:

Consider the following query expressed in relational algebra:

 PROJ ∧ pNO EMP ∧ eNO ASG

R

If size(R) < size(S)
S

If size(S) < size(R)

Virtual University Pakistan

 97

Whose join graph is given in figure 4,

we have made certain assumptions about the locations of three relations. This query can

be executed in at least five different ways. We describe these strategies by the following

programs, where (R site j) stands for “relation R is transferred to site j”.

Figure 4: Join graph of distributed query

Strategy 1:

EMP�site2, site2 computes EMP’= EMP ∧ ASG�site3 computes EMP’ ∧ PROJ

Strategy 2:

ASG�site1, site1 computes EMP’= EMP ∧ ASG�site3 computes EMP’ ∧ PROJ

Strategy 3:

ASG�site3, site3 computes ASG’= PROJ ∧ ASG�site1

Strategy 4:

PROJ�site2, site2 computes PROJ’= PROJ ∧ ASG�site1 computes EMP ∧ PROJ’

Strategy 5:

EMP, PROJ�site2, site2 computes PROJ ∧ ASG ∧ EMP

To select one of these programs, the following sizes must be known or predicted :

size(EMP), size(ASG),size(PROJ),size(EMP ∧ ASG), and size(ASG ∧ PROJ). If it is the

reponse time that is being considered, the optimization must take into account the fact

that transfers can be done in parallel with strategy 5. an alternate to enumerating all the

solutions is to use heuristics that consider only the sizes of the operand relations by

assuming, e.g. that the cardinality of the resulting join is the product of cardinalities. In

EMP

ASG

PROJ

eNo pNo

Site 2

Site 1 Site 3

Virtual University Pakistan

 98

this case relations are ordered by

increasing sizes ans the order of execution is given by this ordering and the join graph.

For instance, the order (EMP, ASG, PROJ) coule use strategy 1, while the order (PROJ,

ASG, EMP) could use strategy 4.

Summary

We have discussed the query optimization, join operations that are required in centralized

and fragmented queries that are required in distributed environment. We will continue

this discussion in next lecture.

Virtual University Pakistan

 99

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 35

Virtual University Pakistan

 100

In previous lecture:

- Query Optimization

- Centralized Query Optimization

o Best access path

o Join Processing

- Query Optimization in Distributed Environment.

In this lecture:

- Query Optimization

o Fragmented Queries

o Joins replaced by Semijoins

o Three major Query Optimization algorithms

Semijoin based Algorithms:

The main shortcoming of the join approach is that entire operand relations must be

transferred between sites. The semijoin acts as a size reducer for a relation much as a

selection does. The join of two relations R and S over attribute A, stored at sites 1 and

2,resp. can be computed by replacing one or both operand relations by a semijoin with

the other relation, using the following rules:

So R ⋈A S can be replaced:

– (R ⋉A S) ⋈A S

– R ⋈A (S ⋉A R)

– (R ⋉A S) ⋈A (S ⋉A R)

The choice between one of the three semijoin strategies requires estimating their

respective costs. The use of the semijoin is beneficial if the cost to produce and send it to

the other site is less than the cost of sending the whole operand relation and of doing the

Virtual University Pakistan

 101

actual join. To illustrate the potential

benefit of the semijoin, let us compare the costs of the two alternatives R ⋈A S verses (R

⋉A S) ⋈A S, assuming that size(R) < size (S).

The following program, using the semijoin operation:

1) πA (S) � site 1

2) Site1 computes R’ = R ⋉A S’

3) R’ � site 2

4) Site2 computes R’ ⋈A S

For the sake of simplicity let us ignore the constant TMSG in the communication time

assuming that the term TTR*size(R) is much larger. We can then compare the two

alternatives in terms of the amount of transmitted data. The cost of the join-based

algorithm is that of transferring relation R to site2. The cost of the semi-join based

algorithm is the cost of steps1 and 3 above. Therefore the semijoin approach is better if

Size(πA(S)) + size(R ⋉A S) < size(R)

The semijoin approach is better if the semijoin acts as a sufficient reducer, if a few tuples

of R participate in the join. The join approach is better if almost all tuples of R participate

in the join, because the semijoin approach requires an additional transfer of a projection

on the join attribute. The cost of projection step can be minimized by encoding the result

of the projection in bit arrays thereby reducing the cost of transferring the joined attribute

values. It is important to note that neither approach is systematically the best; they should

be considered as complementary.

The semijoin can be useful in reducing the size of the operand relations involved in

multiple join queries. Query optimization becomes more complex in these cases.

Semijoin approach can be applied to each individual join, consider an example:

Example:

Consider an example of a program to compute EMP ⋈ ASG ⋈ PROJ is

EMP’ ⋈ ASG’ ⋈ PROJ

Virtual University Pakistan

 102

where EMP’ = EMP ⋉ ASG and

ASG’ = ASG ⋉ PROJ

We may further reduce the size of an operand relation by using more than one semioin.

For example, EMP’ can be replaced in the preceding program by EMP” derived as

EMP” = EMP ⋉ (ASG ⋉ PROJ)

Since if size (ASG ⋉ PROJ) <= size(ASG), we have size(EMP’’) <= size(EMP’). In this

way EMP can be reduced by the sequence of semijoins: EMP ⋉ASG ⋉ PROJ). Such a

sequence of semijoins is called a semijoin program for EMP. Similarly, semijoin

programs can be found for any relation in a query. For example, PROJ could be reduced

by the semijoin program PROJ ⋉ (ASG ⋉ EMP). Not all of the relations involved in a

query need to be reduced; we can ignore those relations that are not involved in the final

joins.

For a given relation, there exist several potential semijoin programs. The number of

possibilities is in fact exponential in the number of relations. But there is one optimal

semijoin program called full reducer, which for each relation R reduces R more than the

others. The problem is to find the full reducer. A simple method is to evaluate the size of

all possible semijoin programs and to select the best one. The problems with the

enumerative method are twofold:

There is a class of queries, called cyclic queries that have cycles in their join graph and

for which full reducers can not be found

For other queries, called tree queries, full reduces exist, but the number of candidate

semijoin programs is exponential in the number of relations, which makes the

enumerative approach NP-hard.

Example:

Consider a SQL query:

Select eName From EMP, ASG, PROJ Where

EMP.eNo = ASG.eNo and

ASG.eNo = PROJ.eNo and

EMP.city = PROJ.city

Virtual University Pakistan

 103

Figure 1: Cyclic Query

Figure 2: Tree Query

It is possible to derive semijoin programs for reducing it, but the number of operations is

multiplied by the number of tuples in each relation, making this approach inefficient. One

solution consists of transforming the cyclic graph into a tree by removing one arc of the

graph and by adding appropriate predicates to the other arcs such that the removed

predicate is preserved by transitivity as shown in figure 1 and 2.

Distributed Query Processing Algorithms:

Three main representative algorithms are

• Distributed INGRES Algorithm

• R* Algorithm

• SDD-1 Algorithm

R* Algorithm:

R* uses a compilation approach where an exhaustive search of all alternative strategies is

performed in order to choose the one with the least cost. Predicting and enumerating

these strategies is costly, the overhead of exhaustive search is rapidly amortized if the

query is executed frequently. The R* query processing algorithm deals only with

relations as basic units. Query compilation is distributed task in R* coordinated by a

EMP

ASG

PROJ

eNo, city pNo, city

EMP

ASG

PROJ

eNo pNo

city

Virtual University Pakistan

 104

master site, where the query is

initiated. The optimizer of the master site makes all intersite decisions, such as the

selection of the execution sitesand the fragments as well as the method for transferring

data.

As in the centralized case, the optimizer must select the join ordering, the join algorithm

(nested loop or merge loop), and the access path for each fragment (e.g clustered index,

sequential scan e.t.c). these decisions are based on statistics and formulas used to estimate

the size of intermediate results and access path information. The optimizer must select the

sites of join results and the method of transferring data between sites. To join two

relations, there are three candidate sites: the site of a first relation, the site of second

relation or a third site. In R*, two methods are supported for intersite data transfers.

1) Ship-whole

• Entire relation transferred

• Stored in a temporary relation

• In case of merge-join approach, tuples can be processed as they

arrive

2) Fetch-as-needed

• External relation is sequentially scanned

• Join attribute value is sent to other relation

• Relevant tuples scanned at other site and sent to first site

Inter-site transfers: comparison

o Ship-whole

� larger data transfer

� smaller number of messages

� better if relations are small

o Fetch-as-needed

� number of messages = O(cardinality of external relation)

� data transfer per message is minimal

• better if relations are large and the join selectivity is good.

Example:

Virtual University Pakistan

 105

Given the join of an external relation

R with an internal relation S on attribute A there are four join strategies.

Strategy 1:

Move outer relation tuples to the site of the inner relation the external tuples can be

joined with S as they arrive.

Total Cost = LT (retrieve card(R) tuples from R) + CT (size(R)) + LT (retrieve s

tuples from S) * card (R)

Strategy 2:

Move inner relation to the site of outer relation. The internal tuples can not be joined as

they arrive; they need to be stored

Total Cost = LT (retrieve card(S) tuples from S) + CT (size (S)) + LT (store

card(S) tuples as T) + LT (retrieve card(R) tuples from R) + LT (retrieve s tuples

from T) * card (R)

Strategy 3:

Fetch inner tuples as needed for each tuple in R, send join attribute value to site of S.

Retrieve matching inner tuples at site S. Send the matching S tuples to site of R. Join as

they arrive:

Total Cost = LT (retrieve card(R) tuples from R)+ CT (length(A) * card (R)) +

 LT(retrieve s tuples from S) * card(R) + CT (s * length(S)) * card(R)

Strategy 4:

Move both inner and outer relations to another site

Example:

A query consisting join of PROJ (ext) and ASG (int) on pNo

Four strategies

1- Ship PROJ to site of ASG

2- Ship ASG to site of PROJ

3- Fetch ASG tuples as needed for each tuple of PROJ

Virtual University Pakistan

 106

4- Move both to a third site

Optimization involves costing for each possibility. That is it regarding R* algorithm for

distributed query optimization.

