
Computer Graphics (CS602) VU

© Copyright Virtual University of Pakistan

1

Computer Graphics

CS602

Virtual University of Pakistan
 Knowledge beyond the boundaries

Computer Graphics (CS602) VU

© Copyright Virtual University of Pakistan

2

Table of Contents

Lecture No.1 Introduction to Computer Graphics .. 3
Lecture No.2 Graphics Systems I .. 25
Lecture No.3 Graphics Systems II .. 34
Lecture No.4 Point .. 44
Lecture No.5 Line Drawing Techniques ... 54
Lecture No.6 Circle Drawing Techniques .. 60
Lecture No.7 Ellipse and Other Curves .. 65
Lecture No.8 Filled-Area Primitives-I .. 80
Lecture No.9 Filled-Area Primitives-II .. 99
Lecture No.10 Mathematics Fundamentals ... 103
LLeeccttuurree NNoo..1111 2D Transformations I .. 115
LLeeccttuurree NNoo..1122 2D Transformations II .. 119
Lecture No.13 Drawing Example .. 128
Lecture No.14 Clipping-I ... 138
Lecture No.15 Clipping-II .. 143
Lecture No.16 3D Concepts ... 154
Lecture No.17 3D Transformations I .. 170
Lecture No.18 3D Transformations II .. 177
Lecture No.19 Projections .. 190
Lecture No.20 Perspective Projection ... 197
Lecture No.21 Triangles and Planes ... 205
Lecture No.22 Triangle Rasterization .. 213
Lecture No.23 Lighting I .. 224
Lecture No.24 Lighting II .. 231
Lecture No.25 Mathematics of Lighting and Shading Part I 236
Lecture No.26 Mathematics of Lighting and Shading Part II Light Types and

Shading Models .. 240
Lecture No.27 Review II .. 244
Lecture No.28 Review III ... 263
Lecture No.29 Mathematics of Lighting and Shading Part III 278
Lecture No.30 Mathematics of Lighting and Shading Part IV 287
Lecture No.31 Mathematics of Lighting and Shading Part V 293
Lecture No.32 Introduction to OpenGL ... 298
Lecture No.33 OpenGL Programming - I .. 305
Lecture No.34 OpenGL Programming - II .. 311
Lecture No.35 Curves ... 322
Lecture No.36 Space Curves .. 328
Lecture No.37 The Tangent Vector ... 331
Lecture No.38 Bezier Curves ... 335
Lecture No.39 Building Polygonal Models of Surfaces ... 342
Lecture No.40 Fractals ... 349
Lecture No.41 Viewing ... 368
Lecture No.42 Examples of Composing Several Transformations 389
Lecture No.43 Real-World and OpenGL Lighting .. 395
Lecture No.44 Evaluators, curves and Surfaces .. 415
Lecture No.45 Animations ... 425

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

3

Lecture No.1 Introduction to Computer Graphics

1.1 Definition

Computers accept process, transform and present information.

Computer Graphics involves technology to accept, process, transform and present
information in a visual form that also concerns with producing images (or animations)
using a computer.

1.2 Why Study Computer Graphics?

There are certain important reasons to study computer graphics. We will discuss them
under certain heads:

Visualization
I like to see what I am doing. Many a times it happens that you perform certain tasks
which you cannot visualize; for example as a student of data structures, you implement
trees, graphs and other Abstract Data Types (ADTs) but you cannot visualize them
whereas you must be having an inner quest to see what these actually look like.

I like to show people what I am doing. Similarly at certain times you would be
performing certain tasks which you know but it would be difficult for others to
understand them so there is very important requirement of showing the things in order to
make them understandable.

 Graphics is interesting
We are visual creatures and for us a picture is worth a thousand words. If we can get rid
of text based static screen and get some graphics; it’s always interesting to see things in
colours and motion on the screen. Therefore graphics is interesting because it involves
simulation, algorithm, and architecture.

 Requirement
Well there are certain areas which require use of computer graphics heavily. One
example is drawing of machines. It is required to prepare drawing of a machine before the
actual production. The other heavy requirement is for architects as they have to prepare a
complete blue print of the building they have to build long before the actual construction
work gets underway. AutoCAD and other applications of the kind are heavily used today
for building architecture.

 Entertainment
Merely a couple of decades back, the idea of a 24 hours Cartoons Network was really a
far fetched one. That was the time when one would wait for a whole week long before
getting an entertainment of mere 15 minutes. Well thanks to computer graphics that have
enabled us to entertain ourselves with animated movies, cartoons etc.

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

4

1.3 Some History

The term “computer graphics” was coined in 1960 by William Fetter to describe the new
design methods that he was developing at Boeing. He created a series of widely
reproduced images on a plotter exploring cockpit design using a 3D model of a human
body.

Whirlwind: early graphics using Vector Scope (1951)

Spacewars: first computer graphics game (MIT 1961)

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

5

First CAD system (IBM 1959)

First bump-mapped images (Blinn 1978)

Early texture-mapped image (Catmull 1974)

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

6

First distributed ray traced image (Cook 1984)

First ray traced image (Whitted 1980)

1.4 Graphics Applications

Due to rapid growth in the field of computing, now computer is used as an economical
and efficient tool for the production of pictures. Computer graphics applications are found
in almost all areas. Here we will discuss some of the important areas including:

i. User Interfaces
ii. Layout and Design
iii. Scientific Visualization and Analysis
iv. Art and Design
v. Medicine and Virtual Surgery
vi. Layout Design & Architectural Simulations
vii. History and cultural heritage
viii. Entertainment
ix. Simulations
x. Games

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

7

User Interfaces

Almost all the software packages provide a graphical interface. A major component of
graphical interface is a window manager that allows a user to display multiple windows
like areas on the screen at the same time. Each window can contain a different process
that can contain graphical or non-graphical display. In order to make a particular window
active, we simply have to click in that window using an interactive pointing device.

Graphical Interface also includes menus and icons for fast selection of programs,
processing operations or parameter values. An icon is a graphical symbol that is designed
to look like the processing option it represents.

B205 Control Console (1960)

Impressive and Interactive 3D environment

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

8

3D Studio MAX

Layout and Design

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

9

Scientific Visualization and Analysis

Computer graphics is very helpful in producing graphical representations for scientific
visualization and analysis especially in the field of engineering and medicine. It helps a
lot in drawing charts and creating models.

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

10

ART AND DESIGN
Computer graphics is widely used in Fine Arts as well as commercial arts for producing
better as well as cost effective pictures. Artists use a variety of programs in their work,
provided by computer graphics. Some of the most frequently used packages include:
Artist’s paintbrush
Pixel paint
Super paint

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

11

Medicine and Virtual Surgery
Computer graphics has extensive use in tomography and simulations of operations.
Tomography is the technique that allows cross-sectional views of physiological systems
in X-rays photography. Moreover, recent advancement is to make model and study
physical functions to design artificial limbs and even plan and practice surgery.

Computer-aided surgery is currently a hot topic.

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

12

Room Layout Design and Architectural Simulations

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

13

Layout Design & Architectural Simulations

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

14

History and cultural heritage
Another important application of computer graphics is in the field of history and cultural
heritage. A lot of work is done in this area to preserve history and cultural heritage. The
features so for provide are:

 Innovative graphics presentations developed for cultural heritage
applications

 Interactive computer techniques for education in art history and archeology
 New analytical tools designed for art historians
 Computer simulations of different classes of artistic media

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

15

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

16

Movies
Computer graphics methods are now commonly used in making motions pictures, music
videos and television shows. Sometimes the graphics scenes are displayed by themselves
and sometimes graphics objects are combined with the actors and live scenes. A number
of hit movies and shows are made using computer graphics technology. Some of them
are:

Star Trek- The Wrath of Khan
Deep Space Nine
Stay Tuned
Reds Dreams
She’s Mad

Tron (1980)
First time computer graphics were used for live action sequences.

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

17

Fully computer generated animated features

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

18

Star Wars (1977)

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

19

Star Trek II: The Wrath of Khan, genesis

The Last Starfighter (15 minutes) (1982)

 The Last Starfighter (15 minutes) (1982)

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

20

Special
Effects… in
Live Action
Cinema

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

21

“Traditional” Animated
Features…
Some examples:
• Automating Keyframing in
many Disney-type
animations
• The flocking behaviour of
the wild beast in Lion King
•Non photorealistic
rendering: 3D effects in
Futurama

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

22

Behind the scenes on Antz Production
Number of frames in the movie 119,592
Number of times the movie was rendered during production 15 (approx.)
Number of feet of approved animation produced in a week 107 ft.
Total number of hours of rendering per week 275,000 hrs.
Average size of the frame rendered 6 MB
Total number of Silicon Graphics servers used for rendering 270
Number of desktop systems used in production 166
Total Number of processors used for rendering 700
Average amount of memory per processor 256 MB
Time it would have taken to render this movie on 1 processor 54 yrs., 222 days, 15 mins., 36

Amount of storage required for the movie 3.2 TB
Amount of frames kept online at any given time 75000 frames
Time to re-film out final cut beginning to end 41.5 days (997 hrs.)

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

23

Simulations
Simulation by all means is a very helpful tool to show the idea you have or the work you
are doing or to see the results of your work. Given below is the picture in which you can
see wave’s ripples on water; no doubt looking like original but is simply a simulation. A
number of software packages are used for simulation including:

Crackerjack Computer Skills
Keen Artistic Eye
Flash
Maya

Game
Thanks to computer graphics, real time games are now possible. Now game programming
itself has become an independent field and game programmers are in high demand. Some
of the famous games are:

• Quake
• Dooms
• Need For Speed
• Commandos

1-Introduction to Computer Graphics VU

© Copyright Virtual University of Pakistan

24

Related Disciplines

Interdisciplinary

 Science
 Physics: light, color, appearance, behavior
 Mathematics: Curves and Surfaces, Geometry and Perspective
 Engineering
 Hardware: graphics media and processors, input and output devices
 Software: graphics libraries, window systems
 Art, Perception and Esthetics
 Color, Composition, Lighting, Realism

IMAGES

Data
Processing

Image
Processing

Computer
Vision Computer

Graphics

DATA

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

25

Lecture No.2 Graphics Systems I

Introduction of Graphics Systems
With the massive development in the field of computer graphics a broad range of graphics
hardware and software systems is available. Graphics capabilities for both two-
dimensional and three-dimensional applications are now common on general-purpose
computers, including many hand-held calculators. On personal computers there is usage
of a variety of interactive input devices and graphics software packages; whereas, for
higher-quality applications some special-purpose graphics hardware systems and
technologies are employed.

VIDEO DISPLAY DEVICES
The primary output device in a graphics system is a video monitor. The operation of most
video monitors is based on the standard cathode-ray-tube (CRT) design, but several other
technologies exist and solid-state monitors may eventually predominate.

Refresh Cathode-Ray Tubes
Following figures illustrate the basic operation of a CRT. A beam of electrons (cathode
rays) emitted by an electron gun, passes through focusing and deflection systems that
direct the beam toward specified positions on the phosphor-coated screen. The phosphor
then emits a small spot of light at each position contacted by the electron beam.

The light emitted by the phosphor fades very rapidly therefore to keep the picture it is
necessary to keep the phosphor glowing. This is achieved through redrawing the picture
repeatedly by quickly directing the electron beam back over the same points and the
display using this technique is called refresh CRT.

The primary components of an electron gun in a CRT are the heated metal cathode and a
control grid. Heat is supplied to the cathode by directing a current through filament (a
coil of wire), inside the cylindrical cathode structure. Heating causes electrons to be
boiled off the hot cathode surface. In the vacuum inside the CRT envelope, the free,
negatively charged electrons are then accelerated toward the phosphor coating by a high
positive voltage.

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

26

The accelerating voltage can be generated with a positively charged metal coating on
the inside of the CRT envelope near the phosphor screen an accelerating anode can be
used.

Intensity of the electron beam is controlled by setting voltage levels on the control grid,
a metal cylinder that fits over the cathode. A high negative voltage applied to the control
grid will shut off the beam by repelling electrons and stopping them from passing through
the small hole at the end of the control grid structure. A smaller negative voltage on the
control grid simply decreases the number of electrons striking the phosphor coating on
the screen.

It is the responsibility of focusing system to converge electron beam to a small spot
where it strikes the phosphor. Otherwise the electrons will repel each other and the beam
would disperse. This focusing is achieved through electric or magnetic fields.

In electrostatic focusing the electron beam passes through a positively charged metal
cylinder that forms an electrostatic lens. Then electrostatic lens focuses the electron beam
at the center of the screen. Similar task can be achieved with a magnetic field setup by a
coil mounted around the outside of the CRT envelope. Magnetic lens focusing produces
the smallest spot size on the screen and is used in special purpose devices.

The distance that the electron beam must travel from gun to the exact location of the
screen that is small spot is different from the distance to the center of the screen in most
CRTs because of the curvature therefore some additional focusing hardware is required
in high precision systems to take beam to all positions of the screen. This procedure is
achieved in two steps in first step beam is conveyed through the exact center of the screen

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

27

and then additional focusing system adjust the focusing according to the screen position
of the beam.

Cathode-ray tubes are now commonly constructed with magnetic deflection coils
mounted on the outside of the CRT envelope. Two pairs of coils are used, with the coils
in each pair mounted on opposite sides of the neck of the CRT envelope. One pair is
mounted on the top and bottom of the neck and the other pair is mounted on opposite
sides of the neck. The magnetic field produced by each pair of coils results in a traverse
deflection force that is perpendicular both to the direction of the magnetic field and to the
direction of travel of the electron beam. Horizontal deflection is achieved with one pair
of coils, and vertical deflection by the other pair. The proper deflection amounts are
attained by adjusting the current through the coils. When electrostatic deflection is used,
two pairs of parallel plates are mounted inside the CRT envelope. One pair of plates is
mounted horizontally to control the vertical deflection, and the other pair is mounted
vertical to control horizontal deflection.

Phosphor is available in different kinds. One variety is available in color but a major
issue is their persistence. Persistence is defined as the time it takes the emitted light from
the phosphor to decay to one-tenth of its original intensity. Lower persistence phosphors
require higher refresh rates to maintain a picture on the screen without flicker. A
phosphor with low persistence is useful for displaying highly complex, static pictures.
Monitors normally come with persistence in the range from 10 to 60 microseconds.

The maximum number of points (that can be uniquely identified) on a CRT is referred to
as the resolution. A more precise definition of resolution is the number of points per
centimeter that can be plotted horizontally and vertically, although it is often simply
stated as the total number of points in each direction.
Finally aspect ratio; is the ratio of vertical points to horizontal points necessary to
produce equal-length lines in both directions on the screen. An aspect ratio of 3/4 means
that a vertical line plotted with three points has the same length as a horizontal line
plotted with four points.