SDD-1 Algorithm

The query optimization algorithm of SDD-1 is derived from an earlier method called the

“hill-climbing” algorithm which has the distinction of being the first distribution query

processing algorithm. In this algorithm, refinements of an initial feasible solution are

recursively computed until no more cost improvements can be made. The algorithm does

not use semijoins, nor does it assume data replication and fragmentation. It is devised for

wide area point-to-point networks. The cost of transferring the result to the final site is

ignored. This algorithm is quite general in that it can minimize an arbitrary objective

function, including the total time and response time.

The hill climbing algorithm proceeds as follows.

1- The input to the algorithm includes the query graph, location of relations, and relation

statistics.

2- Do the initial local processing

3- Select the initial best plan (ES0)

– Calculate cost of moving all relations to a single site

– Plan with the least cost is ES0

4- Split ES0 into ES1 and ES2

– ES1: Sending one of the relation to other site, relations joined there

– ES2:Sending the result back to site in ES0.

5- Replace ES0 with ES1 and ES2 when we should have

 cost(ES1) + cost(local join) + cost (ES2) < cost (ES0)

6- Recursively apply step 3 and 4 on ES1 and ES2, until no improvement

Example

Find the salaries of engineers working on CAD/CAM project

• Involves EMP, PAY, PROJ and ASG

Πsal(PAY ⋈ title(EMP ⋈ eNo(ASG ⋈ pNo(σpName = ‘CAD/CAM’ (PROJ)))))

Virtual University Pakistan

 107

Assume that Tmsg = 0 and TTR = 1.

we ignore the local processing following which the database is

Relation Size Site

EMP

PAY

PROJ

ASG

8

4

1

10

1

2

3

4

Assume Length of a tuple is 1

So size(R) = card(R)

Considering only transfers costs Site 1

• PAY � site 1 = 4

• PROJ � site 1 = 1

• ASG � site 1 = 10

• Total = 15

Cost for site 2 = 19

Cost for site 3 = 22

Cost for site 4 = 13

So site 4 is our ES0

Move all relations to site 4.

Summary

We have discussed Query Optimization, Fragmented Queries, Joins replaced by

Semijoins. Three major Query Optimization algorithms.

Virtual University Pakistan

 108

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 36

Virtual University Pakistan

 109

In previous lecture:

- Query Optimization

o Fragmented Queries

o Joins replaced by Semijoins

o Three major Query Optimization algorithms

� Discussed R* Algorithm

� Discussing SDD-1.

In this lecture:

- Query Optimization

o SDD-1 Algorithm continued

o Improvements in SDD-1 ALgo

o Overview of Query Processing

SDD-1 Algorithm continued:

From Previous Lecture

Example

Find the salaries of engineers working on CAD/CAM project

• Involves EMP, PAY, PROJ and ASG

Πsal(PAY ⋈ title(EMP ⋈ eNo(ASG ⋈ pNo(σpName = ‘CAD/CAM’ (PROJ)))))

Assume that Tmsg = 0 and TTR = 1. We ignore the local processing following which the

database is shown in figure 1.

Relation Size Site

EMP

PAY

PROJ

ASG

8

4

1

10

1

2

3

4

Figure 1

Assume Length of a tuple is 1

So size(R) = card(R)

Virtual University Pakistan

 110

Considering only data transfers the initial feasible solution is to choose sie4 as the result

site, producing the schedule.

Site 4

–PAY � site 4 = 4

–PROJ � site 4 = 1

–EMP � site 4 = 8

 Total = 13

The minimum cost option, so ES0

One possible way of splitting this schedule (call it ES’) is the following:

–ES1: EMP � site 2

–ES2: (EMP ∧ PAY) � site 4

–ES3: PROJ � site 4

–Cost = 8 + 8 + 1 = 17

Other possibilities suggest that ES0 should not be split

Problems:

•The hill-climbing algorithm is in the class of greedy algorithms, which start with an
initial feasible solution and iteratively improve it. The main problem is that strategies

with higher cost, which could nevertheless produce better overall benefits, are ignored. If

the optimal schedule has a high initial cost, it won't find it, An optimum solution with

multiple sites is ignored, for example.

A better schedule is

PROJ → Site 4

Virtual University Pakistan

 111

ASG' = (PROJ ⋈ ASG) → Site 1

(ASG' ⋈ EMP) → Site 2

Total cost = 1 + 2 + 2 = 5

The hill climbing algorithm has been substantially improved in SDD-1 in a number of

ways. The improved version makes extensive use of semijoins. The objective function is

expressed in terms of total communication time. Finally, the algorithm uses statistics on

the database, called database profiles, where a profile is associated with a relation. The

improved version also selects an initial feasible solution that is iteratively refined.

Furthermore, a postoptimization step is added to improve the total time of the solution

selected. The main step of the algorithm consists of determining and ordering beneficial

semijoins, that is semijoins whose cost is less than their benefit. The cost of semijoin is

that of transferring the semijoin attributes A.

Cost(R ⋉ A S) = TMSG + TTR * size(ΠA(S))

While its benefit is the cost of transferring irrelevant tuples of R (which is avoided by the

semijoin):

Benefit(R ⋉ A S) = (1-SFSJ(S.A)) *size(R) * TTR

Phases of SDD-1:

There are four phases:

1. Initialization

2. Selection of beneficial semijoins

3. Assembly site selection

4. Postoptimization

The initialization phase generates a set of beneficial smijoins: BS= {SJ1, SJ2, …, SJk) and

an execution strategy that includes only local processing. The next phase selects the

beneficial semijoins from BS by iteratively choosing the most beneficial semijoin, SJi

and modeling the database statistics and BS accordingly. The next phase computes the

assembly site by evaluating, for each candidate site, the cost of transferring to it all the

required data and taking the one with the least cost. A postoptimization phase permits the

Virtual University Pakistan

 112

removal from the execution strategy

of those semijoins that affect only relations stored at assembly site.

Example:

Let us consider the following query as shown in figure 2:

SELECT * FROM

EMP, ASG, PROJ WHERE

EMP.eNo = ASG.eNo AND

ASG.pNo = PROJ.pNo

Relation Card Tuple size Rel. size

EMP

ASG

PROJ

30

100

50

50

30

40

1500

3000

2000

Attribute SFSJ Size(Πattrib)

EMP.eNo

ASG.eNo

ASG.pNo

PROJ.pNo

0.3

1.0

1.0

0.4

120

400

400

200

Figure 2: Example Query and Statistics

EMP ⋈ ASG ⋈ PROJ

–EMP ⋉ ASG

EMP ASG PRO

eNo pNo

Site 1 Site 3 Site 2

Virtual University Pakistan

 113

–ASG ⋉ EMP

–ASG ⋉ PROJ

–PROJ ⋉ ASG

The initial set of beneficial semijoins will contain the following two:

SJ1=ASG ⋉ EMP

- Cost = 1 * 120 = 120

- Ben = (1-.3)*3000 = 2100

SJ2=ASG ⋉ PROJ

-Cost = 1 * 200 = 200

-Ben = (1-.4)*3000 = 1800

There are two nonbeneficial semijoins:

SJ3=EMP ⋉ ASG

-Cost = 1 * 400

-Ben = (1-1)*1500 = 0

SJ4=PROJ ⋉ ASG

-Cost = 1 * 400 = 400

-Ben = (1-1)*3000 = 0

Now we perform Iterations:

Iteration 1

Move SJ1 from BS to ES

Update statistics of ASG

size(ASG) = 900 = 3000 * 0.3

Virtual University Pakistan

 114

SF⋉ (ASG.ENO) = ~1.0*0.3 = 0.3.

Iteration 2:

Two beneficial semijoins:

SJ2 = ASG' ⋉ PROJ

–Benefit = (1–0.4) * 900 = 540

–cost = 200

SJ3 = EMP ⋉ ASG‘

–Benefit = (1–0.3) *1500 = 1050

–cost is 400

Add SJ3 to ES

Update statistics of EMP

Size(EMP) = 1500*0.3 = 450

SF ⋉ (E.ENO) = ~0.3*0.3 = 0.09

Iteration 3:

No new beneficial semijoins.

Move remaining beneficial semijoin SJ2 from BS to ES

Update statistics of ASG

Size(ASG) = 900*0.4 = 360

Assembly Site Selection: The site where the largest amount of data resides

Example:

Amount of data stored at:

–Site 1: 450

–Site 2: 360

Virtual University Pakistan

 115

–Site 3: 2000 (Assembly Site)

For each Ri at the assembly site, find the semijoins of the type Ri ⋉ Rj where the total

cost of ES without this semijoin is smaller than the cost with it and remove the semijoin

from ES. No semijoins are removed in our example

Permute the order of semijoins if doing so would improve the total cost of ES

Final ES = {(ASG ⋉ EMP), (ASG’ ⋉ PROJ), (EMP ⋉ ASG’)}, Execution site = 3

Final Strategy: Send (ASG ⋉ EMP) ⋉ PROJ and EMP ⋉ ASG’ to Site 3

Summary of QP

QP involves

–Accepting User Query (SQL)

–Establishing exec strategy

–Query optimization
QP objective is to reduce the cost function: involves I/O time, CPU time and

communication time

Layers of QP

1. Query Decomposition

2. Data Localization

3. Global Query Optimization

4. Local Query Optimization.

1- Query Decomposition

Transforms an SQL query to Relational Algebra one on the global relations

Four phases:

1.1 Normalization: Rewrites in a proper format

1.2 Analysis: checks type and semantically incorrect ones

1.3 Elimination of Redundancy

1.4 Rewriting: in relational algebra-

Virtual University Pakistan

 116

2- Data Localization

Input is a query tree

Localizes the query data using the data distribution information from global schema: two

steps.

2.1 Simplification: replaces the relation names with the fragments names

2.2 Fragment query is simplified and restructured to produce a good one-

3- Global Query Optimization:

Finding the best ordering of operations in fragmented query including comm. cost

Extension of Centralized QO

Concepts of concern

–Search space

–Cost model

–Search strategy

Database Statistics

–Some stored in schema

–They are used to compute the size of intermediate tables, figures like
�Cardinality

�Size

�Selectivity factor.

Centralized QO Determines

–Best access path for relations

–Join processing
�Nested loops

Virtual University Pakistan

 117

�Merge Join

Fragmented QO

–Join ordering

–Semijoin based algorithms
Join Ordering

–For two relations is simple

–For more relations
�move all to one site

�select the smallest one

�difficult to compute for all

�Use heuristic.