RASTER-SCAN SYSTEMS
Raster scan is the most common type of monitors using CRT. In raster scan picture is
stored in the area called refresh buffer or frame buffer. First of all why information is
stored; because picture have to be refreshed again and again for this very reason it is
stored. Second is how it is stored; so picture is stored in a two dimensional matrix where
each element corresponds to each pixel on the screen. If there arise a question what is a
pixel? The very simple answer is a pixel (short for picture element) represents the shortest

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

28

possible unique position/ element that can be displayed on the monitor without
overlapping.

The frame buffer stores information in a two dimensional matrix; the question is that how
many bits are required for each pixel or element. If there is black and white picture then
there is only one bit required to store ‘0’ for black or 1 for white and in this case buffer
will be referred as bitmap. In colour pictures obviously multiple bits are required for
each pixel position depending on the possible number of colours for example to show 256
colours 8 bits will be required for each pixel and in case if multiple bits are used for one
pixel frame buffer will be referred as pixmap.

Now with the information in frame buffer, let us see how an image is drawn. The drawing
is done in a line-by-line fashion. After drawing each line from left to right it reaches at the
left end of the next line to draw next line; which is called horizontal retrace. Similarly
after completing all lines in horizontal fashion it again reaches the top left corner to start
redrawing the image (that is for refreshing) and this is called vertical retrace. Normally
each vertical retrace takes 1/60th of a second to avoid flickering.

There are two further methods to scan the image: interlaced and non-interlaced. In
interlaced display beam completes scanning in two passes. In one pass only odd lines are
drawn and in the second pass even lines are drawn. Interlacing provides effect of double
refresh rate by completing half of the lines in half of the time. Therefore, in systems with
low refresh rates interlacing helps avoid flickering.

RANDOM-SCAN Displays
In random-scan displays a portion of the screen can be displayed. Random-scan displays
draw a picture one line at a time and are also called vector displays (or stroke-writing or
calligraphic displays). In these systems image consists of a set of line drawing commands
referred to as Refresh Display File. Random-scan can refresh the screen in any fashion
by repeating line drawing mechanism.

Random-scan displays are designed to draw all the component lines of a picture 30 to 60
times each second. High-quality vector systems are capable of handling approximately
100,000 short lines at this refresh rate. When a small set of lines is to be displayed, each
refresh cycle is delayed to avoid refresh rates greater than 60 frames per second.
Otherwise, faster refreshing of the set of lines could burn out the phosphor.

Random-scan displays are designed for line-drawing applications and cannot display
complex pictures. The lines drawn in vector displays are smoother whereas in raster-scan
lines often become jagged.

Color CRT Monitors
A CRT monitor displays colour pictures by using a combination of phosphors that emit
different coloured light. With the combination of phosphor a range of colours can be
displayed. There are two techniques used in colour CRT monitors:

 Beam Penetration Method
 Shadow Mask Method

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

29

In beam penetration method two layers of phosphor, usually coated onto the inside of
the CRT screen, and the displayed colour depend on how far the electron beam penetrates
into the phosphor layers. At intermediate beam speeds, combinations of red and green
light are emitted to show two additional colours, orange and yellow. Beam penetration is
an inexpensive way to produce colours as only a few colours are possible and the quality
of picture is also not impressive.

Shadow mask methods can
display a wide range of colours.
In this technique each pixel
position is made up of three
phosphor dots called triads as
shown in the following figure.
Three phosphor dots have
different colors i.e. red, green and
blue and the display colour is
made by the combination of all three dots. Three guns are used to throw beam at the three
dots of the same pixel. By varying intensity at each dot a wide range of colours can be
generated.

A shadow-mask is used which has holes aligned with the dots so that each gun can fire
beam to corresponding dot only.

CRT Displays
Advantages

Fast response (high resolution possible)
Full colour (large modulation depth of E-beam)
Saturated and natural colours
Inexpensive, matured technology
Wide angle, high contrast and brightness

Disadvantages
Large and heavy (typ. 70x70 cm, 15 kg)
High power consumption (typ. 140W)
Harmful DC and AC electric and magnetic fields
Flickering at 50-80 Hz (no memory effect)
Geometrical errors at edges

Direct View Storage Devices

A direct view storage tube stores the picture
information as a charge distribution just
behind the phosphor-coated screen. Two
electron guns are used in this system as
shown in the following figure. They are:

 Primary Gun
 Flood Gun

Primary gun is used to store the picture
pattern whereas flood gun maintains the picture display.

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

30

DVST has advantage that no refresh is required so very complex pictures can be
displayed at very high resolutions without flicker. Whereas, it has disadvantage that
ordinarily no colors can be displayed and that selected parts of a picture cannot be erased.
To eliminate a picture section, the entire screen must be erased and the modified picture
redrawn. The erasing and redrawing process can take several seconds for a complex
picture.

Flat-Panel Displays
This is emerging technology slowly replacing CRT
monitors. The flat-panel displays have following
properties:

• Little Volume
• Light Weight
• Lesser Power consumption

Flat panels are used in calculators, pocket video games and
laptop computers.

There are two categories of flat panel displays:

• Emissive Display (Plasma Panels)
• Non-Emissive Display (Liquid Crystal Display)

The emissive displays (emitters) are devices that convert electrical energy into light.
Plasma panels, thin-film electro-luminescent displays, and light-emitting diodes are
examples of emissive displays. Non-emissive displays (non-emitters) use optical effects
to convert sunlight or light from some other
source into graphics patterns. The most
important example of a non-emissive flat-panel
display is a liquid-crystal device.

Plasma-panel Displays

Plasma panels also called gas-discharge displays
are constructed by filling the region between two
glass plates with a mixture of gases that usually
includes neon. A series of vertical conducting
ribbons is placed on one glass panel, and a set of
horizontal ribbons is built into the other glass panel. Firing
voltages applied to a pair of horizontal and vertical
conductors cause the gas at the intersection of the two
conductors to break down into glowing plasma of electrons
and ions. Picture definition is stored in a refresh buffer, and
the firing voltages are applied to refresh the pixel positions
60 times per second.

Advantages
–Large viewing angle

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

31

–Good for large-format displays
–Fairly bright
Disadvantages
–Expensive
–Large pixels (~1 mm versus ~0.2 mm)
–Phosphors gradually deplete
–Less bright as compared to CRTs, using more power

Liquid Crystal Displays

Liquid crystal refers to the fact that these
compounds have a crystalline arrangement
of molecules, yet they flow like a liquid.
Flat panel displays use nematic liquid
crystal, as demonstrated in the following
figures.

Two glass plates, each containing a light
polarizer at right angles to the other plate,
sandwich the liquid-crystal material. Rows
of horizontal transparent conductors are
built into one glass plate, and columns of
vertical conductors are put into the other
plate. The intersection of two conductors
defines a pixel position. Polarized light
passing through the material is twisted so
that it will pass through the opposite
polarizer. The light is then reflected back to
the viewer. To turn off the pixel, we apply
a voltage to the two intersecting conductors
to align the molecules so that the light is
not twisted.

LCD Displays

Advantages
Small footprint (approx 1/6 of CRT)
Light weight (typ. 1/5 of CRT)
Low power consumption (typ. 1/4 of CRT)
Completely flat screen - no geometrical errors
Crisp pictures - digital and uniform colours
No electromagnetic emission
Fully digital signal processing possible
Large screens (>20 inch) on desktops

Disadvantages
High price (presently 3x CRT)
Poor viewing angle (typ. +/- 50 degrees)
Low contrast and luminance (typ. 1:100)
Low luminance (Natural light) (typ. 200 cd/m2)

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

32

Three-Dimensional Viewing Devices
Graphics monitors for the display of three-dimensional scenes have been devised using a
technique that reflects a CRT image from a vibrating, flexible mirror. In this system when
varifocal mirror vibrates it changes focal length. These vibrations are synchronized with
the display of an object on a CRT so that
each point on the object is reflected from
the mirror into spatial position
corresponding to the distance of that
point from a specified viewing position.
This allows user to walk around an object
or scene and view it from different sides.

Virtual Reality Devices
Virtual reality system enables users to
move and react in a computer-simulated
environment. Various types of devices allow
users to sense and manipulate virtual objects
much as they would real objects. This natural
style of interaction gives participants the
feeling of being immersed in the simulated
world. Virtual reality simulations differ from
other computer simulations in that they require
special interface devices that transmit the
sights, sounds, and sensations of the simulated
world to the user. These devices also record
and send the speech and movements of the
participants to the simulation program.

To see in the virtual world, the user wears a
head-mounted display (HMD) with screens
directed at each eye. The HMD contains a
position tracker to monitor the location of the
user's head and the direction in which the user
is looking. Using this information, a computer
recalculates images of the virtual world to match the
direction in which the user is looking and displays
these images on the HMD.

Users hear sounds in the virtual world through
earphones in the HMD. The hepatic interface, which
relays the sense of touch and other
physical sensations in the virtual
world, is the least developed
feature. Currently, with the use of a
glove and position tracker, the user
can reach into the virtual world and
handle objects but cannot actually
feel them.

2-Graphics Systems I VU

© Copyright Virtual University of Pakistan

33

Another interesting simulation is interactive walk through. A sensing system in the
headset keeps track of the viewer’s opposition, so that the front and back of objects can
be seen as the viewer walks and interacts with the displays. Similarly given below is a
figure using a headset and a data glove worn on the right hand?

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

34

Lecture No.3 Graphics Systems II

Raster-Scan Systems

Interactive raster graphics systems typically employ several processing units. In addition
to the CPU, a special purpose processor, called the video controller or display
controller is used to control the operation of the display device.

Organization of a simple raster system is shown in following figure. Here the frame
buffer can be anywhere in the system memory, and the video controller accesses the
frame buffer to refresh the screen.

In addition to the video controller more sophisticated raster systems employ other
processors as coprocessors and accelerators to implement various graphics operations.

Video Controller
Following figure shows a commonly used organization for raster systems. A fixed area of
the system memory is reserved for the frame buffer, and the video controller is given
direct access to the frame-buffer memory.

Frame-buffer locations, and the corresponding screen positions, are referenced in
Cartesian coordinates.

Architecture of a simple raster graphics system

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

35

In the following figure the basic refresh operations of the video controller are
diagrammed. Two registers are used to store the coordinates of the screen pixels. Initially,
the x register is set to 0 and the y register is set to ymax. The value stored in the frame
buffer for this pixel position is then retrieved and used to set the intensity of the CRT
beam. Then the x register is incremented by 1, and the process repeated for the next pixel
on the top scan line. This procedure is repeated for each pixel along the next line by
resetting x register to 0 and decrementing the y register by 1. Pixels along this scan line
are then processed in turn, and the procedure is repeated for each successive scan line.
After cycling through all pixels along the bottom scan line y=0, the video controller resets
to the first pixel position on the top scan line and the refresh process starts over.

Since the screen must be refreshed at the rate of 60 frames per second, the simple
procedure illustrated in above figure cannot be accommodated by typical RAM chips.
The cycle time is too large making the process very slow. To speed up pixel processing,
video controllers can retrieve multiple pixel values from the refresh buffer on each pass.

Architecture of a raster system with a fixed portion of a system
memory reserved for the frame buffer.

Memory Addresses Pixel Register

Frame Buffer

Raster Scan Generator

Register X Register Y

Horizontal and Vertical
Deflection Voltages

Intensity

Basic Video Controller Refresh Operations

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

36

The multiple pixel intensities are then stored in a separate register and used to control the
CRT beam intensity for a group of adjacent pixels. When that group of pixels has been
processed, the next block of pixel values is retrieved from the frame buffer.

Raster Scan Display Processor
Following figure shows one way to setup the organization of a raster system containing a
separate display processor, sometimes referred to as a graphics controller or a display
coprocessor. The purpose of the display processor is to free the CPU from the graphics
chores. In addition to the system memory, a separate display processor memory area can
also be provided.

A major task of the display processor is digitizing a picture definition given in an
application program into a set of pixel-intensity values for storage in the frame buffer.
This digitization process is called scan conversion.

Raster-Scan Characters
Graphics commands specifying straight lines and other geometric objects are scan
converted into a set of discrete intensity points. Scan converting a straight-line segment,
for example, means that we have to locate the pixel positions closest to the line path and
store the intensity for each position in the frame buffer. Similar methods are used for scan
converting curved lines and polygon outlines.

Characters can be defined with rectangular grids, as shown in following figure, or they
can be defined with curved outlines shown in the right hand side figure given below. The
array size for character grids can vary from about 5 by 7 to 9 by 12 or more for higher-
quality displays. A character grid is displayed by superimposing the rectangular grid
pattern into the frame buffer at a specified coordinate position. With characters that are
defined as curve outlines, character shapes are scan converted into the frame buffer.

System Bus

I/O Devices

Display Processor
Memory

CPU Display
Processor

Frame
Buffer

Architecture of a raster graphics system with a display processor

Video
Controller Monitor

System Memory

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

37

Random-Scan Systems
The organization of a simple random scan system is shown in following figure. An
application program is input and stored in the system memory along with a graphics
package. Graphics commands in the application program are translated by the graphics
package into a display file stored in the system memory. This display file is then accessed
by the display processor to refresh the screen. The display processor cycles through each
command in the display file program once during every refresh cycle. Sometimes the
display processor in a random scan system is referred to as a display processing unit or
graphics controller.

 Monitor

 System Bus

 I/O Devices

Architecture of a simple random scan system

Graphics Card or Display Adapters
A video card is typically an adapter, a removable expansion card in the PC. Thus, it can
be replaced!

A video display adapter which is the special printed circuit board that plugs into one of
the several expansion slots present on the mother board of the computer. A video display
adapter is simply referred as a video card.

Defined as a grid of
pixel positions Defined as a

curve outline

CPU System
Memory

Display
Processor

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

38

The video card can also be an integral part of the system board; this is the case in certain
brands of PCs and is always the case in laptops and clear preference for the replaceable
video card in some PCs.

A number of display adapters are available with varying capabilities especially Intel
systems support following adapters:

 Monochrome Adapter (MA)
 Hercules Adapter (HA)
 Color Graphics Adapter (CGA)
 Enhanced Graphics Adapter (EGA)
 Multicolor Graphics Adapter (MCGA)
 Video Graphics Adapter (VGA)
 Super Video Graphics Adapter (SVGA)
 Extended Graphics Adapter (XGA)

Monochrome Adapter
The simplest and the first available adapter is MA. This adapter can display only text in
single color and has no graphics displaying capability. Originally this drawback only
prevented the users from playing video games, but today, even the most serious business
software uses graphics and color to great advantage. Hence, MA is no longer suitable,
though it offers clarity and high resolution.

Hercules Adapter
The Hercules card emulates the monochrome adapter but also operates in a graphics
mode. Having graphics capabilities the Hercules card became somewhat of a standard for
monochrome systems.