Semijoin based Algorithms

–SJ approach is better if…

–For more than two relations is complex, need to compute costs, most of the time
restricted to two relations

Two representative algos

–R* Algorithm

–SDD-1 Algorithm
R* Algorithm

–Static, exhaustive

–Master, apprentice, execution sites

–Ship-whole, fetch-as-needed

–Adopts four strategies, computes cost for each and adopts the best one.
SDD-1 Algorithm

Virtual University Pakistan

 118

–Input: Query Graph, DB Statistics,
location of relations

–Select an initial plan ES0, one that gives minimum transfer cost

–Improve ES0 iteratively, unless no further improvement.

–See the beneficial SJs, where benefit is more than the cost, move them to BS

–Move best SJ from BS to ES

–Adjust the statistics based on the selected SJ

–Iteratively move all beneficial SJ to ES.

–Pass through postoptimization phase

–Select the execution site, one that contains maximum data, move the selected SJs to
that site.

Virtual University Pakistan

 119

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 37

Virtual University Pakistan

 120

In today’s lecture:

- Parallel Database Systems

o Basics of Parallel Processing

o Parallel Database Systems

References for the topic

Crichlow, J. M.,”An Introduction to Distributed and Parallel Computing” second ed., PHI

Mahapatra,T., Mishra, S., “Oracle Parallel Processing”, O’Relly Online Catalogue

Parallel Processing:

Introduction:

Computer programs generally execute sequentially, reasons are:

– Single CPU

– Programming language support

– Programmer familiarity

– Logic of program is sequential

Uni-processor multi-programming systems allow concurrent processing through context

switching. However, CPU runs one instruction at a time. Parallel processing involves

taking a large task, dividing it into several smaller tasks, and then working on each of

those smaller tasks simultaneously. This divide-n-conquer strategy performs larger task

in less time.

Requirements for parallel processing:

• Computer Hardware

• An operating system capable of managing multiple processors

• Application software

Why parallel processing:

Virtual University Pakistan

 121

Some Applications need computing

power of parallel system

• image processing

• large-scale simulation

• Weather forecasting etc.

Advantages:

Parallel processing has following advantages:

• More fault tolerance

• Increases throughput

• Better price/performance

Costs involved:

• Synchronization cost has to be kept minimum

• Administering is difficult

Many computer programs can be broken into distinct parallel procedures, like

for i = 1 to n

c(i) = a(i) *a(i) + sqrt(a(i))

Where c and a are array

Square and square root can be done in parallel in parallel processing. So the execution

speed increases. Systems allow moving away from strict serial execution to parallel

processing. There are different architectures in parallel processing:

• Pipeline machines

• Multicomputers

• Multiprocessors

• Massively parallel architecture

Pipeline and Vector Processors

Virtual University Pakistan

 122

Pipeline processors permit

overlapping of instructions. This is also called producer-consumer. An instruction divided

into a number of distinct stages, each allocated to distinct processor. Like, steps may be

1. Fetch instruction

2. Decode it

3. Calculate effective address of operands

4. Get operands

5. Execute operations

6. Store result

For example, there are six processors. First processor gives the output to second and

starts the next instruction first step. So in this way six instructions run in pipeline manner.

Determination of operation involved here. If operation is same on large amount of data,

so the step fetch and decode will skip and just perform other four steps so execution will

be fast. This process is called vector processing.

Multicomputer Systems

Multiple computers linked through a network in a small area. They are loosely coupled

systems and they are also called MIMD (multiple instructions multiple data) machines.

Different instructions execute on different machines. They are physical connected via bus

or channel and allows parallel stream transmission of data. In multicomputer systems

data transmission speed will be fast, low transmission errors because of less distance and

skew is immaterial. Skew means sub tasks perform in parallel so there is a time variation

exists. Multicomputer can be used to distribute processing by type e.g. if there is a task

then this involve number of activities and each computer assign a one activity e.g. one is

used for input/output and one for report and so on. These computers must interact with

each other. One possibility for load balancing establishes a setup of Master/Slave. Second

setup is of Multiple Master/Slave. Third is Peer to peer, anyone initiates a job, interested

processors bid.

Virtual University Pakistan

 123

Summary

We have discussed the basics of parallel processing and parallel database systems.

Parallel database system is the combination of parallel processing and database concepts.

Virtual University Pakistan

 124

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 38

Virtual University Pakistan

 125

In the previous lecture:

- Sequential Execution

- Parallel Execution

- Non-Sequential setups

o Pipeline and Vector Processor

o Multicomputer Systems

In today’s lecture:

- Parallel Processing basics

o Multiprocessor Systems

o Associative Processors

o Array Processors

- Entry to Parallel Database Systems

Multiprocessor Systems

Multiprocessing is the use of two or more central processing units (CPUs) within a single

computer system as shown in figure 1. One computer with a global RAM shared by many

processors. All processors are tightly coupled. In multiprocessor, thousands of processor

is controlled by single operating system. Each processor accessing the same job queue.

Synchronization between them is required. Contention for resources may be occurring.

Interprocessor communication is also required. Processors may be allocated buffer areas

in memory for interProcessor information transfer.

Virtual University Pakistan

 126

Figure 1

Certain processors may become idle and they should announce their availability, or wait

for a signal for help from other systems. Interconnection systems are

• Time shared or common bus

• Crossbar switches

• Multiport-memory systems

• Multistage networks

Associative Processors

They are designed to speed up search for data items in memory. Parallel examination of

all memory block to search matching ones.

Array Processors (SIMD)

Set of identical Processors synchronized to perform same instruction simultaneously on

different data. They are also called SIMD. That is it about Parallel Computing basics.

Let’s move to now parallel databases.

Processors

A

B

C

1 2

1

1 2

Common Memory

Virtual University Pakistan

 127

Figure 2

Parallel database:

Parallel database systems combine database management and parallel processing to

increase performance and availability. The major problems for DBSs have been I/O

bottleneck. Initially database machines (DBMs) designers tackled this problem through

special purpose hardware. They failed because of a poor price/performance when

compared to the software solution which can easily benefit from hardware progress in

silicon technology. One solution is increasing I/O bandwidth through parallelism. For

instance, if we store a database of size D with throughput T or we store on n disks, size

will be D/n and throughput T’, we get an ideal throughput of n * T’ which can be better

consumed by multiple processor.

PE Nearest neighbor mesh

CU

n processing elements

n memory modules Array processor
Organization

Virtual University Pakistan

 128

The objectives of parallel database

systems can be achieved by extending distributed database technology, e.g, by

partitioning the database across multiple (small) disks so that much inter- and intra- query

parallelism can be obtained. Inter-query parallelism is the ability to use multiple

processors to execute several independent queries simultaneously as shown in figure 3.

Figure 3

Intra-query parallelism is the ability to break a single query into subtasks and to execute

those subtasks in parallel using a different processor for each as shown in figure 4.

Figure 4

A parallel database system can be loosely defined as a DBMS implemented on a tightly

coupled multiprocessor. A Parallel database system acts as a DB server to multiple

application servers in now client-server organization in computer networks. It supports

– DB functions

Query 1 Processor 1 Result 1

Query 2 Processor 2 Result 2

Processors

Results

Query

Subtask1

Subtask2 Merging

Final
Result

Virtual University Pakistan

 129

– C/S interface

– Also general purpose computing

Advantages

A parallel database system should provide the following advantages:

1) High Performance:

This can be obtained through several complementary solutions: DB-Oriented

Operating System support, parallelism, optimization, and load balancing. Having the

operating system constrained and aware of the specific database requirements (e.g.

buffer management) simplifies the implementation of low-level database functions

and therefore decreases their cost. Parallelism can increase throughput, using inter-

query parallelism and decrease transaction response times, using intra query

parallelism. Load balancing is the ability of system to divide a given workload

equally among all processors.

2) High availability

Because a parallel database system consists of many similar components, it can

exploit data replication to increase database availability. In a high parallel system

with many small disks, the probability of a disk failure at any time can be higher. Its

is essential that a disk failure does not imbalance the load, e.g. by doubling the load

on the available copy. Solutions to this problem require partitioning copies in such a

way that they can also be accessed in parallel.

3) Extensibility

In a parallel environment, accommodating increasing database sizes or increasing

performance demands should be easier. Extensibility is the ability of smooth

expansion of system by adding processing and storage power to the system. The

parallel database system should demonstrate two advantages

– Linear scaleup

– Linear speedup

 Extending the system should require minimum reorganization of existing database.

Virtual University Pakistan

 130

Architecture of a parallel database

system

Assuming client server architecture, the functions supported by a parallel database system

can be divided into three subsystems much like in a typical RDBMS. Depending on the

architecture, processor can support all (or a subset) of these subsystems. Figure 5 shows

the architecture:

Figure 5: General architecture of a parallel database system

1) Session manager

It plays the role of transaction monitor providing support for client interactions with

the server. It performs the connections and disconnections between the client

processes and the two other subsystems. It initiates and closes user sessions. In the

case of OLTP sessions, the session manager is able to trigger the execution of pre-

loaded transaction code with data manager modules.

Session
Manager

Data
Mgr

Request
Manager

User
Task n

User
Task 1

RM
Task

RM
Task

DM
Task

DM
Task

DM
Task

DM
Task

Virtual University Pakistan

 131

2) Request manager

It receives client requests to query compilation and execution. It can access the

database directly which holds all meta-information about data and programs. The

directory itself should be managed as a database in the server. Depending on the

request, it activates the various compilation phases, triggers query execution and

returns the results as well as error codes to the client application.

3) Data manager

It provides all the low level functions needed to run compiled queries in parallel, i.e.

– Execution of DB operations

– Transaction management support

– Cache management

Parallel System Architectures

A parallel system represents a compromise in design choices in order to provide the

better cost/performance. Parallel system architectures are:

– Shared Memory

– Shared Nothing

– Shared Disk

– Hierarchical/NUMA.

Shared-Memory

Any processor has access to any memory module or disk unit through a fast interconnect

as shown in figure 6. Examples of shared memory parallel database systems include

XPRS, DBS3 and Volcano.

Figure 6

Advantages:

P
1

Cach

P
2

Cach

Memory
1

Memory
2

Disk Disk

Virtual University Pakistan

 132

The two main advantages are:

• Simplicity

• Load balancing is excellent since can be dynamic

Drawbacks:

The three main disadvantages are:

• Cost of high interconnect

• Low extensibility

• Low availability

Summary

We have discussed the parallel processing architecture like multiprocessor system

architecture after that we have discussed the parallel database. Parallel database is a

combination of parallel processing and database functionality.

Virtual University Pakistan

 133

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 39

Virtual University Pakistan

 134

In previous lecture:

- Parallel Processing basics

o Multiprocessor Systems

o Associative Processors

o Array Processors

- Entry to Parallel Database Systems

In today’s lecture:

- Parallel Systems’ Architectures

- PDBS Issues.

Shared-Disk:

In the shared-disk approach any processor has access to any disk unit through the

interconnect but exclusive (non-shared) access to its main memory as shown in figure 1.

Then, each processor can access database pages on the shared disk and copy them into its

own cache. To avoid conflicting accesses to the same pages, global locking and protocols

for the maintenance of cache coherency are needed.

Example:

Examples of shared-disk parallel database systems include IBM’s IMS/VS data sharing

product and DEC’s VAX DBMS and Rdb products.

P
1

P
2

Local
Memory

Local
Memory

Disk Disk

P
n

Local
Memory

Disk Disk

Virtual University Pakistan

 135

Figure 1: Shared-disk architecture

Advantages:

Shared disk has number of advantages:

– Cost, Extensibility

– Easy migration from Uniprocessor systems

– Load balancing

Demerits:

Shared disk suffers from:

– Higher complexity

– Potential performance problems

Shared-Nothing:

In shares-nothing approach each processor has exclusive access to its main memory and

disk unit(s) as shown in figure 2. Then each node can be viewed as a local site(with its

own database and software) in a distributed database system. Therefore, most solutions

designed for distributed database such as database fragmentation, distributed transaction

management and distributed query processing may be reused.

Examples:

Examples of shared-nothing parallel database systems include he Teradata’s DBC and

Tandem’s NonStopSQL products as well as number of prototypes such as BUBBA, EDS,

GAMMA and so on.

Virtual University Pakistan

 136

Figure 2: Shared-nothing architecture

Advantages:

Shared-nothing has following advantages:

– Cost

– Availability and extensibility

Drawbacks:

Shared-nothing has following disadvantages:

– More complex than shared memory

– Difficult load balancing

Hierarchical Architecture

Hierarchical architecture (also called cluster architecture), is a combination of shared-

noting and shared- memory. The idea is to build a shared-nothing machine whose nodes

are shared-memory.

Advantage:

The advantage of hierarchical architecture is:

• Combines the benefits of both shared memory and shared-nothing

NUMA Architectures

• Non-uniform memory access

• To provide benefits of shared-memory model in a scalable parallel architecture

Two classes of NUMA

P
1

P
2

Local
Memory

Local
Memory

Disk Disk

P
n

Local
Memory

Disk

Virtual University Pakistan

 137

• Cache coherent-NUMA:

divides memory statically among all nodes

• Cache only Memory Architecture: converts per-node memory into a large cache

of shared address space as shown in figure 3.

Because shared-memory and cache coherency are supported by hardware, remote

memory access is very efficient, only several times (typically 4 times) the cost of local

access as shown in figure.

The strong argument for NUMA is that it does not require any rewriting of application

software.

Figure 3: Cache only memory architecture COMA

Comparison

• For small configurations, shared-memory can perform the best due to better load

balancing

• NUMA for mid-range and hierarchical for large scale systems

Parallel Database Techniques

Implementation of PDBS relies on DDBS techniques. The transaction management

solutions can be reused. The critical issues for such architectures are:

– Data placement

P1 P2

Cache
Memory

Cache
Memory

Disk Disk

Pn

Cache
Memory

Disk

Hardware shared virtual memory

Virtual University Pakistan

 138

– Query parallelism

– Parallel data processing

– Parallel query optimization

1-Data Placement

Data placement in a parallel database system exhibits similarities with data fragmentation

in distributed databases. An obvious similarity is that fragmentation can be used to

increase parallelism. We use the terms partitioning and partition instead of horizontal

fragmentation and horizontal fragment resp. Data placement must be done to maximize

system performance, which can be measured by combining the total amount of work

done by the system and the response time of individual queries. Maximizing response

time (through intra-query parallelism) results in increased total work due to

communication overhead. For the same reason, inter-query parallelism results in I

ncreased total work. On the other hand, clustering all the data necessary to a program

minimizes communication and thus the total work done by the system in executing that

program. In terms of data placement, we have the following trade-off: maximizing

response time or inter-query parallelism leads to partitioning, whereas minimizing the

total amount of work leads to clustering.

An alternate solution to data placement is full partitioning, whereby each relation is

horizontally fragmented across all the nodes in the system. Full partitioning is used in the

DBC/1012, GAMMA and NonStop SQL. There are three basic strategies for data

partitioning:

1.1Round Robin

1.2Hash partitioning

1.3Range Partitioning

1.1) Round Robin:

With n partitions, the ith tuple is placed in partition (i mod n). This strategy enables

sequential access to a relation to be done in parallel. The direct access to individual tuples,

based on predicate, requires accessing the entire relation as shown in figure 4.

Virtual University Pakistan

 139

Figure 4: Round-robin partitioning

1.2) Hash partitioning:

It applies a hash function to some attribute which yields the partition number as shown in

figure 5. This strategy allows exact-match queries on the selection attribute to be

processed by exactly one node and all other queries to be processed by all the nodes in

parallel.

P P

Local
Memory

Local
Memory

Disk Disk

P

Local
Memory

Disk

P

Local
Memory

Disk

 …….

Virtual University Pakistan

 140

Figure 5: Hash partitioning

1.3) Range Partitioning:

It distributes tuples based on value intervals of some attribute as shown in figure 6. It is

suitable for exact match and range queries. Range partition can result in high variation in

partition size.

P P

Local
Memory

Local
Memory

Disk Disk

P

Local
Memory

Disk

P

Local
Memory

Disk

 …….

Virtual University Pakistan

 141

Figure 6: Range partitioning

The performance of full partitioning is compared to that of clustering the relations on

single disk. The results indicate that for a wide variety of multi-user workloads,

partitioning is consistently better. Clustering may dominate in processing complex

queries (e.g. joins). A solution to data placement by variable partitioning is proposed. It is

based on the relation size and number of nodes. In variable partitioning, periodic

reorganization for load balancing are essential. Programs need to be aware of

reorganizations, they should not be recompiled. Needs associative access support at run

time. We can also replicate the global index on each node. Two level index: first level on

relation name, second on any attribute. The global index supports variable partitioning.

Data Replication in PDBS

The simple solution is to maintain two replicas, primary and backup copies on two

separate nodes. This is the mirrored disks architecture. In case of node failure, the load of

node having the copy may be double, hurting load balancing. A solution is interleaved

partitioning which partitions the backup copy on a number of nodes as shown in figure 7

Node 1 2 3 4

P P

Local
Memory

Local
Memory

H-M A-G

P

Local
Memory

N-R

P

Local
Memory

S-Z

Virtual University Pakistan

 142

Primary Copy R1 R2 R3 R4

Backup

Copy

r4.1

r3.2

r1.1

r4.2

r1.2

r2.1

r1.3

r2.2

r3.1

Figure 7: Example of Interleaved Partitioning

In case of failure, the load of primary copy gets balanced among the backup copy nodes.

But if two nodes fail, then the relation can not be accessed thereby hurting availability. In

normal mode, maintaining copy consistency may be costly.

A better solution is chained partitioning which stores the primary and backup copy on

two adjacent nodes. The assumption that two consecutive nodes are less likely to fail as

shown in figure 8.

Node 1 2 3 4

Primary Copy R1 R2 R3 R4

Backup

Copy

r4 r1 r2 r3

Figure 8: Example of Chained Partitioning

In case of failure, the load is balanced among remaining nodes. Maintaining copy

consistency is cheaper.

2-Query Parallelism

Inter-query parallelism:

It enables queries running in parallel and increases transactional throughput.

Intra-query parallelism

With in a query Intra-query parallelism two operations are used to decrease the

response time.

2.1 Inter-Operation

2.2 Intra-Operation

2.1 Intra-Operator Parallelism

It is based on the decomposition of one operator in a set of independent sub-operators

called operator instances. This decomposition is done using static/dynamic partitioning of

Virtual University Pakistan

 143

relations. Each operator instance will

then process one relation partition also called bucket. An example of intra-operator

parallelism is shown in figure 9.

Figure 9: Intra-operator parallelism

Select query: can be decomposed directly. If the relation is partitioned on select predicate

attribute, query may be executed on some partitions not all. For the Join operator, it is

more complex to decompose the operator. One approach is to join each partition of R

with S, but such a join will be inefficient. A more efficient way is to use partitioning

properties.

2.2) Inter-Operator Parallelism

Two forms of Inter-operator parallelism can be exploited.

• Pipeline parallelism

• Independent parallelism

Pipeline parallelism: several operators with a producer-consumer link are executed in

parallel.

Independent parallelism: is achieved when there in no dependency between the

operators executed in parallel. An example of inter-operator parallelism is shown in

figure 10.

Op

R

Op

R1

Op

R2

Op

R3

Op

R4

Virtual University Pakistan

 144

Figure 10: Inter-operator parallelism

Summary

We have discussed the query parallelism. In query parallel parallelism there are two

possibilities: intra-operator parallelism and inter-operator parallelism. In intra-operator

parallelism one query has operators and they will work in parallel. In inter-operator

parallelism work will be done through pipeline and independent parallelism.

Join

Select
Select

Virtual University Pakistan

 145

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 40

Virtual University Pakistan

 146

In previous lecture:

- Data Placement

- Parallel Query Processing

In today’s lecture:

- Parallel Data Processing

- Parallel Query Optimization

3-Parallel Data Processing:

Partitioned data placement is the basis for the parallel execution of database queries.