Color Graphics Adapter
This adapter can display text as well as graphics. In text mode it operates in 25 rows by
80 column mode with 16 colors. In graphics mode two resolutions are available:

 Medium resolution graphics mode 320 * 200 with 4 colors available from palette
of 16 colors

 and 640 * 200 with 2 colors

One drawback of CGA card is that it produces flicker and snow. Flicker is the annoying
tendency of the text to flash as it moves up or down. Snow is the flurry of bright dots that
can appear anywhere on the screen.

Enhanced Graphics Adapter
The EGA was introduced by IBM in 1984 as alternative to CGA card. The EGA could
emulate most of the functions and all the display modes of CGA and MA. The EGA
offered high resolution and was not plagued with the snow and flicker problems of CGA.
In addition EGA is designed to use the enhanced color monitor capable of displaying 640
* 350 in 16 colors from a palette of 64.

The EGA card has several internal registers. A serious limitation of the EGA card is that
it supports write operations to most of its internal registers, but no read operation. The
result is it is not possible for software to detect and preserve the state of the adapter,

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

39

which makes EGA unsuited for memory resident application or for multitasking like
windows and OS/2.

Multicolor Graphics Adapter
The MCGA was designed to emulate the CGA card and to maintain compatibility with all
the CGA modes. In addition to the text and graphics modes of the CGA, MCGA has two
new graphics modes:
 640 * 480 with 2 colors
320 * 200 in with 256 colors

Video Graphics Adapter
The VGA supports all the display modes of MA, CGA and MCGA. In addition VGA
supports a graphics mode of 640 * 480 with 16 colors.

Super Video Graphics Adapter
The SVGA designation refers to enhancements to the VGA standard by independent
vendors. Unlike display adapters discussed earlier SVGA does not refer to a card that
meets a particular specification but to a group of cards that have different capabilities. For
example one card may have resolutions 800 * 600 and 1024 * 768, whereas, another card
may have same resolution but more colors. These cards have different capabilities, but
still both of them are classified as SVGA. Since each SVGA card has different
capabilities, you need special device driver programs for driving them. This means that
unlike VGA cards which can have a single driver that works with all VGA cards,
regardless of the vendor, each SVGA card must have a corresponding driver.

Extended Graphics Adapter
The XGA evolved from the VGA and provides greater resolution, more colors and much
better performance. The XGA has a graphics processor bus mastering. Being a bus master
adapter means that the XGA can take control of the system as though it were the mother
board. In essence, a bus master is an adapter of the mother board. The XGA offers 2 new
modes:
 640 * 480 with 16 bit colors (65536 colors)
 1024 * 768 with 8 bit colors (256 colors)

Video Card Supports the CPU
The video card provides a support function for the CPU. It is a processor like the CPU.
However it is especially designed to control screen images.

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

40

RAM on the Video Card
Video cards always have a certain amount of RAM. This RAM is also called the frame
buffer. Today video cards hold plenty of RAM, but earlier it was more important:

 How much RAM? That is significant for color depth at the highest resolutions.
 Which type of RAM? This is significant for card speed.

Video card RAM is necessary to keep the entire screen image in memory. The CPU sends
its data to the video card. The video processor forms a picture of the screen image and
stores it in the frame buffer. This picture is a large bit map. It is used to continually
update the screen image.

3D - lots of RAM
Supporting the demand for high quality 3D performance many new cards come with a
frame buffer of 16 or 32 MB RAM and they use the AGP interface for better bandwidth
and access to the main memory.

VRAM
Briefly, in principle all common RAM types can be used on the video card. Most cards
use very fast editions of ordinary RAM (SDRAM or DDR).

 Some high end cards (like Matrox Millennium II) earlier used special VRAM (Video
RAM) chips. This was a RAM type, which only was used on video cards. In principle, a
VRAM cell is made up of two ordinary RAM cells, which are "glued" together.
Therefore, you use twice as much RAM than otherwise.

VRAM also costs twice as much. The smart feature is that the double cell allows the
video processor to simultaneously read old and write new data on the same RAM address.
Thus, VRAM has two gates which can be active at the same time. Therefore, it works
significantly faster.

With VRAM you will not gain speed improvements increasing the amount of RAM on
the graphics controller. VRAM is already capable of reading and writing simultaneously
due to the dual port design.
UMA and DVMT
On some older motherboards the video controller was integrated. Using SMBA (Shared
Memory Buffer Architecture) or UMA (Unified Memory Architecture) in which parts of

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

41

the system RAM were allocated and used as frame buffer. But sharing the memory was
very slow and the standards never became very popular.

A newer version of this is found in Intel chip set 810 and the better 815, which also
integrates the graphics controller and use parts of the system RAM as frame buffer. Here
the system is called Dynamic Video Memory Technology (D.V.M.T.).

The RAMDAC
All traditional graphics cards have a RAMDAC chip converting the signals from digital
to analog form. CRT monitors work on analog signals. The PC works with digital data
which are sent to the graphics adapter. Before these signals are sent to the monitor they
have to be converted into analog
output and this is processed in the
RAMDAC:

The recommendation on a good
RAMDAC goes like this:

 External chip, not
integrated in the VGA
chip

 Clock speed: 250 - 360
MHz.

Heavy Data Transport
The original VGA cards were said to be "flat." They were unintelligent. They received
signals and data from the CPU and forwarded them to the screen, nothing else. The CPU
had to make all necessary calculations to create the screen image.

As each screen image was a large bit map, the CPU had to move a lot of data from RAM
to the video card for each new screen image.

The graphic interfaces, like Windows, gained popularity in the early nineties. That
marked the end of the "flat" VGA cards. The PC became incredibly slow, when the CPU
had to use all its energy to produce screen images. You can try to calculate the required
amount of data.

A screen image in 1024 x 768 in 16 bit color is a 1.5 MB bit map. That is calculated as
1024 x 768 x 2 bytes. Each image change (with a refresh rate of 75 HZ there is 75 of
them each second) requires the movement of 1.5 MB data. That zaps the PC energy,
especially when we talk about games with continual image changes.

Furthermore, screen data have to be moved across the I/O bus. In the early nineties, we
did not have the PCI and AGP buses, which could move large volumes of data. The
transfer took place through the ISA bus, which has a very limited width. Additionally the
CPUs were 386’s and early 486’s, which also had limited power.

Accelerator Cards
In the early nineties the accelerator video cards appeared. Today all cards are accelerated
and they are connected to the CPU through high speed buses like PCI and AGP.

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

42

With accelerated video chips, Windows (and with that the CPU) need not calculate and
design the entire bit map from image to image. The video card is programmed to draw
lines, Windows and other image elements.

The CPU can, in a brief code, transmit
which image elements have changed
since the last transmission. This saves
the CPU a lot of work in creating screen
images. The video chip set carries the
heavy load:

All video cards are connected to the PCI or the AGP bus, this way providing maximum
data transmission. The AGP bus is an expanded and improved version of the PCI bus -
used for video cards only.

Modern video cards made for 3D gaming use expensive high-end RAM to secure a
sufficient bandwidth. If you for example want to see a game in a resolution of 1280 x
1024 at 80 Hz, you may need to move 400 MB of data each second - that is quite a lot.
The calculation goes like this:

1280 X 1024 pixels x 32 bit (color depth) x 80 = 419,430,400 bytes
419,430,400 bytes = 409,600 kilobytes = 400 megabytes.

Graphics Libraries
Graphics developers some time use 2D or 3D libraries to create graphics rapidly and
efficiently. These developers include game developers, animators, designers etc.

The following libraries are commonly used among developers:

FastGL
OpenGL
DirectX
Others

Advantages of Graphics Libraries

3-Graphics Systems II VU

© Copyright Virtual University of Pakistan

43

These libraries help developers to create fast and optimized animations and also help to
access features that are available in video hardware.

Hardware manufacturers give support in hardware for libraries. Famous manufacturers
include SIS, NVIDIA, ATI, INTEL etc.

Graphics Software
There is a lot of 2D and 3D software available in the market. These software provide
visual interface for creation of 2D and 3D animation / models image creation. These tools
are under use of movie makers, professional animators and designers.

These tools are flash, Maya, 3D studio max, adobe photo shop, CorelDraw, image viewer,
paintbrush etc.

4-Point VU

© Copyright Virtual University of Pakistan

44

Lecture No.4 Point

Pixel: The smallest dot illuminated that can be seen on screen.

Picture: Composition of pixels makes picture that forms on whole screen

Resolution
We know that Graphics images on the screen are built up from tiny dots called picture
elements or pixels. The display resolution is defined by the number of rows from top to
bottom, and number of pixels from left to right on each scan line.

Since each mode uses a particular resolution. For example mode 19 uses a resolution of
200 scan lines, each containing 320 pixels across. This is often referred to as 320*200
resolution.
In general, higher the resolution, more pleasing is the picture. Higher resolution means a
sharper, clearer picture, with less pronounced ‘staircase’ effect on lines drawn diagonally
and better looking text characters. On the other hand, higher resolution also means more
memory requirement for the display.

Text and Graphics Modes
We discussed different video hardware devices that include VGA cards and monitors.
Video cards are responsible to send picture data to monitor each time it refresh itself.
Video cards support both different text and graphics modes. Modes consist of their own
refresh rate, number of colors and resolutions (number of rows multiply by number of
columns). The following famous video modes that we can set in today’s VGA cards on
different refresh rate:

25 * 80 with 16 colors support (text mode)
320 * 200 with 8 bit colors support (graphics mode)
640 * 480 with 16 colors support (graphics mode)
640 * 480 with 8, 16, 24, 32 bit color support (graphics mode)
800 * 600 with 8, 16, 24, 32 bit color support (graphics mode)

Text and Graphics
All modes are fundamentally of two types, text or graphics. Some modes display only text
and some are made only for graphics. As seen earlier, the display adapter continuously
dumps the contents of the VDU (video display unit) memory on the screen.

The amount of memory required representing a character on screen in text mode and a
pixel in graphics mode varies from mode to mode.

Mode No. Type Resolution Memory Required
3 Text 80 x 25 2 bytes per char
6 Graphics 640 x 200 1 bit per pixel
7 Text 80 x 25 2 bytes per char
18 Graphics 640 x 480 1 bit per pixel
19 Graphics 320 x 200 1 byte per pixel

4-Point VU

© Copyright Virtual University of Pakistan

45

In mode 6 each pixel displayed on the screen occupies one bit in VDU memory. Since
this bit can take only two values, either 0 or 1, only two colors can be used with each
pixel.

How text displays

As seen previously text modes need two bytes in VDU memory to represent one character
on screen; of these two bytes, the first byte contains the ASCII value of the character
being displayed, whereas the second byte is the attribute byte. The attribute byte controls
the color in which the character is being displayed.

The ASCII value present in VDU memory must be translated into a character and drawn
on the screen. This drawing is done by a character generator this is part of the display
adapter or in VBIOS. The CGA has a character generator that uses 8 scan lines and 8
pixels in each of these scan lines to produce a character on screen; whereas the MA’s
character generator uses 9 scan lines and 14 pixels in each of these scan lines to produce a
character. This larger format of MA makes the characters generated by MA much sharper
and hence easier to read.

On older display adapters like MA and CGA, the character generator is located in ROM
(Read Only Memory). EGA and VGA do not have a character generator ROM. Instead,
character generator data is loaded into plane 2 of display RAM. This feature makes it easy
for custom character set to be loaded. Multiple character sets (up to 4 for EGA and up to
8 for VGA) may reside in RAM simultaneously.

A set of BIOS services is available for easy loading of character sets. Each character set
can contain 256 characters. Either one or two character sets may be active giving these
adapters on the screen simultaneously. When two character sets are active, a bit in each
character attribute byte selects which character set will be used for that character.

Using a ROM-BIOS service we can select the active character set. Each character in the
standard character set provided with the EGA is 8 pixels wide and 14 pixels tall. Since
VGA has higher resolution, it provides a 9 pixel wide by 16 pixels tall character set.
Custom character set can also be loaded using BIOS VDU services.

The graphics modes can also display characters, but they are produced quite differently.
The graphics modes can only store information bit by bit. The big advantage of this
method is that you design characters of desired style, shape and size.

Text mode colors

In mode 3, for each character on screen there are two bytes in VDU memory, one
containing the ACCII value of the character and other containing its attribute. The
attribute byte controls the color of the character. The attribute byte contains three
components: the foreground color (color of the character itself), the background color
(color of the area not covered by the character) and the blinking component of the
character. The next slide shows the breakup of the attribute byte.

4-Point VU

© Copyright Virtual University of Pakistan

46

Bits
7 6 5 4 3 2 1 Purpose
X x x x x x x 1 Blue component of foreground color
X x x x x x 1 x Green component of foreground color
X x x x x 1 x x Red component of foreground color
X x x x 1 x x x Intensity component of foreground color
X x x 1 x x x x Blue component of background color
X x 1 x x x x x Green component of background color
X 1 x x x x x x Red component of background color
1 x x x x x x x Blinking component

Graphics Mode colors
So far we have seen how to set color in text modes. Setting color in graphics modes is
quite different. In the graphics mode each pixel on the screen has a color associated with
it. There are important differences here as compared to setting color in text mode. First,
the pixels cannot blink. Second, each pixel is a discrete dot of color, there is no
foreground and background. Each pixel is simply one color or another. The number of
colors that each adapter can support and the way each adapter generates these colors is
drastically different. But we will only discuss here colors in VGA.

Colors in VGA
IBM first introduced the VGA card in April 1987. VGA has 4 color planes – red, green,
blue and intensity, with one bit from each of these planes contributing towards 1 pixel
value.

There are lots of ways that you can write pixel on screen. You can write pixel on screen
by using one of the following methods:

Using video bios services to write pixel
Accessing memory and registers directly to write pixel on screen.
Using library functions to write pixel on screen

Practical approach to write pixel on screen
As we have discussed three ways to write pixel on screen. Here we will discuss all these
ways practically and see how the pixel is displayed on screen. For that we will have to
write code in Assembly and C languages. So get ready with these languages

Writing pixel Using Video BIOS
The following steps are involved to write pixel using video BIOS services.
Setting desired video mode
Using bios service to set color of a screen pixel
Calling bios interrupt to execute the process of writing pixel.

Source code
Below are the three lines written in assembly language that can set graphics mode
19(13h). You can use this for assembler or you can embed this code in C language using
‘asm’ keyword

4-Point VU

© Copyright Virtual University of Pakistan

47

 MOV AH,0
 MOV AL,13h ;;mode number from 0-19
 INT 10H

To insert in C language above code will be inserted with key word asm and curly braces.
asm{
 MOV AH,0
 MOV AL,13h ;;mode number from 0-19
 INT 10H
 }

Description
Line #1: mov ah,0 is the service number for setting video mode that is in register ah
Line #2: mov al,13h is the mode number that is in register al
Line #3: int 10h is the video bios interrupt number that will set mode 13h

Source code for writing pixel
The following code can be used to write pixel using video bios interrupt 10h and service
number 0ch.