Given a portioned data placement, an important issue is the design parallel algorithms for

an efficient processing of database operators (i.e relational algebra operators) and

database queries which combine multiple operators. The issue is difficult because a good

trade-off between parallelism and communication cost must be reached. Parallel

algorithms for relational algebra operators are the building blocks necessary for parallel

query processing. Parallel data processing should exploit intra-operation parallelism. The

distributed join algorithms designed for high speed networks. Three basic parallel join

algorithms for partitioned databases:

– Parallel Nested Loop (PNL)

– Parallel Associative Join (PAJ)

– Parallel Hash Join (PHJ)

Assumptions

• R and S are partitioned over m and n nodes

• m and n nodes are distinct

• Nodes are called R-nodes and S-nodes

Parallel Nested Join (PNJ)

This is the simplest algorithm. It composes the Cartesian product of relations R and S in

parallel as shown in figure 1. Arbitrary complex join predicates may be supported.

Virtual University Pakistan

 147

In the first phase, each fragment of

R is replicated at each S-node. With broadcast capability it may take m messages time,

otherwise m*n.

In the second phase, each S-node locally joins R with the fragment Sj. This phase is done

in parallel by n nodes. The local join can be done as in centralized DBMS. Depending on

the local join algorithm, join processing may or may not start as soon as data are received.

Figure 1: Parallel nested loop

To summarize, the parallel nested loop algorithm can be viewed as replacing the operator

R ⋈ S by

Parallel Associative Join (PAJ)

Parallel associative join algorithm applies only for equi-join with one relation partitioned

on join attribute as shown in figure 2. We assume that the equi-join predicate is on

attribute A from R and B from S. relation S is partitioned according to the hash function h

applied to join attribute B, meaning that all the tuples of S that have same value for h(B)

are placed at the same node. No knowledge of how R is partitioned is assumed. The

algorithm precedes two phases:

⋈ S1 ⋈ S2

Node 1
Node 2

R2
R1

Node 3 Node 4

U
n

i 1=

(R ⋈ Si)

Virtual University Pakistan

 148

In the first phase: relation R is sent

to S-nodes applying hash function on attribute A. this phase is done in parallel by m

nodes where Ri’s exist. The tuples of R get distributed but not replicated across the S

nodes.

In the second phase, each S-node j receives in parallel the relevant subset of R(i.e, Rj)

and joins it locally with the fragments Sj. Local join processing can be done in parallel.

To summarize, the parallel associative join algorithm replaces the operator R ⋈ S by

Figure 2: Parallel associative join

Example

• We have BOOK and STD tables

• BOOK with 100 K records to be partitioned on 5 sites

• PK for BOOK is bkId

• STD contains bkId as FK

• Hash function on BOOK is (rem(bkId/5) + 1)

• Fragmentation of STD is irrelevant here

• The query is “Get the detail of the students with the detail of the books they have

currently borrowed”.

• For PAJ, we apply the same hash function on the STD table

• Places every STD tuple with v hash value on a site having v hash value in BOOK

⋈ S1 ⋈ S2

Node 1 Node 2

R2 R1

Node 3
Node 4

U
n

i 1=

(Ri ⋈ Si)

Virtual University Pakistan

 149

• We apply equi-join on the

value of bkId in parallel

• Obviously, tuples with same bkId value will be joined

• They will be returned back

Parallel Hash Join (PHJ)

Parallel hash join algorithm can be viewed as a generalization of parallel associative join

algorithm as shown in figure 3. It also applies on equi-join but does not require any

particular partitioning of operand relations. The basic idea is to partition relations R and S

into same number p of mutually exclusive sets *fragments) R1, R2,……..,Rp and S1,

S2,…..,Sp, such that

The partitioning of R and S can be based on same hash function applied to join attribute.

Each individual join is done in parallel and the join result is produced at p nodes. These p

nodes may actually be selected at run time based on load of the system. The main

difference with the parallel associative join algorithm is that partitioning of S is necessary

and the result is produced at p nodes rather than at n S-nodes.

Figure 3: Parallel Hash Join (PHJ)

Example

U
p

i 1=

(Ri ⋈ Si) (R ⋈ S)=

⋈ ⋈

Node 1 Node 2

R2 R1

Node 1
Node 2

Node 3

S1

Node 4

S2

Virtual University Pakistan

 150

• Sticking with the previous

one, lets say BOOK and STD are fragmented on subj and depId resp, and we have

the same query

• We apply the same hash function but this time on both BOOK and STD and send

the fragments with the same hash value on the same site

• Once both have been transferred, we apply the join operation on the basis of value

of bkId

• This being done in parallel

• Variations of PHJ for multiprocessor systems have been proposed, like

• Build and probe phases

Summary

We have discussed three different algorithms for conducting the operations in parallel.

We will continue this discussion in next lecture.

Virtual University Pakistan

 151

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 41

Virtual University Pakistan

 152

In previous lecture:

- Parallel Data Processing

o Parallel Nested Loop

o Parallel Associative Join

o Parallel Hash Join

In today’s lecture:

- Analysis of Parallel Data Processing Approaches

- Parallel Query Optimization

Parallel Data Processing (continued..)

The parallel join algorithms apply and dominate under different conditions join

processing is achieved with a degree of parallelism of either n or p. since each algorithm

requires moving at least one of the operand relations, a good indicator of their

performance is total cost. To compare these algorithms, we now give a simple analysis of

cost, defined in terms of total communication cost, denoted by CCOM and processing

cost, denoted by CPRO. The total cost of each algorithm is

Cost = CCOM + CPRO

for simplicity, CCOM does not include control messages, which are necessary to initiate

and terminate local tasks. We denote msg(#tup) the cost o transferring a message of #tup

tuples from one node to another. Processing costs(total I/O and CPU cost) will be based

on the function CLOC(m,n) which computes the local processing cost for joining two

relations of cardinalities m and n. we assume that the local join algorithm is the same for

all three parallel join algorithms. Finally we assume that the amount of work done in

parallel is uniformly distributes over all nodes allocated to the operator.

Without broadcasting capability, the parallel nested loop algorithm incurs a cost of m*n

messages, where a message contains a fragment of R of size card (R)/m. Thus we have

Virtual University Pakistan

 153

CCOM(PNL) = m* n* msg(card(R)/m)

Each of S-nodes must join all of R with its S fragments thus we have

CPRO(PNL) = n*CLOC(card(R), card(S)/n)

The parallel associative join algorithm requires that each R-node partitions a fragment of

R into n subsets of size card(R)/(m*n) and sends them to n S-nodes. Thus we have

CCOM(PAJ) = m*n*msg(card(R)/(m*n))

and

CPRO(PAJ) = n*CLOC(card(R)/n, card(S)/n)

The parallel hash join algorithm requires that both relations R and S be partitioned across

p nodes in a way smilar to the parallel associative join algorithm. Thus we have

CCOM(PHJ) = m*p*msg(card(R)/(m*p)) + n*p*msg(card(S)/(n*p))

and

CPRO(PHJ) = p*CLOC(card(R)/p, card(S)/p)

Analysis

Let us assume that p = n. In this case the join processing cost for the PAJ and PHJ

algorithms is identical. It is higher for the PNL algorithm because each S-node must

perform the join with R entirely from the equations above, it is clear that the PAJ

algorithm incurs the least communication cost. However, the least communication cost

between the PNL and PHJ algorithms depends on the values of relation cardinality and

degree of partitioning.

In conclusion, the PAJ algorithm is most likely to dominate and should be used when

applicable. Otherwise, the choice between the PNL and PHJ algorithms requires

estimation of their total cost with the optimal value for p.

Virtual University Pakistan

 154

4- Parallel Query Optimization

Parallel query optimization exhibits similarities with distributed query processing. It

should take advantage of both intra-operator parallelism and inter-operator parallelism

this second objective can be achieved using some of the techniques devised for

distributed DBMSs.

Parallel query optimization refers to the process of producing an execution plan for a

query that minimizes an objective cost function. The selected plan is the best one with a

set of candidate plans examined by the optimizer, but not necessarily the optimal one

among all possible plans. A query optimizer consists of three components:

• Search Space

• Cost Model

• Search Strategy

Search Space

Execution plans are abstracted, by means of operator trees, which define the order in

which the operators are executed. Operator trees are enriched with annotations, which

indicate additional execution aspects, such as the algorithm of each operator. An

important execution aspect to be reflected by annotations is the fact that two subsequent

operators can be executed in pipeline. In this case, the second operator can start before

the first one is completed. In other words, the second operator starts consuming tuples as

soon as the first one produces them. Pipelined executions do not require temporary

relations to be materialized i.e. a tree node corresponding to an operator executed in

pipeline is not stored.

Pipeline and store annotations constrain the scheduling of execution plans. They split an

operator tree into non-overlapping sub-trees called phases.

Example

In the left part of figure 1, the temporary relations T1 must be completely produced and

the hash table in B2 must be finished before P2 can start consuming R3. The same is true

Virtual University Pakistan

 155

for T2, B3 and P3. Thus, this tree is

executed in four consecutive phases: build R1’s hash table, then probe it with R2 and

build T1’s hash table, then probe it with R3 and build T2’s hash table, then probe it with

R3 and produce the result. In the right hand part of figure 1, the pipeline annotations are

indicated by arrows. This tree can be executed in two phases if enough memory is

available to build the hash tables: build the tables of R1 R3 and R4, then execute P1, P2

and P3 in pipeline.

The set of nodes where a relation is stored is called its home the home of an operator is

the set of nodes where it is executed and it must be the home of its operands in order for

the operator to access its operands

Figure 1: Two hash-join trees with a different scheduling

B1 P1

R1 R2

B2 P2

T1

R3

B3 P3

T2

R4

Result

B1 P1

R1 R2

B2 P2

R3

B3 P3

R4

Result

Virtual University Pakistan

 156

Figure 2: Execution plans as operator trees

Figure 2, shows operator trees that represent execution plans for a three-way join. An

operator is a labeled binary tree where the leaf nodes are relations of the input query and

each non-leaf node is an operator node (e.g. Join, union) whose result is an intermediate

relation. A join node captures the join, between its operands execution annotations are

not shown for simplicity. Directed arcs denote that the intermediate relation generated by

a tree node is consumed in pipeline. Operator tree may be linear i.e. at least one operand

of each join node is a base relation or bushy.

It is convenient to represent pipelined relations on as right-hand side input of an operator.

Thus, right-deep trees express full pipelining while left-deep trees express full

materialization of intermediate results.

Parallel tree formats other than left or right-deep are also interesting. For example, bushy

trees in figure 2 are the only ones to allow independent parallelism. Independent

parallelism is useful when the relations are partitioned on disjoint homes. Suppose that

J1

R R

J1

R

J1

R

Resu

Right Deep Tree

J2

R1 R2

J1

R3

J3

R4

Result

Bushy Tree

Virtual University Pakistan

 157

relations in figure 2 are partitioned

two (R1 and R2) by two (R3 and R4) on disjoint homes (resp. h1 and h2). Then joins j10

and j11 could be independently executed in parallel by the set of nodes that constitutes h1

and h2

Cost Model

The optimizer cost model is responsible for estimating the cost of a given execution plan.

It may consists of two parts

• Architecture independent

• Architecture dependent

The architecture independent part is constituted by the cost functions for operator

algorithms e.g. nested loop for join and sequential access for select. If we ignore

concurrency issues, only the cost functions for data repartitioning and memory

consumption differ and constitute the architecture-dependent part. Indeed, repartitioning

a relation’s tuples in a shared nothing system implies transfers of data across the incorrect,

whereas it reduces o hashing in shared memory systems. Memory consumption in the

shared nothing case is complicated by inter-operator parallelism.

Cost model includes three components:

• Total Work (TW)

• Response Time (RT)

• Memory Consumption (MC)

TW and RT are expressed in seconds and MC in Kbytes. The first two components are

used to express a trade-off between response time and throughput. The third component

represents the size of memory needed to execute the plan. The cost function is a

combination of the first two components and plans that need more memory than available

are discarded.

Another approach consist of parameter, specified by the system administrator, by which

the maximum throughput is degraded in order to decrease response time. Given a plan p,

its cost is computed by a parameterized function defined as:

Virtual University Pakistan

 158

Where WRT and WTW are weight factors between 0 and 1 such that WRT + WTW =1

The total work can be computed by a formula that simply adds all

• CPU time

• I/O time

• Communication time

The response time of p, scheduled in phases (each denoted by ph) is computed as follows:

RT(p) = Σ(maxOp€ph(respTime(Op)+p_delay(Op)) +st_delay(ph))

To estimate the cost of an execution plan, the cost model uses database statistics and

organization information, such as relation cardinalities and partitioning as with

distributed query optimization.

Search strategy

The search strategy does not need to be different from either centralized or distributed

query optimization. Thus, randomized search strategies generally outperform

deterministic strategies in parallel query optimization.

Summary

Parallel query optimization exhibits similarities should take advantage of both intra-

operator parallelism and inter-operator parallelism. Parallel query optimization refers to

the process of producing an execution plan for a query that minimizes an objective cost

function. A query optimizer consists of three components Search Space, Cost Model and

Search Strategy.

=)(
)(,

p
WWCost

TWRT

WRT*RT + WTW*TW If MC < available
memory, otherwise

∝

Virtual University Pakistan

 159

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 42

Virtual University Pakistan

 160

In previous lecture:

- Analysis of Parallel Data Processing Approaches

- Parallel Query Optimization

In today’s lecture:

- Object-Oriented concepts

- Object Distribution Design

- Architectural Issues

Introduction:

Database technology is rapidly evolving toward the support of new applications.

Relational databases have proven to be very successful in supporting business data

processing applications. There is now an important class of applications, commonly

referred to as “advanced database applications:, that exhibit pressing needs for database

management. Examples include computer-aided design (CAD), office information system

(OIS), multimedia information system and artificial intelligence (AI). For these

applications, object database management systems (object DBMSs) are considered.

Fundamental object concepts and object models

An object DBMS is a system that uses an object as the fundamental modeling and access

primitive. Contrary to relational model, there is no universally accepted and formally

specified object model. There are a number of features that are common to most model

specifications, but the exact semantics of these features are different in each model. Some

standard object model specifications are emerging as part of language standards (e.g.

Object Data Management Group’s (ODMG) model or SQL-3 but these are not widely

adopted.

Basic Object Concepts

An object represents a real entity in the system that is being modeled. It is represented as

a pair (OID, state), in which OID is the object identity and the corresponding state is

Virtual University Pakistan

 161

some representation of the current

state of the object. In some models, OID equality is the only comparison primitive for

other types of comparisons, the type definer is expected to specify the semantics of

comparison. In other models, two objects are said to be identical if they have the same

OID, and equal if they have the same state.

Many object models start to diverge at the definition of state. Some object models define

state as either an atomic value or a constructed value (e.g. tuple or set). Let D be the

union of the system-defined domains and of user-defined abstract data type (ADT)

domains, let I be the domain of identifiers used to name objects and let A be the domain

of attribute names. A value is defined as follows:

1. An element of D is a value called an atomic value.

2. [a1: v1,…., an: vn], in which ai is an element of A and vi is either a value or an

element of I, is called a tuple value, [] is known as the tuple constructor.

3. {v1,…., vn}, in which vi is wither a value or an element of I, is called a set value,

{} is known as set constructor.

Object examples

• [i1, 432]

• [i2, ‘DDBS’]

• [i3, {3,9,13}]

• [i4, {i4, i6}]

• [i9, [at1: i5, at2:i6, at3:i7]]

Abstract Data Types

An abstract data type is a template for all objects of that type. An ADT describes the type

of data by providing a domain of data with the same structure, as well as operations (also

called methods) applicable o elements of that domain. The abstraction capability of

ADTs, commonly referred to as encapsulation, hides the implementation details of the

operations, which can be written in a general purpose programming language. Each ADT

is identifiable to the outer world by the properties that it supports.

Example of ADT

The type definition of Car can be as follows:

Virtual University Pakistan

 162

type Car {

 attributes

 engine : Engine

 bumpers : {Bumper}

 tires: [LF : Tire, RF : Tire, LR : Tire, RR : Tire]

 make: Manufacturer

 model: String

 year : Date

 serial_no : String

 capacity: Integer

methods

 age : Real}

The type definition specifies that Car has eight attributes and one method. Four of the

attributes (model, year, serial_no, capacity) are value-based, while the others (engine,

bumpers, tires and make) are object-based.

Advantage of ADT

1. The primitive types provided by the system can easily be extended with user-

defined types.

2. ADT operations capture parts of the application programs which are more closely

associated with data.

Composition (Aggregation)

Composition is one of the most powerful features of object models it allows sharing of

objects, commonly referred to as referential sharing, since objects refer to each other by

their OIDs as values of object-based attributes.

Example of Composition

Assume that c1 is one instance of Car type which is defined above. If the following is

true:

 (i2, [name: Tahir, mycar: c1])

 (i3, [name: Umer, mycar: c1])

Virtual University Pakistan

 163

Then this indicates that Tahir and Umer own the same car.

A restriction on composite objects results in complex objects. The difference between a

composite and a complex object is that the former allows referential sharing while the

later does not. For example, Car type may have an attribute whose domain is type Tire. It

is not natural for two instances of type Car, c1 and c2, to refer to the same set of instances

of Tire, since one would not expect in real life for tires to be used on multiple vehicles at

the same time.

Class vs type

A class represents both a template for all common objects (i.e. servers as a type) and the

grouping of these common objects (i.e. the extent). The database schema consists of s set

of class definitions with the relationships among them.

Conceptually, there is difference between a type and a class. A type is a template for all

objects of that type whereas a class is a grouping of all object instances of a given type. A

type corresponds to a relation schema in relational database, whereas a class corresponds

to a populated relation instance.

Collection

A collection is a user defined grouping of objects. Most conventional systems provide

either the class construct or the collection construct. Collections provide for a clear

closure semantics of the query models and facilitate definition of user views.

In systems, where both classes and collections are supported, a collection is similar to a

class in that it groups objects, but it differs in the following respects.

• Object creation may not occur through a collection, object creation occurs only

through classes

• An object may exist in any number of collections, but is a member of only one

class

Virtual University Pakistan

 164

• The management of classes is

implicit, in that the system automatically maintains classes based on the type

lattice, whereas the management of collections is explicit, meaning that the user is

responsible for their extents.

Subtyping/Inheritance

Object systems provide extensibility by allowing user-defined types to be defined and

managed by the system. This is accomplished in two ways: by the definition of types

using type constructors or by the definition of types based on existing primitive types

through the process of subtyping. Subtyping is based on the specialization relationship

among types. A type A’ is a specialization of another type B if its interface is a subset of

B’s interface. Thus, a specialized type is more defined than the type from which it is

specialized. A type may be a specialization of number of types; it is explicitly specified

as a subtype of a subset of them. Subtyping and specialization indicate an is-a

relationship between types.

Declaring a type to be a subtype of another results in inheritance. Inheritance allows

reuse. A subtype may inherit either the behavior of its subtype, or its implementation or

both. There are two type of inheritance:

• Single Inheritance

• Multiple Inheritance

Object Distribution Design

Distribution design involves fragmentation and allocation. Distribution design in the

object world brings new complexities. Conceptually, objects encapsulate methods

together with state. In reality, methods are implemented on types and shared by all

instance objects of that type. The location of objects with respect to their types becomes

an issue.

Distribution design in the object world brings new complexities due to the encapsulation

of methods together with object state. This causes problems because methods are

implemented on types and shared by all instance objects of that type. One has to decide

Virtual University Pakistan

 165

whether fragmentation is performed

only on attributes duplicating the methods with each fragment, or whether one can

fragment methods as well.

Horizontal Class Partitioning

There are analogies between horizontal fragmentation of object databases and their

relational counterparts. It is possible to identify primary horizontal fragmentation in the

object database case identically to the relational case. Derived fragmentation shows some

differences. In object databases, derived horizontal fragmentation can occur in a number

of ways:

1. Partitioning of a class arising from the fragmentation of its subclasses.

2. The fragmentation of a complex attribute may affect the fragmentation of its

containing class.

3. Fragmentation of a class based on a method invocation sequence from one class

to another may need to be reflected in the design.

Vertical Class Partitioning

Vertical fragmentation is considerably more complicated. Given a class C, fragmenting it

vertically into C1, C2, …, Cm produces a number of classes, each of which contains

some of the attributes and some of the methods. Each of the fragments is less defined

than the original class.

Path Partitioning

The composition graph presents a representation for composite objects. For many

applications, it is necessary to access the composite object. Path partitioning is a concept

describing the clustering of all the objects forming a composite object into a partition. A

path partition consists of grouping the objects of all the domain classes that correspond to

all the instance variables in the subtree rooted at the composite object.