MOV AH,0Ch
MOV AL,COLOR_NUM
MOV BH,0
MOV CX,ROW_NUM
MOV DX,COLUMN_NUM
INT 10h

Description
Line#1: service number in register Ah
Line#2: color value, since it is 13h mode so it has 0-255 colors range. You can assign any
color number from 0 to 255 to all register. Color will be selected from default palette
setting against the number you have used.
Line#3: page number in Bh register. This mode supports only one page. So 0 is used in
Bh register. 0 mean default page.
Line#4: column number will be used in CX register
Line#5: row number will be used in DX register
Line#6: BIOS interrupt number 10h

Writing pixel by accessing memory directly
So far we used BIOS to draw pixel. Here we will draw pixel by accessing direct pointer to
the video memory and write color value. The following steps are involved to write direct
pixel without using BIOS:

Set video mode by using video BIOS routine as discussed earlier
Set any pointer to the video graphics memory address 0x0A0000.
Now write any color value in the video memory addressing

4-Point VU

© Copyright Virtual University of Pakistan

48

Direct Graphics Memory Access Code

Mov ax,0a000h
Mov ds,ax ;;segment address changed
Mov si,10 ;; column number
Mov [si],COLOR_NUM

Work to do:
Write pixel at 12th row and 15th column
Hint: use formula (row * 320 + column) in si register.

Writing character directly on screen
You can also write direct text by setting any text mode using BIOS service and then
setting direct pointer at text memory address 0x0b8000.

Example
Set mode Number 3. using BIOS service and then use this code to write character

Mov ax,0b8000h
Mov ds,ax
Mov si,10 ;;column number
Mov [si],’a’ ;;character to write

Using Library functions
While working in C language, you can use graphics library functions to write pixel on
screen. These graphics library functions then use BIOS routines or use direct memory
access drivers to draw pixel on screen.

initgraph(&gdriver, &gmode, "");
/* read result of initialization */
errorcode = graphresult();
if (errorcode != grOk)
/* an error occurred */
 {
 printf("Graphics error: %s\n", getch()); exit(1);
 /* return with error code */
 }
/* draw a pixel on 10th row and 10 column */
putpixel(10, 10, BLUE);
/* clean up */
closegraph();

Steps in C language
First call Initgraph() function
and then call putpixel() function to draw pixel on screen. It takes row, column and color
value as parameters.
after drawing pixel use closegraph() function to close the graphics routines provided by
built in driver by Borland.

4-Point VU

© Copyright Virtual University of Pakistan

49

Discussion on pixel drawing methods
BIOS routines are standard routines built in VGA cards but these routines are very much
slow. You will use pixel to draw filled triangle, rectangles and circles and these all will be
much slower than direct memory access method. Direct memory access method allows
you to write pixel directly by passing the complex BIOS routines. It is easy and faster but
its programming is only convenient in mode 13h. Library functions are easier to use and
even faster because these are optimized and provided with special drivers by different
companies.

Drawing pixel in Microsoft Windows
So far we have been discussing writing pixel in DOS. Here we will discuss briefly how to
write pixel in Microsoft Windows. Microsoft windows are a complete graphical operating
system but it does not allow you to access BIOS or direct memory easily. It provides
library functions (APIs) that can be used to write graphics.
By working in graphics in windows one must have knowledge about Windows GDI
(graphics device interface) system.

Windows GDI functions
Here are some windows GDI functions that can be used to draw pixel e.g SetPixel and
SetPixelV. Both are used to draw pixel on screen. The example and source code of
writing pixel in windows will be available.

Window Code Example:

// a.cpp : Defines the entry point for the application.
//

#include "stdafx.h"
#include "resource.h"

#define MAX_LOADSTRING 100

// Global Variables:
HINSTANCE hInst; // current
instance
TCHAR szTitle[MAX_LOADSTRING];
 // The title bar text
TCHAR szWindowClass[MAX_LOADSTRING];
 // The title bar text

// Foward declarations of functions included in this code module:
ATOM MyRegisterClass(HINSTANCE hInstance);
BOOL InitInstance(HINSTANCE, int);
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM);

int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)

4-Point VU

© Copyright Virtual University of Pakistan

50

{
 // TODO: Place code here.
 MSG msg;
 HACCEL hAccelTable;

 // Initialize global strings
 LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING);
 LoadString(hInstance, IDC_A, szWindowClass, MAX_LOADSTRING);
 MyRegisterClass(hInstance);

 // Perform application initialization:
 if (!InitInstance (hInstance, nCmdShow))
 {
 return FALSE;
 }

 hAccelTable = LoadAccelerators(hInstance, (LPCTSTR)IDC_A);

 // Main message loop:
 while (GetMessage(&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 return msg.wParam;
}

// FUNCTION: MyRegisterClass()
//
// PURPOSE: Registers the window class.
//
// COMMENTS:
//
// This function and its usage is only necessary if you want this code
// to be compatible with Win32 systems prior to the 'RegisterClassEx'
// function that was added to Windows 95. It is important to call this function
// so that the application will get 'well formed' small icons associated
// with it.
//
ATOM MyRegisterClass(HINSTANCE hInstance)
{
 WNDCLASSEX wcex;

 wcex.cbSize = sizeof(WNDCLASSEX);

 wcex.style = CS_HREDRAW | CS_VREDRAW;

4-Point VU

© Copyright Virtual University of Pakistan

51

 wcex.lpfnWndProc = (WNDPROC)WndProc;
 wcex.cbClsExtra = 0;
 wcex.cbWndExtra = 0;
 wcex.hInstance = hInstance;
 wcex.hIcon = LoadIcon(hInstance, (LPCTSTR)IDI_A);
 wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wcex.lpszMenuName = (LPCSTR)IDC_A;
 wcex.lpszClassName = szWindowClass;
 wcex.hIconSm = LoadIcon(wcex.hInstance, (LPCTSTR)IDI_SMALL);

 return RegisterClassEx(&wcex);
}

//
// FUNCTION: InitInstance(HANDLE, int)
//
// PURPOSE: Saves instance handle and creates main window
//
// COMMENTS:
//
// In this function, we save the instance handle in a global variable and
// create and display the main program window.
//
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd;

 hInst = hInstance; // Store instance handle in our global variable

 hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);

 if (!hWnd)
 {
 return FALSE;
 }

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd);

 return TRUE;
}

//
// FUNCTION: WndProc(HWND, unsigned, WORD, LONG)
//
// PURPOSE: Processes messages for the main window.
//
// WM_COMMAND - process the application menu

4-Point VU

© Copyright Virtual University of Pakistan

52

// WM_PAINT - Paint the main window
// WM_DESTROY - post a quit message and return
//
//
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam)
{
 int wmId, wmEvent;
 PAINTSTRUCT ps;
 HDC hdc;
 TCHAR szHello[MAX_LOADSTRING];
 LoadString(hInst, IDS_HELLO, szHello, MAX_LOADSTRING);

 switch (message)
 {
 case WM_COMMAND:
 wmId = LOWORD(wParam);
 wmEvent = HIWORD(wParam);
 // Parse the menu selections:
 switch (wmId)
 {
 case IDM_ABOUT:
 DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX, hWnd,
(DLGPROC)About);
 break;
 case IDM_EXIT:
 DestroyWindow(hWnd);
 break;
 default:
 return DefWindowProc(hWnd, message, wParam,
lParam);
 }
 break;
 case WM_PAINT:
 {
 hdc = BeginPaint(hWnd, &ps);
 // TODO: Add any drawing code here...
 RECT rt;
 GetClientRect(hWnd, &rt);
 int j=0;
 //To draw some pixels of RED colour on the screen
 for(int i=0;i<100;i++)
 {
 SetPixel(hdc,i+j,10,RGB(255,0,0));
 j+=6;
 }

 EndPaint(hWnd, &ps);
 }
 break;

4-Point VU

© Copyright Virtual University of Pakistan

53

 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hWnd, message, wParam, lParam);
 }
 return 0;
}
// Mesage handler for about box.
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM wParam,
LPARAM lParam)
{
 switch (message)
 {
 case WM_INITDIALOG:
 return TRUE;

 case WM_COMMAND:
 if (LOWORD(wParam) == IDOK || LOWORD(wParam) ==
IDCANCEL)
 {
 EndDialog(hDlg, LOWORD(wParam));
 return TRUE;
 }
 break;
 }
 return FALSE;
}

5-Line Drawing Techniques VU

© Copyright Virtual University of Pakistan

54

Lecture No.5 Line Drawing Techniques

Line
A line, or straight line, is, roughly speaking, an (infinitely) thin, (infinitely) long, straight
geometrical object, i.e. a curve that is long and straight. Given two points, in Euclidean
geometry, one can always find exactly one line that passes through the two points; this
line provides the shortest connection between the points and is called a straight line.
Three or more points that lie on the same line are called collinear. Two different lines can
intersect in at most one point; whereas two different planes can intersect in at most one
line. This intuitive concept of a line can be formalized in various ways.

A line may have three forms with respect to slope i.e. it may have slope = 1 as shown in
following figure (a), or may have slope < 1 as shown in figure (b) or it may have slope >
1 as shown in figure (c). Now if a line has slope = 1 it is very easy to draw the line by
simply starting form one point and go on incrementing the x and y coordinates till they
reach the second point. So that is a simple case but if slope < 1 or is > 1 then there will be
some problem.

figure (a) figure (b) figure (c)

There are three techniques to be discussed to draw a line involving different time
complexities that will be discussed later. These techniques are:

 Incremental line algorithm
 DDA line algorithm
 Bresenham line algorithm

Incremental line algorithm
This algorithm exploits simple line equation y = m x + b
Where m = dy / dx
and b = y – m x

Now check if |m| < 1 then starting at the first point, simply increment x by 1 (unit
increment) till it reaches ending point; whereas calculate y point by the equation for each
x and conversely if |m|>1 then increment y by 1 till it reaches ending point; whereas
calculate x point corresponding to each y, by the equation.

Now before moving ahead let us discuss why these two cases are tested. First if |m| is less
than 1 then it means that for every subsequent pixel on the line there will be unit
increment in x direction and there will be less than 1 increment in y direction and vice
versa for slope greater than 1. Let us clarify this with the help of an example:

5-Line Drawing Techniques VU

© Copyright Virtual University of Pakistan

55

Suppose a line has two points p1 (10, 10) and p2 (20, 18)
Now difference between y coordinates that is dy = y2 – y1 = 18 – 10 = 8
Whereas difference between x coordinates is dx = x2 – x1 = 20 – 10 = 10
This means that there will be 10 pixels on the line in which for x-axis there will be
distance of 1 between each pixel and for y-axis the distance will be 0.8.

Consider the case of another line with points p1 (10, 10) and p2 (16, 20)
Now difference between y coordinates that is dy = y2 – y1 = 20 – 10 = 10
Whereas difference between x coordinates is dx = x2 – x1 = 16 – 10 = 6

This means that there will be 10 pixels on the line in which for x-axis there will be
distance of 0.6 between each pixel and for y-axis the distance will be 1.

Now having discussed this concept at length let us learns the algorithm to draw a line
using above technique, called incremental line algorithm:

Incremental_Line (Point p1, Point p2)
dx = p2.x – p1.x
dy = p2.y – p1.y
m = dy / dx
x = p1.x
y = p1.y
b = y – m * x
if |m| < 1
 for counter = p1.x to p2.x
 drawPixel (x, y)
 x = x + 1
 y = m * x + b
else
 for counter = p1.y to p2.y
 drawPixel (x, y)
 y = y + 1
 x = (y – b) / m

Discussion on algorithm:
Well above algorithm is quite simple and easy but firstly it involves lot of mathematical
calculations that is for calculating coordinate using equation each time secondly it works
only in incremental direction.

We have another algorithm that works fine in all directions and involving less calculation
mostly only addition; which will be discussed in next topic.

Digital Differential Analyzer (DDA) Algorithm:
DDA abbreviated for digital differential analyzer has very simple technique. Find
difference dx and dy between x coordinates and y coordinates respectively ending points
of a line. If |dx| is greater than |dy|, than |dx| will be step and otherwise |dy| will be step.

if |dx|>|dy| then

step = |dx|
else

5-Line Drawing Techniques VU

© Copyright Virtual University of Pakistan

56

step = |dy|

Now very simple to say that step is the total number of pixel required for a line. Next
step is to divide dx and dy by step to get xIncrement and yIncrement that is the increment
required in each step to find next pixel value.

xIncrement = dx/step
yIncrement = dy/step

Next a loop is required that will run step times. In the loop drawPixel and add xIncrement
in x1 by and yIncrement in y1.

To sum-up all above in the algorithm, we will get,

DDA_Line (Point p1, Point p2)
dx = p2.x – p1. x
dy = p2.y – p1. y
x1=p1.x
y1=p1.y
if |dx|>|dy| then

step = |dx|
else

step = |dy|
xIncrement = dx/step
yIncrement = dy/step
for counter = 1 to step

drawPixel (x1, y1)
x1 = x1 + xIncrement

 y1 = y1 + yIncrement

Criticism on Algorithm:
There is serious criticism on the algorithm that is use of floating point calculation. They
say that when we have to draw points that should have integers as coordinates then why
to use floating point calculation, which requires more space as well as they have more
computational cost.

Therefore there is need to develop an
algorithm which would be based on
integer type calculations. Therefore,
work is done and finally we will
come up with an algorithm
“Bresenham Line Drawing
algorithm” which will be discussed
next.

Bresenham's Line Algorithm

Bresenham's algorithm finds the
closest integer coordinates to the

5-Line Drawing Techniques VU

© Copyright Virtual University of Pakistan

57

actual line, using only integer math. Assuming that the slope is positive and less than 1,
moving 1 step in the x direction, y either stays the same, or increases by 1. A decision
function is required to resolve this choice.