Class Partitioning Algorithms

The algorithms for class partitioning are based on:

• Affinity-based Approach

• Cost-driven Approach

Allocation

Virtual University Pakistan

 166

The data allocation problem for

object databases involves allocation of both methods and classes. The methog allocation

problem is tightly coupled to the class allocation problem because of encapsulation.

Allocation of classes will imply allocation of methods to their corresponding home

classes. But since applications on object-oriented databases invoke methods, the

allocation of methods affects the performance of applications. Four alternatives can be

identified.

1. Local behavior- local object. This is the most straightforward case and is

included to form the baseline case. The behavior, the object to which it is to be

applied, and the arguments are all co-located.

2. Local behavior – remote object. This is one of the cases in which the behavior

and the object to which it is applied are located at different sites.

3. Remote behavior – local object. This case is reverse of case (2).

4. Remote function – remote argument. This is the reverse of case (1).

Architectural Issues

One way to develop a distributed system is the client/server approach. Most of the current

object DBMS are client/server systems. The design issues related to these systems are

somewhat more complicated due to the characteristics of object models. Some of

concerns are listed below:

• Unit of communication

• Function provided by Client/Server

• Function shipping vs data shipping

• Pre-fetching option

Summary

We have studied the object-oriented concepts (object, ADT, composition, class vs type,

collection and subtyping/inheritance), object distribution design (Horizontal Class

Partitioning, Vertical Class Partitioning, Path Partitioning, Class Partitioning Algorithms,

Allocation) and architectural issues.

Virtual University Pakistan

 167

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 43

Virtual University Pakistan

 168

In previous lecture:

- Basic OO Concepts

- Started the OODDBS architectures

In today’s lecture:

- Two Alternatives

o Object Server Architecture

o Page Server Architecture

Alternative Client/Server Architectures

Two main types of client/server architectures have been proposed:

1. Object servers

2. Page servers

The distinction is partly based on the granularity of data that is shipped between the client

and server and partly on the functionality provided to the clients and servers.

1) Object Server

Client request objects from the server, which retrieves them from the database and returns

them to the requesting client. These systems are called object servers as shown in figure 1.

In object servers, the server undertakes most of the DBMS services, with the client

providing basically an execution environment for the application as well as some level of

object management functionality. The object management layer is duplicated at both the

client and the server in order to allow both to perform object functions. Object manager

serves a number of functions.

Virtual University Pakistan

 169

Figure 1: Object server architecture

Feature of the Object Server Architecture

• Objects move between clients and servers

• Object Manager helps to execute methods on both sides

Server Side Functions

Server side performs following functions

• OID implementation; it is tricky to manage OID in RAM and Disk

• Object Caching

• Object shipment between clients and servers can be optimized depending on type

of clustering

• Lock management needed when same object being accessed (read, modified) at

different places

Application

Query
Interface

Object
Browser

Programmatic
Interface

Objects

Network

Client

Object Manager

Query Optimizer

Lock Manager

Storage Manager

Page Cache Manager

Server

Object
Database

Virtual University Pakistan

 170

• Persistent placement of

objects

Page Server

The unit of transfer between the servers and the clients is a physical unit of data, such as

a page or segment, rather than an object as shown in figure 2.

Figure 2: page server architecture

Feature of Page Server Architecture

• Data moves in the form of pages rather than objects

• Object management mainly performed at the client side

• Data management at the server side

Application

Query
Interface Object

Browser
Programmatic
Interface

Pages

Network

Client

Object Manager

Query
Optimizer

Lock Manager

Storage Manager

Page Cache Manager

Server

File and Index Manager

Page and Cache Manager

Object
Database

Virtual University Pakistan

 171

Comparison

• One can’t be declared better absolutely

• If object access pattern resembles storage pattern, then page server is better

• Object server provides better concurrency as object based locking lets multiple

client access objects from the same page

• Object server ships only the required objects, so data transferred is reduced

Other Issues

1) Client Buffer Management

Client can manage either a

• Page buffer

• Object buffer

• Page/Object buffer

If client has a page buffer then entire pages are read or written from the server every time

a page fault occurs or a page is flushed. Object buffers can read/write individual objects

and allow the applications object-by-object access.

Object buffers manage access at a finer granularity and can achieve higher levels of

concurrency. However, they may experience buffer fragmentation as the buffer may not

able to accommodate an integral multiple of objects, thereby leaving some unused space.

A page buffer does not encounter this problem, but if the data clustering on the disk does

not match the application data access pattern, then the pages contain a great deal of

unaccessed objects that use up valuable client buffer space.

In a page/object buffer, the client loads pages into the page buffer. When the client

flushes out a page, it retains the useful objects from the page by copying the objects into

the object buffer. The client buffer manager tries to retain well-clustered pages and

isolated objects from non-well clustered pages. The client buffer managers retain the

pages and objects across the transaction boundaries.

2) Server Buffer Management

Virtual University Pakistan

 172

The server buffer management issues

do not change in object client/server systems, since the servers usually manage a page

buffer. The pages from the page buffer are sent to the clients to satisfy their data requests.

A grouped object-server constructs its object groups by copying the necessary objects

from the relevant server buffer pages, and sends the object group to the clients. Servers

can also maintain the modified object buffer (MOB). A MOB stores objects that have

been updated and returned by the clients.

Cache Consistency

Cache maintained at the server side. Data access from multiple clients becomes efficient

but requires consistency maintained. The DMS cache consistency algorithms can be

classified as

1) Avoidance bases: stale data (cached and updated) should not be given access

2) Detection based: stale data given to different clients, consistency checked before

finally moving to disk

Both algorithms further can be classified as

1) Synchronous: the client sends a lock escalation message at the time it wants to

perform a write operation and it blocks until the server responds.

2) Asynchronous: the client sends a lock escalation message at the time of its write

operation but does not block waiting for a server response.

3) Deferred: the client optimistically defers informing the server about its write

operation until commit time.

Object Management

Three issues of object management are discussed here

1) OID Management

2) Pointer Swizzling

3) Object Migration

1) Object Identifier Management

Virtual University Pakistan

 173

OID:

• OID’s are system generated and used to uniquely identify every object in the

system

• OID management applies to any OO-environment

• OID is important for both transient and persistent objects

• For persistent objects, OIDs can be physical or logical

• Physical OID helps management of objects on disk

• It is problematic when objects’ location is required to be changed frequently

Logical OID:

• Logical OID/Surrogate: independent of physical position of object

• Could be initiated using many different schemes

• May require to maintain a lookup table

An Example Lookup Table

OID Disk Location

1 A678BE8

2 A678B12

3 45368BA

4 C765984

5 657904

6 564098

7 34689AB

• Lookup table can be cached for efficiency

• However introduces an extra reference, that is, in lookup table

• Logical ID is efficient in case object movement is frequent, since it requires

change in lookup table only

• OID management becomes more complicated in DDBS environment

• Requires uniqueness across multiple servers

• One possibility is to assign responsibility of generating OIDs to one server

• Any object created anywhere requests this server for OID

• Uniqueness is easy to maintain, but may become bottleneck

• Secondly, every server generates OIDs for its own objects

Virtual University Pakistan

 174

• Requires server ID to become

the part of OID to ensure system-wide uniqueness

2) Pointer Swizzling

Objects when brought into RAM from disk, their OIDs have to be transformed to RAM

address; this process is called pointer swizzling. Pointer swizzling can be lookup table

based. Hardware based use the page fault mechanism for pointer swizzling.

3) Object Migration

 One aspect of distributed systems is that objects move, from time to time, between sites.

This raises a number of issues. First is the unit of migration. In systems where the state is

separated from the methods, it is possible to consider moving the object’s state without

moving the methods. Another issue is that the movements of the objects must be tracked

so that they can be found in their new locations. The migration of objects can be

accomplished based on their current state.

Object states:

Objects can be in one of four states:

1) Ready

2) Active

3) Waiting

4) Suspended

Objects in active or waiting state are not allowed to migrate, since the activity they are

currently involved in would be broken. The migration involves two steps:

1) Shipping the object from the source to the destination

2) Creating a proxy at the source, replacing the original object

Distributed Object Storage

Two issues related to the object storage are:

1) Object clustering

2) Distributed garbage collection

Virtual University Pakistan

 175

1) Object Clustering

Object clustering refers to the grouping of objects in physical containers (i.e. disk

extents) according to common properties, such as the same value of an attribute or sub-

objects of same object. Thus fast access to clustered objects can be obtained.

Object clustering is difficult for two reasons.

1) It is not orthogonal to object identity implementation

2) The clustering of complex objects along the composition relationship is more

involved because of object sharing

Models of object clustering

There are three basic models for object clustering

• Decomposition of storage model (DSM)

• Normalized storage model (NSM)

• Direct storage model

2) Distributed Garbage Collection

This is the common issue in OS and Databases Objects that are not accessed by any

access routine become garbage. We have to identify such objects and re-claim memory

occupied them by destroying objects. The basic garbage collection algorithms can be

categorized as

• Reference counting

• Tracing based

Reference counting

Each object has an associated count of the references to it.

Tracing based

Tracing based collectors are divided into

• Mark and sweep: periodically follows the hierarchy of the objects to detect that

are not being accessed

• Copy based: copy the objects that are accessed and delete the remaining

Summary

Virtual University Pakistan

 176

• Architectures of OODDBS

• Different Issues

– Storage Management

– OID Handling

– Cache Management

– Pointer Swizzling

– Object Migration

– Garbage Collection

Virtual University Pakistan

 177

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 44

Virtual University Pakistan

 178

In previous lecture:

- Two Alternatives

o Object Server Architecture

o Page Server Architecture

In today’s lecture:

- Transaction management in distributed OODBMS

- Database interoperability

Transaction Management

Here we are discussing some issues that arise in extending the transaction concept to

object DBMSs. Most object DBMSs maintain page level locks or concurrency control

and support the traditional flat transaction model. It has been argued that the traditional

flat model would not meet the requirements of the advanced application domains that

object data management technology would serve. Some of the considerations are that

transactions in these domains are longer in duration, requiring interactions with the user

or the application program during their execution. In the case of object systems,

transactions do not consist of simple read/write operations. In some application domains

the fundamental transaction synchronization paradigm based on competition among

transactions for access to resources must change to one of cooperation among

transactions in accomplishing a common task.

Requirement for transaction management

The requirements for transaction management in object DBMSs are:

1) Conventional transaction managers synchronize simple read and write operations.

Their counterparts for object DBMSs must be able to deal with abstract operations.

2) Conventional transactions access flat objects (e.g. pages, tuples) whereas

transactions in object DBMS require synchronization of access to composite and

complex objects.

Virtual University Pakistan

 179

3) Some applications supported

by object DBMSs have different database access patterns than conventional

database applications, where the access is competitive.

Correctness Criteria

Three alternatives

• Commutativity

• Invalidation

• Recoverability

1) Commutativity

It states that two operations conflict if the results serial execution of these operations are

not equivalent. Consider the simple operations R(x) and W(x). if nothing is known about

the abstract semantics of the Read and Write operations or the object x upon which they

operate, it has to be accepted that a R(x) following a W(x) does not retrieve the same

value as it would prior to the W(x). a write operation always conflicts with other Read or

Write operations.

Commutativity Types

There are two types

• Forward Commutativity

• Backward Commutativity

Forward Commutativity: two operations P and Q and a state s of object, then

“For every state s in which P and Q are both defined, P(Q(s)) = Q(P(s)) and P(Q(s)) is

defined(i.e. it is not the null state)”

Backward Commutativity: “ For every state s in which we know P(Q(S)) is defined

P(Q(s)) = Q(P(a))”

Example:

The forward and backward compatibility relations for the set ADT are given in figure 1

and figure 2 respectively.

Virtual University Pakistan

 180

An operation is defined as a pair of

invocation and response to that invocation e.g. x:[Insert(3),ok] is a valid invocation of an

insert operation on set x that returns that the operation was performed correctly.

Compatibility Table for Forward Commutativity

 [Insert(i), ok] [Delete(i), ok] [Member(i), tr] [Member(i), fl]

[Insert(i), ok] + - + -

[Delete(i), ok] - + + +

[Member(i), tr] + - + +

[Member(i), fl] - + + +

Figure 1: Compatibility Table for Forward Commutativity in Sets

Compatibility Table for Backward Commutativity

 [Insert(i), ok] [Delete(i), ok] [Member(i), tr] [Member(i), fl]

[Insert(i), ok] + - - -

[Delete(i), ok] - + - +

[Member(i), tr] - - + +

[Member(i), fl] - + + +

Figure 2: Compatibility Table for Backward Commutativity

2) Invalidation

Virtual University Pakistan

 181

 An operation P invalidates Q, if

there are two histories H1, H2 such that H1 * P * H2 and H1 * H2 * Q are defined but H1

* P * H2 * Q isn’t.

3) Recoverability

An operation P is said to be recoverable with respect to operation Q if the value returned

by P is independent of whether Q executed before P or not.

Database Interoperability

Database integration: involves the process by which information from participating

databases can be conceptually integrated to form a single cohesive definition of a

multidatabase.

Generally meant in an multi-database (MDBS) environment; a complex database

environment

• Databases are heterogeneous

• Architecture could be global schema architecture as shown in figure 3 or the

federated database architecture

• Participating databases are autonomous

Heterogeneity could be

• Hardware

• Software

• Data Models

• Semantic

In all other DBS architectures, databases are owned by a single organization. So no

semantic heterogeneity

Global Schema Architecture

Virtual University Pakistan

 182

Figure 3: Global conceptual architecture

Interoperability needs database integration that involves two steps

• Schema Translation

• Schema Integration

Schema Translation: involves translating the component schemas into same data models.

It helps to

• Compare schema elements

• Merge them

Choice of Common Data Model (CDM) is important in Schema Translation. We should

prefer the semantic data models, like E-R or OO. After Schema Translation we perform

Schema Integration (SI).

 L External

Schema

 G External

Schema

Global

Schema

Componen

t

Schema

Componen

t

Schema

• • •

Local

Schema

Local

Schema

• • •

Schema Translation

Schema Integration

 G External

Schema

 L External

Schema

Virtual University Pakistan

 183

Schema Integration: involves

merging component schemas into a common schema (the global schema). SI involves

identifying corresponding schema elements from different component databases and

merging. Hampered mainly be semantic heterogeneities.

Example:

Consider an example of database schema in relational data model

– EMP(ENO, ENAME, TITLE)

– PROJ(PNO, PNAME, BUDGET, LOC, CNAME)

– AG(ENO, PNO, RESP, DUR)

– PAY(TITLE, SAL)

Relational Schema Translated into Common Data Model (E-R)

Figure 4: Entity-Relationship Database

Approaches to SI

• Binary: Two schemas merged first, then one at a time

• N-ary: All compared and merged together

EMP

ENO ENAME

PROJ

PNO PNAME

BUDGET LOC
DUR

CNAME

ASG

RESP

PAY

TITLE SAL

PAYMENT

1

N

N M

Virtual University Pakistan

 184

Steps in SI

• Schema Analysis/Matching

• Schema Conforming

• Schema Merging

Heterogeneities

Two types of heterogeneity:

1) Semantic Heterogeneity: same concepts modeled differently in different schemas:

Example: naming, aggregation, generalization, attribute class, default value, database

identifier, schema isomorphism, missing values

2) Structural Heterogeneity: differences in the representation of corresponding schema

elements

Examples: Data scaling and precision, attribute integrity constraint, objects included,

domain

Heterogeneities are resolved by applying the mapping on elements. We cannot ask/expect

the component databases to change. Most common semantic is naming conflict that could

be Synonyms and Homonyms.

Synonyms: different names modeling same thing, like in our example schema

ENGINEER/ EMP and Salary/Sal.

Homonym: same name modeling different things, like title here.

Summary

We have discussed the transaction management (TM), requirements of TM and

Correctness Criteria. Correctness criteria consist of Commutativity, Invalidation, and

Recoverability. Database Interoperability also discussed.

Virtual University Pakistan

 185

Course Title: Distributed Database Management Systems

Course Code: CS712

Instructor: Dr. Nayyer Masood

Lecture No: 45

Virtual University Pakistan

 186

In previous lecture:

- Transaction management in distributed OODBMS

- Database interoperability

In today’s lecture:

- Database interoperability (continued..)

Database Interoperability (continued..)

Architecture is global schema multidatabase system. Objective is to merge the schemas

of the component databases and present as a single schema. Data is owned by different

organization. User does not have any idea about it. Interoperability involves

• Schema translation

• Schema integration

Steps in SI

• Schema Analysis/Matching

• Schema Conforming

• Schema Merging

Schema integration is an older issue than the DDBSs. In initial days of database design it

was being performed view integration View integration is simpler as compare to SI.

Context is same, as database is being developed for the same organization

SI is more complex,

• autonomous schemas contain heterogeneities even if they belong to same domain

• Schemas contain data that also needs to be merged

Early SI approaches were mainly influenced by view integration.

Virtual University Pakistan

 187

Schema Analysis/Matching

Initially correspondence finding phase was called schema analysis; today it is called

schema matching.

Schema Conforming: resolving differences among the elements modeling same/similar

elements

Schema merging: combining those elements.

Most challenging task in SI is establishing correspondences among schema elements.

Reason: the existence of semantic heterogeneities

Heterogeneities

Two types of heterogeneity:

Semantic heterogeneity: same concepts modeled differently in different schemas:

Example: naming, aggregation, generalization, attribute class, default value, database

identifier, schema isomorphism, missing values

Structural heterogeneity: differences in the representation of corresponding schema

elements

Example: Data scaling and precision, attribute integrity constraint, objects included,

domain

Semantic heterogeneity:

Most common semantic is naming conflict that could be Synonyms and Homonyms

Synonyms: different names modeling same thing, like in our example schema

ENGINEER/ EMP and Salary/Sal as shown in figure 1.

Homonym: same name modeling different things, like title here.

SI cannot be performed totally automatically. We need to know the semantics for

establishing correspondences. Source for semantics is schema. Current data models do

not capture the real-world semantics completely. So meaning is either in the mind of

designer or it is in the application programs. So we cannot completely automate SI.

Virtual University Pakistan

 188

Doing it manually is also not

possible, as it is a huge process. So we should perform SI semi-automatically. There are

different approaches to do the SI A very common approach is ontology based

Ontologies

An ontology is an application dependent collection of terms, their meaning and possibly

relation between them. Naming conflicts are removed by adopting names from ontology

in the global schema and mapping component elements to them. One approach could be

to map the schema elements to the concepts/terms in the ontology. We do this once for all

schemas. After mapping all the schemas we compare the ontological terms rather than the

elements. Comparison becomes sort of free of at least naming conflicts.

Most important is SA/SM. Takes two or more schemas as input and generates matching

assertions. Different forms of assertions are there. Schema matching approaches is now

described by the matcher they use. Initial classification was mainly the syntactic and

semantic based. Today, matchers are established. Famous matchers are:

• Name based

• Description based

• Global namespaces

• Type based

• Key similarity

• Instance based

• Some even use Neural Networks

Then there is concept of combining matchers. We have hybrid and composite approaches

of combining matchers Some Schema Matching approaches

• Autoplex, SKAT, Dike, COMA, TransScm etc.

Most of the matchers assign strength to assertions. Value ranges between 0 and 1.

Matchers suggest the strong candidate assertions and user/ integrator finalizes them

Structural Heterogeneities

Virtual University Pakistan

 189

Entity versus attribute, like client.

Attribute has to be transformed into entity in the global schema and mapping to be

established. Dependency, relationship is one to many or many to many, have to adopt

more general one

Synonym

 Figure 1: synonyms

Entity vs attribute

Figure 2

For example, cardinality difference

Virtual University Pakistan

 190

Figure 3

Schema conforming aligns them from merging, mainly structural conflicts, example.

Figure 4

Overview of the course

• Introduction to distributed systems and their justification

• Basics of Databases, specially relational data model and networks

• Architectures in DDBSs

• Design issues, fragmentation, its types, PHF, DHF, VF, Hybrid

• Experiments/Particles of DDBS implementation

• Transaction Management basics and then in DDBS environment

• Then query processing

• Parallel databases

• Object Oriented Databases

• Database Interoperability

Thank you very much, hope you have enjoyed the course

Virtual University Pakistan

 191

Virtual University Pakistan

 192