If the current point is (xi, yi), the next point can be either (xi+1,yi) or (xi+1,yi+1) . The
actual position on the line is (xi+1, m(xi+1)+c) . Calculating the distance between the true
point, and the two alternative pixel positions available gives:

d1 = y - yi
= m * (x+1)+b-yi

d2 = yi + 1 - y
= yi + 1 – m (xi + 1) - b

Let us magically define a decision function p, to determine which distance is closer to the
true point. By taking the difference between the distances, the decision function will be
positive if d1 is larger, and negative otherwise. A positive scaling factor is added to
ensure that no division is necessary, and only integer math need be used.

pi = dx (d1-d2)
pi = dx (2m * (xi+1) + 2b – 2yi-1)
pi = 2 dy (xi+1) –2 dx yi + dx (2b-1) ------------------ (i)
pi = 2 dy xi – 2 dx yi + k ------------------ (ii)

where k=2 dy + dx (2b-1)

Then we can calculate pi+1 in terms of pi without any xi , yi or k .

pi+1 = 2 dy xi+1 – 2 dx yi+1 + k
pi+1 = 2 dy (xi + 1) - 2 dx yi+1 + k since xi+1= xi + 1
pi+1 = 2 dy xi + 2 dy- 2 dx yi+1 + k ------------------ (iii)
Now subtracting (ii) from (iii), we get
pi+1 - pi = 2 dy - 2 dx (yi+1 - yi)
pi+1 = pi + 2 dy - 2 dx (yi+1 - yi)

If the next point is: (xi+1,yi) then

d1<d2 => d1-d2<0
=> pi<0
=> pi+1= pi + 2 dy

If the next point is: (xi+1,yi+1) then

d1>d2 => d1-d2>0
=> pi>0
=> pi+1= pi + 2 dy - 2 dx

The pi is our decision variable, and calculated using integer arithmetic from pre-computed
constants and its previous value. Now a question is remaining how to calculate initial
value of pi. For that use equation (i) and put values (x1, y1)

pi = 2 dy (x1+1) – 2 dx yi + dx (2b-1)
where b = y – m x implies that

5-Line Drawing Techniques VU

© Copyright Virtual University of Pakistan

58

pi = 2 dy x1 +2 dy – 2 dx yi + dx (2 (y1 – mx1) -1)
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1 - dx
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1 - dx

there are certain figures will cancel each other shown in same different colour

pi = 2 dy - dx

Thus Bresenham's line drawing algorithm is as follows:
dx = x2-x1
dy = y2-y1
p = 2dy-dx
c1 = 2dy
c2 = 2(dy-dx)
x = x1
y = y1
plot (x,y,colour)
while (x < x2)
 x++;
 if (p < 0)
 p = p + c1
 else
 p = p + c2

y++
plot (x,y,colour)

Again, this algorithm can be easily generalized to other arrangements of the end points of
the line segment, and for different ranges of the slope of the line.

Improving performance

Several techniques can be used to improve the performance of line-drawing procedures.
These are important because line drawing is one of the fundamental primitives used by
most of the other rendering applications. An improvement in the speed of line-drawing
will result in an overall improvement of most graphical applications.

Removing procedure calls using macros or inline code can produce improvements.
Unrolling loops also may produce longer pieces of code, but these may run faster.

The use of separate x and y coordinates can be discarded in favour of direct frame buffer
addressing. Most algorithms can be adapted to calculate only the initial frame buffer
address corresponding to the starting point and to replaced:

X++ with Addr++
Y++ with Addr+=XResolution

Fixed point representation allows a method for performing calculations using only integer
arithmetic, but still obtaining the accuracy of floating point values. In fixed point, the
fraction part of a value is stored separately, in another integer:

M = Mint.Mfrac

5-Line Drawing Techniques VU

© Copyright Virtual University of Pakistan

59

Mint = Int(M)
Mfrac = Frac(M)× MaxInt

Addition in fixed point representation occurs by adding fractional and integer components
separately, and only transferring any carry-over from the fractional result to the integer
result. The sequence could be implemented using the following two integer additions:
ADD Yfrac,Mfrac ; ADC Yint,Mint

Improved versions of these algorithms exist. For example the following variations exist
on Bresenham's original algorithm:

Symmetry (forward and backward simultaneously)
Segmentation (divide into smaller identical segments - GCD(D x,D y))
Double step, triple step, n step.

Setting a Pixel
Initial Task: Turning on a pixel (loading the frame buffer/bit-map). Assume the simplest
case, i.e., an 8-bit, non-interlaced graphics system. Then each byte in the frame buffer
corresponds to a pixel in the output display.

To find the address of a particular pixel (X,Y) we use the following formula:

addr(X, Y) = addr(0,0) + Y rows * (Xm + 1) + X (all in bytes)

addr(X,Y) = the memory address of pixel (X,Y)

addr(0,0) = the memory address of the initial pixel (0,0)

Number of rows = number of raster lines.

Number of columns = number of pixels/raster line.

Example:
For a system with 640 × 480 pixel resolution, find the address of pixel X = 340, Y = 150
addr(340, 150) = addr(0,0) + 150 * 640 (bytes/row) + 340

= base + 96,340 is the byte location

Graphics system usually have a command such as set_pixel (x, y) where x, y are integers.

6-Circle Drawing Techniques VU

© Copyright Virtual University of Pakistan

60

Lecture No.6 Circle Drawing Techniques

Circle
A circle is the set of points in a plane that are equidistant from a
given point O. The distance r from the center is called the
radius, and the point O is called the center. Twice the radius is
known as the diameter . The angle a circle subtends
from its center is a full angle, equal to 360° or radians.

A circle has the maximum possible area for a given perimeter,
and the minimum possible perimeter for a given area.

The perimeter C of a circle is called the circumference, and is given by

 C = 2 π r

Circle Drawing Techniques
First of all for circle drawing we need to know what the input will be. Well the input will
be one center point (x, y) and radius r. Therefore, using these two inputs there are a
number of ways to draw a circle. They involve understanding level very simple to
complex and reversely time complexity inefficient to efficient. We see them one by one
giving comparative study.

Circle drawing using Cartesian coordinates
This technique uses the equation for a circle on radius r centered at (0, 0)
given as:

 x2 + y2 = r2,
an obvious choice is to plot

 y = ±

Obviously in most of the cases the circle is not centered at (0, 0), rather there is a center
point (xc, yc); other than (0, 0). Therefore the equation of the circle having center at point
(xc, yc):
 (x- xc) 2 + (y-yc)2 = r2,
this implies that ,
 y = yc ±

Using above equation a circle can easily be drawn. The value of x varies from r-xc to r+xc.
and y will be calculated using above formula. Using this technique a simple algorithm
will be:

Circle1 (xcenter, ycenter, radius)
for x = radius - xcenter to radius + xcenter

6-Circle Drawing Techniques VU

© Copyright Virtual University of Pakistan

61

y = xc +

drawPixel (x, y)

y = xc -

drawPixel (x, y)

This works, but is inefficient because of the
multiplications and square root operations. It
also creates large gaps in the circle for values of
x close to r as shown in the above figure.

Circle drawing using Polar coordinates
A better approach, to eliminate unequal spacing as shown in above figure is to calculate
points along the circular boundary using polar coordinates r and θ. Expressing the circle
equation in parametric polar form yields the pair of equations

 x = xc + r cos θ
 y = yc + r sin θ

Using above equation circle can be plotted by calculating x and y coordinates as θ takes
values from 0 to 360 degrees or 0 to 2π. The step size chosen for θ depends on the
application and the display device. Larger angular separations along the circumference
can be connected with straight-line segments to approximate the circular path. For a more
continuous boundary on a raster display, we can set the step size at 1/r. This plots pixel
positions that are approximately one unit apart.

Now let us see how this technique can be sum up in algorithmic form.

Circle2 (xcenter, ycenter, radius)
for θ = 0 to 2π step 1/r
 x = xc + r * cos θ
 y = yc + r * sin θ

drawPixel (x, y)

Again this is very simple technique and also solves
problem of unequal space but unfortunately this
technique is still inefficient in terms of calculations
involves especially floating point calculations.

Calculations can be reduced by considering the symmetry of circles. The shape of circle
is similar in each quadrant. We can generate the circle section in the second quadrant of
the xy-plane by noting that the two circle sections are symmetric with respect to the y axis
and circle sections in the third an fourth quadrants can be obtained from sections in the
first and second quadrants by considering symmetry about the x axis. We can take this
one step further and note that there is also symmetry between octants. Circle sections in
adjacent octants within one quadrant are symmetric with respect to the 45o line dividing
the two octants. These symmetry conditions are illustrated in above figure.

6-Circle Drawing Techniques VU

© Copyright Virtual University of Pakistan

62

x=yx + y - r = 0
22 2

Therefore above algorithm can be optimized by using symmetric octants. Let’s see:

Circle2 (xcenter, ycenter, radius)
for θ = 0 to π / 4 step 1/r
 x = xc + r * cos θ
 y = yc + r * sin θ

DrawSymmetricPoints (xcenter, ycenter, x, y)

DrawSymmeticPoints (xcenter, ycenter, x, y)
Plot (x + xcenter, y + ycenter)
Plot (y + xcenter, x + ycenter)
Plot (y + xcenter, -x + ycenter)
Plot (x + xcenter, -y + ycenter)
Plot (-x + xcenter, -y + ycenter)
Plot (-y + xcenter, -x + ycenter)
Plot (-y + xcenter, x + ycenter)
Plot (-x + xcenter, y + ycenter)

Hence we have reduced half the calculations by considering symmetric octants of the
circle but as we discussed earlier inefficiency is still there and that is due to the use of
floating point calculations. In next algorithm we will try to remove this problem.

Midpoint circle Algorithm
As in the Bresenham line drawing algorithm we derive a decision parameter that helps us
to determine whether or not to increment in the y coordinate against increment of x
coordinate or vice versa for slope > 1. Similarly here we will try to derive decision
parameter which can give us closest pixel position.
Let us consider only the first octant of a circle of
radius r centred on the origin. We begin by plotting
point (r, 0) and end when x < y.

The decision at each step is whether to choose the
pixel directly above the current pixel or the pixel;
which is above and to the left (8-way stepping).

Assume:

Pi = (xi, yi) is the current pixel.
 Ti = (xi, yi +1) is the pixel directly above
 Si = (xi -1, yi +1) is the pixel above and to the left.

To apply the midpoint method, we define a circle function:

 fcircle(x, y) = x2 + y2 – r2

Therefore following relations can be observed:

6-Circle Drawing Techniques VU

© Copyright Virtual University of Pakistan

63

Xk+1

Yk

Yk-1

Xk

X2+Y2-r2=0

 < 0, if (x, y) is inside the circle boundary
f circle (x, y) = 0, if (x, y) is on the circle boundary
 > 0, if (x, y) is outside the circle boundary

The circle function tests given above are performed for the
midpoints between pixels near the circle path at each
sampling step. Thus, the circle function is the decision
parameter in the midpoint algorithm, and we can set up
incremental calculations for this function as we did in the
line algorithm.

Figure given above shows the midpoint between the two candidate pixels at sampling
position xk+1. Assuming we have just plotted the pixel at (xk, yk), we next need to
determine whether the pixel at position (xk + 1, yk), we next need to determine whether
the pixel at position (xk+1, yk) or the one at position (xk+1, yk-1) is closer to the circle.
Our decision parameter is the circle function evaluated at the midpoint between these two
pixels:

 Pk = f circle (xk + 1, yk - ½)

 Pk
 = (xk + 1) 2 + (yk - ½) 2 – r 2 …………………………(1)

If pk < 0, this midpoint is inside the circle and the pixel on scan line yk is closer to the
circle boundary. Otherwise, the mid position is outside or on the circle boundary, and we
select the pixel on scan-line yk-1.

Successive decision parameters are obtained using incremental calculations. We obtain a
recursive expression for the next decision parameter by evaluating the circle function at
sampling position xk+2= xk+1+1=xk+1+1 = xk+2:

 Pk+1 = f circle (xk+1 + 1, yk+1 - ½)

Pk+1 = [(xk + 1) + 1] 2 + (yk+1 - ½) 2 – r 2…………………………(2)

Subtracting (1) from (2), we get

Pk+1 - Pk = [(xk + 1) + 1] 2 + (yk+1 - ½) 2 – r 2 – (xk + 1) 2 - (yk - ½) 2 +
r 2

or
Pk+1 = Pk + 2(xk + 1) + (y2

k+1 - y2
k) – (yk+1 - yk) + 1

Where yk+1 is either yk or yk-1, depending on the sign of Pk. Therefore, if Pk < 0 or negative
then yk+1 will be yk and the formula to calculate Pk+1 will be:

Pk+1 = Pk + 2(xk + 1) + (y2
k - y2

k) – (yk - yk) + 1
Pk+1 = Pk + 2(xk + 1) + 1

Otherwise, if Pk > 0 or positive then yk+1 will be yk-1and the formula to calculate Pk+1 will
be:

Pk+1 = Pk + 2(xk + 1) + [(y k -1)2
 - y2

k] – (yk -1- yk) + 1
Pk+1 = Pk + 2(xk + 1) + (y2

 k - 2 y k +1 - y2
k] – (yk -1- yk) + 1

6-Circle Drawing Techniques VU

© Copyright Virtual University of Pakistan

64

Pk+1 = Pk + 2(xk + 1) - 2 y k + 1 + 1 +1
Pk+1 = Pk + 2(xk + 1) - 2 y k + 2 +1
Pk+1 = Pk + 2(xk + 1) - 2 (y k – 1) + 1

Now a similar case that we observe in line algorithm is that how would starting Pk be
evaluated. For this at the start pixel position will be (0, r). Therefore, putting this value is
equation , we get

 P0
 = (0 + 1) 2 + (r - ½) 2 – r 2

 P0
 = 1 + r2

 - r + ¼ – r 2

 P0
 = 5/4 – r

If radius r is specified as an integer, we can simply round p0 to:

P0
 = 1 – r

Since all increments are integer. Finally sum up all in the algorithm:

MidpointCircle (xcenter, ycenter, radius)
y = r;
x = 0;
p = 1 - r;
do
 DrawSymmetricPoints (xcenter, ycenter, x, y)
 x = x + 1
 If p < 0 Then
 p = p + 2 * (x + 1) + 1
 else
 y = y - 1
 p = p + 2 * (x + 1) – 2 * (y - 1) + 1
while (x < y)

Now let us consider an example to calculate first octant of the circle using above
algorithm; while one quarter is displayed where you can observe that exact circle is
passing between the points calculated in a raster circle.

Example:

xcenter= 0 ycenter= 0 radius= 10

p x Y
-9 0 10
-6 1 10
-1 2 10
6 3 10
-3 4 9
8 5 9
5 6 8
6 7 7

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

65

Lecture No.7 Ellipse and Other Curves

Ellipse

An ellipse is a curve that is the locus of all points in the plane the sum of whose distances
r1 and r2 from two fixed points F1 and F2, (the foci)
separated by a distance of is a given positive
constant . This results in the two-center bipolar
coordinate equation:

r1 + r2 = 2a

where a is the semi-major axis and the origin of the
coordinate system is at one of the foci. The
corresponding parameter b is known as the semi-
minor axis.

The ellipse was first studied by Menaechmus, investigated by Euclid, and named by
Apollonius. The focus and conic section
directrix of an ellipse were considered by
Pappus. In 1602, Kepler believed that the
orbit of Mars was oval; he later discovered
that it was an ellipse with the Sun at one
focus. In fact, Kepler introduced the word
"focus" and published his discovery in 1609.
In 1705 Halley showed that the comet now
named after him moved in an elliptical orbit around the Sun (MacTutor Archive). An
ellipse rotated about its minor axis gives an oblate spheroid, while an ellipse rotated about
its major axis gives a prolate spheroid.

Let an ellipse lie along the x-axis and find the equation of the figure given above where
F1 and F2 are at (-c, 0) and (c, 0). In Cartesian coordinates,

Bring the second term to the right side and square both sides,

Now solve for the square root term and simplify

Square one final time to clear the remaining square root,

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

66

Grouping the x terms then gives

this can be written in the simple form

Defining a new constant

puts the equation in the particularly simple form

The parameter b is called the semi-minor axis by analogy with the parameter a, which is
called the semi-major axis (assuming b < a). The fact that b as defined at right is actually
the semi-minor axis is easily shown by letting r1 and r2 be equal. Then two right triangles
are produced, each with hypotenuse a, base c, and height b = a2 - c2. Since the largest
distance along the minor axis will be achieved at this point, b is indeed the semi-minor
axis.

If, instead of being centered at (0, 0), the center of the ellipse is at (x0, y0), at right
equation becomes:

Ellipse Drawing Techniques
Now we already understand circle
drawing techniques. One way to
draw ellipse is to use the following
equation:

where x0 may be replaced by xc in
case of center other than origin and
same in case of y.

Another way is to use polar coordinates r and θ, for that we have parametric equations:

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

67

 x = xc + rx cos θ
 y = yc + ry sin θ

Four-way symmetry
Symmetric considerations can be had to
further reduce computations. An ellipse in
standard position is symmetric between
quadrants, but unlike a circle, it is not
symmetric between the two octants of a
quadrant. Thus, we must calculate pixel
positions along the elliptical arc throughout
one quadrant, and then we obtain positions
in the remaining three quadrants by
symmetry as shown in at right figure.

Midpoint ellipse algorithm

Consider an ellipse centered at the origin:

To apply the midpoint method, we define an ellipse function:

 f ellipse (x, y) = ry2x2 + rx2y2 – rx2 ry2

Therefore following relations can be observed:

 < 0, if (x, y) is inside the circle boundary
f ellipse (x, y) = 0, if (x, y) is on the circle boundary
 > 0, if (x, y) is outside the circle boundary

Now as you have some idea that ellipse is different
from circle. Therefore, a similar approach that is
applied in circle can be applied here using some
different sampling direction as shown in the figure
at right. There are two regions separated in one
octant.

Therefore, idea is that in region 1 sampling will be
at x direction; whereas y coordinate will be related
to decision parameter. In region 2 sampling will be
at y direction; whereas x coordinate will be related
to decision parameter.

So consider first region 1. We will start at (0, r y); we take unit steps in the x direction
until we reach the boundary between region 1 and region 2. Then we switch to unit steps
in the y direction over the remainder of the curve in the first quadrant. At each step, we

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

68

ry
2x2 + rx

2y2 – rx
2 ry

2=0

need to test the value of the slope of the curve. The ellipse slope is calculated from
following equation:

 dy / dx = -2 ry2x2 / 2 rx2y2

At the boundary region 1 and region 2, dy/ dx = -1
and

 2 rx2y2 = 2 ry2x2

Therefore, we move out of region 1 whenever

 2 ry2x2 >= 2 rx2y2

Figure at right shows the midpoint between the two candidate pixels at sampling position
xk + 1 in the first region. Assuming position (xk, yk) has been selected at the previous
step; we determine the next position along the ellipse path by evaluating the decision
parameter at this midpoint:

 P1k = f ellipse (xk + 1, yk – ½)
 f ellipse (xk +1, yk – ½) = r2y (xk + 1)2 + rx2 (yk – ½)2 – rx2 ry2 -------(1)
If pk < 0, this midpoint is inside the ellipse and the pixel on scan line yk is closer to the
ellipse boundary. Otherwise, the mid position is outside or on the ellipse boundary, and
we select the pixel on scan-line yk-1.

Successive decision parameters are obtained using incremental calculations. We obtain a
recursive expression for the next decision parameter by evaluating the ellipse function at
sampling position xk+1=xk+2:

fellipse (xk+1 +1, yk+1 – ½) = ry2 [(xk + 1) + 1] 2 + rx2 (yk+1 – ½) 2 – rx2
ry2 ---(2)

Subtracting (1) from (2), and by simplification, we get

Pk+11 = Pk1 + 2 ry2 (xk + 1) + rx2 (yk+12– yk2) - rx2 (yk+1 - yk) + ry2

Where yk+1 is either yk or yk-1, depending on the sign of Pk. Therefore, if Pk < 0 or negative
then yk+1 will be yk and the formula to calculate Pk+1 will be:

P1k+1 = Pk1 + 2 ry2 (xk + 1) + rx2 (y k2 – yk2) - rx2 (yk - yk) + ry2
 Pk+11 = Pk1 + 2 ry2 (xk + 1) + ry2

Otherwise, if Pk > 0 or positive then yk+1 will be yk-1and the formula to calculate Pk+1 will
be:

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

69

Pk+11 = Pk1 + 2 ry2 (xk + 1) + r2x ((yk –1)2 – yk2) - rx2 (yk – 1 – yk) + ry2
P1k+1 = P1k + 2 r y

 2 (x k + 1) + r x
 2 (– 2 y k + 1) - r x

 2 (– 1) + r y
 2

P1k+1 = P1k + 2 ry
2 (x k + 1) – 2 rx

2 y k + r2
x

 + rx
2 + ry

2
P1k+1 = P1k + 2 r y

2 (x k + 1) – 2 r x
2 (y k – 1) + r y

2

Now a similar case that we observe in line algorithm is from where starting Pk will
evaluate. For this at the start pixel position will by (0, ry). Therefore, putting this value is
equation , we get

P10
 = r y

2 (0 + 1) 2 + r x
2 (ry – ½) 2 – rx

2 ry
2

P10
 = r2

y
 + rx

2 ry
2 – r2

x
 ry + ¼ rx

2 – rx
2 ry

2

P10
 = r2

y
 – rx

2 r y + ¼ rx
2

Similarly same procedure will be adapted for region 2 and decision parameter will be
calculated, here we are giving decision parameter and there derivation is left as an
exercise for the students.

Pk+12 = Pk2 – 2 rx2 (yk + 1) + rx2 ,
 if pk2 > 0

Pk+12 = Pk2 + 2 ry2 (xk + 1) – 2 rx2 yk + rx2
otherwise

The initial parameter for region 2 will be calculated by following formula using the last
point calculated in region 1 as:

P02 = ry2 (x0 + ½) + rx2 (y0 - 1)2 – rx2ry2

Since all increments are integer. Finally sum up all in the algorithm:

MidpointEllipse (xcenter, ycenter, r x, r y)
x =0
x =0
 y = ry
 do
 DrawSymmetricPoints (xcenter, ycenter, x, y)
 P01 = ry2 – rx2 ry + ¼ rx2 x = x +1

If p1k < 0
 Pk+11 = Pk1 + 2 ry2 (xk + 1) + ry2 else
 Pk+11 = Pk1 + 2 ry2 (xk + 1) – 2 rx2 (yk– 1) + r2y
 y = y -1

 P02 = ry2 (x 0 + ½) + rx2 (y 0 - 1)2 – rx2 ry2 y = y -1
 If p2k > 0

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

70

 Pk+12 = Pk2 – 2 rx2 (yk + 1) + rx2 else
 Pk+12 = Pk2 + 2 ry2 (xk + 1) – 2 rx2 yk + rx2 x = x + 1
while (2 ry2x2 >= 2 rx2y2)

Other Curves
Various curve functions are useful in object modeling, animation path specifications,
data, function graphing, and other graphics applications. Commonly encountered curves
include conics, trigonometric and exponential functions, probability distributions, general
polynomials, and spline functions.

Displays of these curves can be generated with methods similar to those discussed for the
circle and ellipse. We can obtain positions along curve paths directly from explicit
representations y = f(x) or from parametric forms. Alternatively, we could apply the
incremental midpoint method to plot curves described with implicit functions f(x,y) = 0.

Conic Sections
A conic section is the intersection of a plane and a cone.

Circle

Ellipse (h)Parabola (h)Hyperbola (h)

Ellipse (v)Parabola (v)Hyperbola (v)

The general equation for a conic section:
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

The type of section can be found from the sign of: B2-4AC

If B2 - 4AC is then the curve is a...
 < 0 ellipse, circle, point or no curve.
 = 0 parabola, 2 parallel lines, 1 line or no curve.
 > 0 hyperbola or 2 intersecting lines.

For any of the below with a center (j, k) instead of (0, 0), replace each x term with (x-j)
and each y term with (y-k).

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

71

 Circle Ellipse Parabola Hyperbola
Equation (horiz.
vertex): x2 + y2 = r2 x2 / a2 + y2 / b2

= 1 4px = y2 x2 / a2 - y2 / b2 = 1

Equations of
Asymptotes: y = ± (b/a)x

Equation (vert.
vertex): x2 + y2 = r2 y2 / a2 + x2 / b2

= 1 4py = x2 y2 / a2 - x2 / b2 = 1

Equations of
Asymptotes: x = ± (b/a)y

Variables: r = circle
radius

a = major
radius (= 1/2
length major
axis)
b = minor
radius (= 1/2
length minor
axis)
c = distance
center to focus

p = distance
from vertex to
focus (or
directrix)

a = 1/2 length
major axis
b = 1/2 length
minor axis
c = distance center
to focus

Eccentricity: 0 c/a c/a
Relation to Focus: p = 0 a2 - b2 = c2 p = p a2 + b2 = c2
Definition: is the
locus of all points
which meet the
condition...

distance to
the origin is
constant

sum of
distances to
each focus is
constant

distance to
focus = distance
to directrix

difference between
distances to each
foci is constant

Hyperbola
We begin this section with the definition of a hyperbola. A hyperbola is the set of all
points (x, y) in the plane the difference of whose distances from two fixed points is some
constant. The two fixed points are called the foci.

Each hyperbola consists of two branches. The line
segment; which connects the two foci intersects the
hyperbola at two points, called the vertices. The line
segment; which ends at these vertices is called the
transverse axis and the midpoint of this line is
called the center of the hyperbola. See figure at right
for a sketch of a hyperbola with these pieces
identified.

Note that, as in the case of the ellipse, a hyperbola
can have a vertical or horizontal orientation.

We now turn our attention to the standard equation
of a hyperbola. We say that the standard equation of
a hyperbola centered at the origin is given by

Focus

Center

Transverse
Axis

Vertex

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

72

if the transverse axis is horizontal, or

if the transverse axis is vertical.

Notice a very important difference
in the notation of the equation of a
hyperbola compared to that of the
ellipse. We see that a always
corresponds to the positive term in
the equation of the ellipse. The
relationship of a and b does not determine the orientation of the hyperbola. (Recall that
the size of a and b was used in the section on the ellipse to determine the orientation of
the ellipse.) In the case of the hyperbola, the variable in the ``positive'' term of the
equation determines the orientation of the hyperbola. Hence, if the variable x is in the
positive term of the equation, as it is in the equation

x2/a2-y2/b2=1,

then the hyperbola is oriented as follows:

If the variable y is in the positive term of the equation, as it is in the equation

then we see the following type of hyperbola:

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

73

Note that the vertices are always a units from the center of the hyperbola, and the distance
c of the foci from the center of the hyperbola can be determined using a, b, and the
following equality:

We will use this relationship often, so keep it in mind.

The next question you might ask is this: ``what happens to the equation if the center of
the hyperbola is not (0, 0)?'' As in the case of the ellipse, if the center of the hyperbola is
(h, k), then the equation of the hyperbola becomes

if the transverse axis is horizontal, or

if the transverse axis is vertical.

A few more terms should be mentioned here before we move to some examples. First, as
in the case of an ellipse, we say that the eccentricity of a hyperbola, denoted by e, is given
by

or we say that the eccentricity of a hyperbola is given by the ratio of the distance between
the foci to the distance between the vertices. Now in the case of a hyperbola, the distance
between the foci is greater than the distance between the vertices. Hence, in the case of a
hyperbola,

Recall that for the ellipse,

Two final terms that we must mention are asymptotes and the conjugate axis. The two
branches of a hyperbola are “bounded by” two straight lines, known as asymptotes. These

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

74

asymptotes are easily drawn once one plots the vertices and the points (h, k+b) and (h, k-
b) and draws the rectangle which goes through these four points. The line segment joining
(h, k+b) and (h, k-b) is called the conjugate axis. The asymptotes then are simply the lines
which go through the corners of the rectangle.

But what are the actual equations of these asymptotes? Note that if the hyperbola is
oriented horizontally, then the corners of this rectangle have the following coordinates:

and

Here I have paired these points in such a way that each asymptote goes through one pair
of the points. Consider the first pair of points:

Given two points, we can find the equation of the unique line going through the points
using the point--slope form of the line. First, let us determine the slope of our line. We
find this as ``change in y over change in x'' or ``rise over run''. In this case, we see that
this slope is equal to

or simply

Then, we also know that the line goes through the center (h, k). Hence, by the point--
slope form of a line, we know that the equation of this asymptote is

or

The other asymptote in this case has a negative slope; which is given by

Using the same argument, we see that this asymptote has equation

What if the hyperbola is vertically oriented? Then one of the asymptote will go through
the “corners” of the rectangle given by

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

75

Then the slope in this case will not be b/a but will be a/b. Hence, analogous to the work
we just performed, we can show that the asymptotes of a vertically oriented hyperbola are
determined by

and

Parabola
A parabola is the set of all points (x, y) that are
the same distance from a fixed line (called the
directrix) and a fixed point (focus) not on the
directrix. See figure for the view of a parabola
and its related focus and directrix.

Note that the graph of a parabola is similar to one branch of a hyperbola. However, you
should realize that a parabola is not simply one branch of a hyperbola. Indeed, the
branches of a hyperbola approach linear asymptotes, while a parabola does not do so.

Several other terms exist which are associated with a
parabola. The midpoint between the focus and
directrix of the parabola is called the vertex and the
line passing through the focus and vertex is called
the axis of the parabola. (This is similar to the major
axis of the ellipse and the transverse axis of the
hyperbola.) See figure at right.

Now let's move to the standard algebraic equations
for parabolas and note the four types of parabolas
that exist. As we discuss the four types, you
should notice the differences in the equations
that are related to each of the four parabolas.

The standard form of the equation of the
parabola with vertex at (0, 0) with the focus
lying d units from the vertex is given by

if the axis is vertical and

if the axis is horizontal. See figure below for an

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

76

example with vertical axis and figure below for an example with horizontal axis.

Note here that we have assumed that

It is also the case that d could be negative, which flips the orientation of the parabola.
(See Figures)

Thus, we see that there are four different orientations of parabolas, which depend on a)
which variable is squared (x or y) and b) whether d is positive or negative.

One last comment before going to some
examples; if the vertex of the parabola is at
(h, k), then the equation of the parabola does
change slightly. The equation of a parabola with
vertex at (h, k) is given by

if the axis is vertical and

Rotation of Axes
Note that in the sections at right dealing with the ellipse, hyperbola, and the parabola, the
algebraic equations that appeared did not contain a term of the form xy. However, in our
“Algebraic View of the Conic Sections,'' we stated that every conic section is of the form

where A, B, C, D, E, and F are constants. In
essence, all of the equations that we have studied
have had B=0. So the question arises: ``what
role, if any, does the xy term play in conic
sections? If it were present, how would that
change the geometric figure?''

First of all, the answer is NOT that the conic
changes from one type to another. That is to say,
if we introduce a xy term, the conic does NOT
change from an ellipse to a hyperbola. If we start
with the standard equation of an ellipse and
insert an extra term, a xy term, we still have an
ellipse.

So what does the xy term do? The xy term
actually rotates the graph in the plane. For example, in the case of an ellipse, the major
axis is no longer parallel to the x-axis or y-axis. Rather, depending on the constant in
front of the xy term, we now have the major axis rotated.

gy

v

x

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

77

Animated Applications
Ellipses, hyperbolas, and parabolas are particularly useful in certain animation
applications. These curves describe orbital and other motions for objects subjected to
gravitational, electromagnetic, or nuclear forces. Planetary orbits in the solar system, for
example, are ellipses; and an object projected into a uniform gravitational field travels
along a parabolic trajectory.

Figure at right shows a parabolic path in standard position for gravitational field acting in
the negative y direction. The explicit equation for the parabolic trajectory of the object
shown can be written as:

y = y0 + a (x - x0)2 + b (x - x0)

With constants a and b determined by the initial velocity v0 of the object and the
acceleration g due to the uniform gravitational force. We can also describe such parabolic
motions with parametric equations using a time parameter t, measured in seconds from
the initial projection point:

x = x0 + vx0 t
y = y0 + vy0 t – ½ g t 2

Here vx0 and vy0 are the initial velocity components, and the value of g near the surface of
the earth is approximately 980 cm/ sec2. Object positions along the parabolic path are
then calculated at selected time steps.

Some related real world applications are given below.

Parabolic Reflectors
One of the ``real--world'' applications
of parabolas involves the concept of a
3-dimensional parabolic reflector in
which a parabola is revolved about its
axis (the line segment joining the
vertex and focus). The shape of car
headlights, mirrors in reflecting
telescopes, and television and radio
antennae (such as the one at right) all
utilize this property.

In terms of a car headlight, this
property is used to reflect the light
rays emanating from the focus of the parabola
(where the actual light bulb is located) in parallel
rays.

This property is used in a converse fashion when
one considers parabolic antennae. Here, all

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

78

incoming rays parallel to the axis of the parabola are reflected through the focus.

Elliptical Orbits
At one time, it was thought that the planets in our solar system revolve around the sun in
a circular orbit. It was later discovered, however, that the orbits are not circular, but were
actually very round elliptical shapes. (Recall the discussion of the eccentricity of an
ellipse mentioned at right.) The eccentricity of the orbit of the Earth around the sun is
approximately 0.0167, a fairly small number. Pluto's orbit has the highest eccentricity of
all the planets in our solar system at 0.2481. Still, this is not a very large value.

As a matter of fact, the sun acts as one of the foci in the ellipse. This phenomenon was
first noted by Apollonius in the second century B.C. Kepler later studied this in a more
rigorous fashion and developed the scientific view of planetary motion.

Whispering Galleries
In rooms whose ceilings are elliptical, a sound made at one focus of the ellipse will be
reflected to the other focus (across the room), allowing people standing at the two foci to
hear one another very clearly. This has been called the ``whispering gallery'' effect and
has been used by many in the design of special rooms. In particular, St. Paul's Cathedral
and one of the rooms at the United States Capitol were built with this in mind.

Polynomials and Spline Curves
A polynomial function of nth degree in x is defined as

 y = a k x k

y = a 0 x 0 + a 1 x 1 + ----------------+ a n-1 x n-1 + a n x n

Where n is a nonnegative integer and the a k are constants, with a n not equal to 0. We get
a quadratic when n = 2; a cubic polynomial when n = 3; a quadratic when n = 4; and so
forth. And obviously a straight line when n = 1. Polynomials are useful in a number of
graphics applications, including the design of object shapes, the specifications of
animation paths, and the graphing of data trends in a discrete set of data points.

Designing object shapes or motion paths is typically done by specifying a few points to
define the general curve contour, then fitting the selected points with a polynomial. One
way to accomplish the curve fitting is to construct a cubic polynomial curve section
between each pair of specified points. Each curve section is then described in parametric
form as

x = a x0 + a x1 u + a x2 u 2 + a x3 u 3
y = a y0 + a y1 u + a y2 u 2 + a y3 u 3

Where parameter u varies over the interval 0 to1. A curve is shown below calculated
using at right equations.

7-Ellipse and Other Curves VU

© Copyright Virtual University of Pakistan

79

Continuous curves that are formed with polynomial pieces are called spline curves, or
simply splines. Spline is a detailed topic; which will be discussed later in 3 dimensions.

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

80

Lecture No.8 Filled-Area Primitives-I

So far we have covered some output primitives that is drawing primitives like point, line,
circle, ellipse and some other variations of curves. Also we can draw certain other shapes
with the combinations of lines like triangle, rectangle, square and other polygons (we will
have some discussion on polygons coming ahead). Also we can draw some shapes using
mixture of lines and curves or circles etc. So we are able to draw outline/ sketch of certain
models but need is there to make a solid model.
Therefore, in this section we will see what are filled area primitives and what are the
different issues related to them. There are two basic approaches to area filling on raster
systems. One way is to draw straight lines between the edges of polygon called scan-line
polygon filling. As said earlier there are several issues related to scan line polygon, which
we will discuss in detail. Second way is to start from an interior point and paint outward
from this point till we reach the boundary called boundary-fill. A slight variation of this
technique is used to fill an area specified by cluster (having no specific boundary). The
technique is called flood-fill and having almost same strategy that is to start from an
interior point and start painting outward from this point till the end of cluster.
Now having an idea we will try to see each of these one by one, starting from scan-line
polygon filling.

Scan-line Polygon Fill
Before we actually start discussion on scan-line polygon filling technique, it is useful to
discuss what is polygon? Besides polygon definition we will discuss the following topics
one by one to have a good understanding of the concept and its implementation.

 Polygon Definition

 Filled vs. Unfilled Polygons

 Parity Definition

 Scan-Line Polygon Fill Algorithm

 Special Cases Handled By the Fill

 Polygon Fill Example
Polygon
A polygon can be defined as a shape that is formed by line segments that are placed end
to end, creating a continuous closed path. Polygons can be divided into three basic types:
convex, concave, and complex.

I. Convex polygons are the simplest type of polygon to fill. To determine
whether or not a polygon is convex, ask the following question:

Does a straight line connecting ANY two points that are inside the polygon intersect any
edges of the polygon?

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

81

If the answer is no, the polygon is convex. This means that for any scan-line, the scan-line
will cross at most two polygon edges (not counting any horizontal edges). Convex
polygon edges also do not intersect each other.

II. Concave polygons are a superset of convex polygons, having fewer
restrictions than convex polygons. The line connecting any two points
that lie inside the polygon may intersect more than two edges of the
polygon. Thus, more than two edges may intersect any scan line that
passes through the polygon. The polygon edges may also touch each
other, but they may not cross one another.

Complex polygons are just what their name suggests: complex. Complex polygons are
basically concave polygons that may have self-intersecting edges. The complexity arises
from distinguishing which side is inside the polygon when filling it.

Difference between Filled and Unfilled Polygon
When an unfilled polygon is rendered, only the points on the perimeter of the polygon are
drawn. Examples of unfilled polygons are shown in the next page.

However, when a polygon is filled, the interior of the polygon must be considered. All of
the pixels within the boundaries of the polygon must be set to the specified color or
pattern. Here, we deal only with solid colors. The following figure shows the difference
between filled and unfilled polygons.

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

82

In order to determine which pixels are inside the polygon, the odd-parity rule is used
within the scan-line polygon fill algorithm. This is discussed next.
Parity
What is parity? Parity is a concept used to determine which pixels lie within a polygon,
i.e. which pixels should be filled for a given polygon.

The Underlying Principle: Conceptually, the odd parity test entails drawing a line
segment from any point that lies outside the polygon to a point P that we wish to
determine whether it is inside or outside of the polygon. Count the number of edges that
the line crosses. If the number of polygon edges crossed is odd, then P lies within the
polygon. Similarly, if the number of edges is even, then P lies outside of the polygon.
There are special ways of counting the edges when the line crosses a vertex. This will be
discussed in the algorithm section. Examples of counting parity can be seen in the
following demonstration.

Using the Odd Parity Test in the Polygon Fill Algorithm

The odd parity method creates a problem: How do we determine whether a pixel lies
outside of the polygon to test for an inside one, if we cannot determine whether one lies
within or outside of the polygon in the first place? If we assume our polygon lies entirely
within our scene, then the edge of our drawing surface lies outside of the polygon.

Furthermore, it would not be very efficient to check each point on our drawing surface to
see if it lies within the polygon and, therefore, needs to be colored.

So, we can take advantage of the fact that for each scan-line we begin with even parity;
we have NOT crossed any polygon edges yet. Then as we go from left to right across our
scan line, we will continue to have even parity (i.e., will not use the fill color) until we
cross the first polygon edge. Now our parity has changed to odd and we will start using
the fill color.

How long will we continue to use the fill color? Well, our parity won't change until we
cross the next edge. Therefore, we want to color all of the pixels from when we crossed
the first edge until we cross the next one. Then the parity will become even again.

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

83

So, you can see if we have a sorted list of x-intersections of all of the polygon edges with
the scan line, we can simply draw from the first x to the second, the third to the forth and
so on.
Polygon Filling
In order to fill a polygon, we do not want to have to determine the type of polygon that
we are filling. The easiest way to avoid this situation is to use an algorithm that works for
all three types of polygons. Since both convex and concave polygons are subsets of the
complex type, using an algorithm that will work for complex polygon filling should be
sufficient for all three types. The scan-line polygon fill algorithm, which employs the
odd/even parity concept previously discussed, works for complex polygon filling.

Reminder: The basic concept of the scan-line algorithm is to draw points from edges of
odd parity to even parity on each scan-line.

b) What is a scan-line?

A scan-line is a line of constant y value, i.e., y=c, where c lies within our drawing region,
e.g., the window on our computer screen.

The scan-line algorithm is outlined next.
Algorithm
When filling a polygon, you will most likely just have a set of vertices, indicating the x
and y Cartesian coordinates of each vertex of the polygon. The following steps should be
taken to turn your set of vertices into a filled polygon.

1. Initializing All of the Edges:

The first thing that needs to be done is determine how the polygon's vertices are related.
The all_edges table will hold this information.

Each adjacent set of vertices (the first and second, second and
third, similarly last and first) defines an edge. In above figure
vertices are shown by small lines and edges are numbered from
1 to 9 each between successive vertices.

For each edge, the following information needs to be kept in a
table:

1. The minimum y value of the two vertices

2. The maximum y value of the two vertices

3. The x value associated with the minimum y value

4. The slope of the edge

The slope of the edge can be calculated from the formula for a line:

y = mx + b;

where m = slope, b = y-intercept,

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

84

y0 = maximum y value,

y1 = minimum y value,

x0 = maximum x value,

x1 = minimum x value The formula for the slope is as follows:

m = (y0 - y1) / (x0 - x1).

For example, the edge values may be kept as follows, where N is equal to the total
number of edges - 1 (starting from 0) and each index into the all_edges array contains a
pointer to the array of edge values.

Index Y-min Y-max X-val 1/m

0 10 16 10 0

1 16 20 10 1.5

 - - - -

 - - - -

N 10 16 28 0

Table: All_edges

2. Initializing the Global Edge Table:

The global edge table will be used to keep track of the edges that are still needed to
complete the polygon. Since we will fill the edges from bottom to top and left to right. To
do this, the global edge table should be inserted with edges grouped by increasing
minimum y values. Edges with the same minimum y values are sorted on minimum x
values as follows:

1. Place the first edge with a slope that is not equal to zero in the global edge table.

2. If the slope of the edge is zero, do not add that edge to the global edge table.

3. For every other edge, start at index 0 and increase the index of the global edge table
once each time the current edge's y value is greater than that of the edge at the current
index in the global edge table.

Next, Increase the index to the global edge table once each time the current edge's x value
is greater than and the y value is less than or equal to that of the edge at the current index
in the global edge table.

If the index, at any time, is equal to the number of edges currently in the global edge
table, do not increase the index.

Place the edge information for minimum y value, maximum y value, x value, and 1/m in
the global edge table at the index.

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

85

The global edge table should now contain all of the edge information necessary to fill the
polygon in order of increasing minimum y and x values.

3. Initializing Parity

The initial parity is even since no edges have been crossed yet.

4. Initializing the Scan-Line

The initial scan-line is equal to the lowest y value for all of the global edges. Since the
global edge table is sorted, the scan-line is the minimum y value of the first entry in this
table.

5. Initializing the Active Edge Table

The active edge table will be used to keep track of the edges that are intersected by the
current scan-line. This should also contain ordered edges. This is initially set up as
follows:

Since the global edge table is ordered on minimum y and x values, search, in order,
through the global edge table and, for each edge found having a minimum y value equal
to the current scan-line, append the edge information for the maximum y value, x value,
and 1/m to the active edge table. Do this until an edge is found with a minimum y value
greater than the scan line value. The active edge table will now contain ordered edges of
those edges that are being filled as such:

Index Y-max X-val 1/m

0 16 10 0

1 20 10 1.5

 - - -

 - - -

N 16 28 0

Active

6. Filling the Polygon

Filling the polygon involves deciding whether or not to draw pixels, adding to and
removing edges from the active edge table, and updating x values for the next scan-line.

Starting with the initial scan-line, until the active edge table is empty, do the following:

1. Draw all pixels from the x value of odd to the x value of even parity edge pairs.

2. Increase the scan-line by 1.

3. Remove any edges from the active edge table for which the maximum y value is equal
to the scan line.

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

86

4. Update the x value for each edge in the active edge table using the formula x1 = x0 +
1/m. (This is based on the line formula and the fact that the next scan-line equals the
old scan-line plus one.)

5. Remove any edges from the global edge table for which the minimum y value is equal
to the scan-line and place them in the active edge table.

6. Reorder the edges in the active edge table according to increasing x value. This is
done in case edges have crossed.

Special Cases
There are some special cases, the scan-line polygon fill algorithm covers these cases, but
you may not understand how or why. The following will explain the handling of special
cases to the algorithm.

1. Horizontal Edges:

Here we follow the minimum y value rule during scan-line polygon fill. If the edge is at
the minimum y value for all edges, it is drawn. Otherwise, if the edge is at the maximum
y value for any edge, we do not draw it. (See the next section containing information
about top vs. bottom edges.)

This is easily done in the scan-line polygon fill implementation. Horizontal edges are
removed from the edge table completely.

Question arises that how horizontal lines are are filled then? Since each horizontal line
meets exactly two other edge end-points on the scan-line, the algorithm will allow a fill of
the pixels between those two end-point vertices when filling on the scan-line which the
horizontal line is on, if it meets the top vs. bottom edge criteria.

--> -->

As can be seen above, if we start with a polygon with horizontal edges, we can remove
the horizontal edges from the global edge table. The two endpoints of the edge will still
exist and a line will be drawn between the lower edges following the scan-line polygon
fill algorithm. (The blue arrowed line is indicating the scan-line for the bottom horizontal
edge.)

2. Bottom and Left Edges vs. Top and Right Edges:

If polygons, having at least one overlapping edge the other, were filled completely from
edge to edge, these polygons would appear to overlap and/or be distorted. This would be
especially noticeable for polygons in which edges have limited space between them.

In order to correct for this phenomenon, our algorithm does not allow fills of the right or
top edges of polygons. This distortion problem could also be corrected by not drawing
either the left or right edges and not drawing either the top or bottom edges of the
polygon. Either way, a consistent method should be used with all polygons. If some
polygons are filled with the left and bottom edges and others with the bottom and right
edges, this problem will still occur.

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

87

-->

As can be seen above, if we remove the right and top edges from both polygons, the
polygons no longer appear to be different shapes. For polygons with more overlap
than just one edge, the polygons will still appear to overlap as was meant to happen.

3. How do we deal with two edges meeting at a vertex when counting parity? This is a
scenario which needs to be accounted for in one of the following ways:

1.

When dealing with two edges; which meet at a vertex and for both edges the vertex is the
minimum point, the pixel is drawn and is counted twice for parity.

Essentially, the following occurs. In the scan-line polygon fill algorithm, the vertex is
drawn for the first edge, since it is a minimum value for that edge, but not for the second
edge, since it is a right edge and right edges are not drawn in the scan-line fill algorithm.
The parity is increased once for the first edge and again for the second edge.

2.

When dealing with two edges; which meet at a vertex and for both edges the vertex is the
maximum point, the pixel is not drawn and is counted twice for parity.

Basically, this occurs because the vertex is not drawn for the first edge, since it is a
maximum point for that edge, and parity is increased. The vertex is then not drawn for the

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

88

second edge, since it is a right edge, and parity is The point should not be drawn since
maximum y values for edges are not drawn in the scan-line polygon fill implementation.

3. When dealing with two edges; which meet at a vertex and for one edge the vertex is
the maximum point and for the other edge the vertex is the minimum point, we must also
consider whether the edges are left or right edges. Two edges meeting in such a way can
be thought of as one edge; which is "bent".

If the edges are on the left side of the polygon, the pixel is drawn and is counted once
for parity purposes. This is due to the fact that left edges are drawn in the scan-line
polygon fill implementation. The vertex is drawn just once for the edge; which has this
vertex as its minimum point. Parity is incremented just once for this "bent edge".

4.

If both edges are on the right, the pixel is not drawn and is counted just once for parity
purposes. This is due to the fact that right edges are not drawn in the scan-line polygon
fill implementation.
A Simple Example
Just to reiterate the
algorithm, the following
simple example of scan-
line polygon filling will
be outlined. Initially,
each vertex of the
polygon is given in the
form of (x, y) and is in
an ordered array as
such:

Ordered Vertices

We will now walk through the steps of the algorithm to fill in the polygon:

0 (10, 10)

1 (10, 16)

2 (16, 20)

3 (28, 10)

4 (28, 16)

5 (22, 10)

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

89

1. Initializing All of the Edges:

We want to determine the minimum y value, maximum y value, x value, and 1/m for each
edge and keep them in the all_edges table. We determine these values for the first edge as
follows:

Y-min: Since the first edge consists of the first and second vertex in the array, we use the
y values of those vertices to choose the lesser y value. In this case it is 10.

Y-max: In the first edge, the greatest y value is 16.

X-val: Since the x value associated with the vertex with the highest y value is 10, 10 is
the x value for this edge.

1/m: Using the given formula, we get (10-10)/ (16-10) for 1/m.

The edge value results are in the form of Y-min, Y-max, X-val, and Slope for each edge
array pointed to in the all_edges table. As a result of calculating all edge values, we get
the following in the all_edges table.

Index Y-min Y-max X-val 1/m

0 10 16 10 0

1 16 20 10 1.5

2 10 20 28 -1.2

3 10 16 28 0

4 10 16 22 1

5 10 10 10 Inf

Table: All_edges

2. Initializing the Global Edge Table:

We want to place all the edges in the global edge table in increasing y and x values, as
long as slope is not equal to zero. For the first edge, the slope is not zero so it is placed in
the global edge table at index=0.

Index Y-min Y-max X-val 1/m

0 10 16 10 0

Table: global

For the second edge, the slope is not zero and the minimum y value is greater than that at
zero, so it is placed in the global edge table at index=1.

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

90

Index Y-min Y-max X-val 1/m

0 10 16 10 0

1 16 20 10 1.5

Table: global

For the third edge, the slope is not zero and the minimum y value is equal the edge's at
index zero and the x value is greater than that at index 0, so the index is increased to 1.
Since the third edge has a lesser minimum y value than the edge at index 2 of the global
edge table, the index for the third edge is not increased again. The third edge is placed in
the global edge table at index=1.

Index Y-min Y-max X-val 1/m

0 10 16 10 0

1 10 20 28 -1.2

2 16 20 10 1.5

Table: global

We continue this process until we have the following:

Index Y-min Y-max X-val 1/m

0 10 16 10 0

1 10 16 22 1

2 10 16 28 0

3 10 20 28 -1.2

4 16 20 10 1.5

Table: global

Notice that the global edge table has only five edges and the all_edges table has six. This
is due to the fact that the last edge has a slope of zero and, therefore, is not placed in the
global edge table.

3. Initializing Parity

Parity is initially set to even.

4. Initializing the Scan-Line

Since the lowest y value in the global edge table is 10, we can safely choose 10 as our
initial scan-line.

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

91

5. Initializing the Active Edge Table

Since our scan-line value is 10, we choose all edges which have a minimum y value of 10
to move to our active edge table. This results in the following.

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 16 10 0 0 16 20 10 1.5

1 16 22 1

2 16 28 0

3 20 28 -1.2

Table: active Table: global

6. Filling the Polygon

Starting at the point (0, 10), which is on our scan-line and outside of the polygon, will
want to decide which points to draw for each scan-line.

1. Scan-line = 10:

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this
point until the next edge is encountered at x=22. Parity is then changed to even. The next
edge is reached at x=28 and the point is drawn once on this scan-line due to the special
parity case. We are now done with this scan-line. The polygon is now filled as follows:

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

92

First, we update the x values in the active edge table using the formula x1 = x0 + 1/m to
get the following:

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 16 10 0 0 16 20 10 1.5

1 16 23 1

2 16 28 0

3 20 26.8 -1.2

Table: active Table: global

The edges then need to be reordered since the edge at index 3 of the active edge table has
a lesser x value than that of the edge at index 2. Upon reordering, we get:

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 16 10 0 0 16 20 10 1.5

1 16 23 1

2 16 26.8 -1.2

3 20 28 0

Table: active Table: global

2. Scan-line = 11:

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this
point until the next edge is encountered at x=23. Parity is then changed to even. The next
edge is reached at x=27 and parity is changed to odd. The points are then drawn until the
next edge is reached at x=28. We are now done with this scan-line. The polygon is now
filled as follows:

Upon updating the x values, the edge tables are as follows:

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

93

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 16 10 0 0 16 20 10 1.5

1 16 24 1

2 16 25.6 -1.2

3 20 28 0

Table: active Table: global

It can be seen that no reordering of edges is needed at this time.

3. Scan-line = 12:

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this
point until the next edge is encountered at x=24. Parity is then changed to even. The next
edge is reached at x=26 and parity is changed to odd. The points are then drawn until the
next edge is reached at x=28. We are now done with this scan-line. The polygon is now
filled as follows:

Updating the x values in the active edge table gives us:

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 16 10 0 0 16 20 10 1.5

1 16 25 1

2 16 24.4 -1.2

3 20 28 0

Table: active Table: global

We can see that the active edges need to be reordered since the x value of 24.4 at index 2
is less than the x value of 25 at index 1. Reordering produces the following:

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

94

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 16 10 0 0 16 20 10 1.5

1 16 24.4 1

2 16 25 0

3 20 28 -1.2

Table: active Table: global

4. Scan-line = 13:

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this
point until the next edge is encountered at x=25 Parity is then changed to even. The next
edge is reached at x=25 and parity is changed to odd. The points are then drawn until the
next edge is reached at x=28. We are now done with this scan-line. The polygon is now
filled as follows:

Upon updating the x values for the active edge table, we can see that the edges do not
need to be reordered.

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 16 10 0 0 16 20 10 1.5

1 16 23.2 1

2 16 26 0

3 20 28 -1.2

Table: active Table: global

5. Scan-line = 14:

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this
point until the next edge is encountered at x=24. Parity is then changed to even. The next
edge is reached at x=26 and parity is changed to odd. The points are then drawn until the

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

95

next edge is reached at x=28. We are now done with this scan-line. The polygon is now
filled as follows:

Upon updating the x values for the active edge table, we can see that the edges still do not
need to be reordered.

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 16 10 0 0 16 20 10 1.5

1 16 22 -1.2

2 16 27 1

3 20 28 0

Table: active Table: global

6. Scan-line = 15:

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this
point until the next edge is encountered at x=22. Parity is then changed to even. The next
edge is reached at x=27 and parity is changed to odd. The points are then drawn until the
next edge is reached at x=28. We are now done with this scan-line. The polygon is now
filled as follows:

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

96

Since the maximum y value is equal to the next scan-line for the edges at indices 0, 2, and
3, we remove them from the active edge table. This leaves us with the following:

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 20 22 -1.2 0 16 20 10 1.5

Table: active Table: global

We then need to update the x values for all remaining edges.

Index Y-
max

X-
val

1/m Index Y-min Y-max X-val 1/m

0 20 20.8 -1.2 0 16 20 10 1.5

Table: active Table: global

Now we can add the last edge from the global edge table to the active edge table since its
minimum y value is equal to the next scan-line. The active edge table now looks as
follows (the global edge table is now empty):

Index Y-
max

X-
val

1/m

0 20 20.8 -1.2

1 20 10 1.5

Table: active

These edges obviously need to be reordered. After reordering, the active edge table
contains the following:

Index Y-
max

X-
val

1/m

0 20 10 1.5

1 20 20.8 -1.2

Table: active

7. Scan-line = 16:

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this
point until the next edge is reached at x=21. We are now done with this scan-line. The
polygon is now filled as follows:

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

97

The x values are updated and the following is obtained:

Index Y-
max

X-
val

1/m

0 20 11.5 1.5

1 20 19.6 -1.2

Table: active

8. Scan-line = 17:

Once the first edge is encountered at x=12, parity = odd. All points are drawn from this
point until the next edge is reached at x=20. We are now done with this scan-line. The
polygon is now filled as follows:

We update the x values and obtain:

Index Y-
max

X-
val

1/m

0 20 13 1.5

1 20 18.4 -1.2

Table: active

9. Scan-line = 18:

8-Filled-Area Primitives-I VU

© Copyright Virtual University of Pakistan

98

Once the first edge is encountered at x=13, parity = odd. All points are drawn from this
point until the next edge is reached at x=19. We are now done with this scan-line. The
polygon is now filled as follows:

Upon updating the x values we get:

Index Y-
max

X-
val

1/m

0 20 14.5 1.5

1 20 17.2 -1.2

Table: active

10. Scan-line = 19:

Once the first edge is encountered at x=15, parity = odd. All points are drawn from this
point until the next edge is reached at x=18. We are now done with this scan-line. Since
the maximum y value for both edges in the active edge table is equal to the next scan-line,
we remove them. The active edge table is now empty and we are now done.

The polygon is now filled as follows:

Now that we have filled the polygon, let's see what it looks like to the human eye:

9-Filled-Area Primitives-II VU

© Copyright Virtual University of Pakistan

99

Lecture No.9 Filled-Area Primitives-II

Boundary fill
Another important class of area-filling algorithms starts at a point known to be inside a
figure and starts filling in the figure outward from the point. Using these algorithms a
graphic artist may sketch the outline of a figure and then select a color or pattern with
which to fill it. The actual filling process begins when a point inside the figure is selected.
These routines are like the paint-scan function seen in common interactive paint
packages.
The first such method that we will discuss is called the boundary-fill algorithm. The
boundary-fill method requires the coordinates of a starting point, a fill color, and a
boundary color as arguments.

Boundary fill algorithm:
The Boundary fill algorithm performs the following steps:
Check the pixel for boundary color
Check the pixel for fill color
Set the pixel in fill color
Run the process for neighbors

The pseudo code for Boundary fill algorithm can be written as:
 boundaryFill (x, y, fillColor, boundaryColor)
 if ((x < 0) || (x >= width))
 return
 if ((y < 0) || (y >= height))
 return
 current = GetPixel(x, y)
 if ((current != boundaryColor) && (current != fillColor))
 setPixel(fillColor, x, y)
 boundaryFill (x+1, y, fillColor, boundaryColor)
 boundaryFill (x, y+1, fillColor, boundaryColor)
 boundaryFill (x-1, y, fillColor, boundaryColor)
 boundaryFill (x, y-1, fillColor, boundaryColor)

Note that this is a recursive routine. Each invocation of boundaryFill () may call itself
four more times.
The logic of this routine is very simple. If we are not either on a boundary or already
filled we first fill our point, and then tell our neighbors to fill themselves.

9-Filled-Area Primitives-II VU

© Copyright Virtual University of Pakistan

100

Process of Boundary Fill Algorithm

By the way, sometimes the boundary fill algorithm doesn't work. Can you think of such a
case?

Flood Fill
Sometimes we need an area fill algorithm that replaces all connected pixels of a selected
color with a fill color.
The flood-fill algorithm does exactly that.
Flood-fill algorithm
An area fill algorithm that replaces all connected pixels of a selected color with a fill
color.

Before Applying Flood-fill algorithm (Light color)

After Applying Flood-fill algorithm (Dark color)

Flood-fill algorithm in action

9-Filled-Area Primitives-II VU

© Copyright Virtual University of Pakistan

101

The pseudo code for Flood fill algorithm can be written as:
 public void floodFill(x, y, fillColor, oldColor)

 if ((x < 0) || (x >= width))
 return
 if ((y < 0) || (y >= height))
 return
 if (getPixel (x, y) == oldColor)

 setPixel (fillColor, x, y)
 floodFill (x+1, y, fillColor, oldColor)
 floodFill (x, y+1, fillColor, oldColor)
 floodFill (x-1, y, fillColor, oldColor)
 floodFill (x, y-1, fillColor, oldColor)

It's a little awkward to kick off a flood fill algorithm because it requires that the old color
must be read before it is invoked. The following implementation overcomes this
limitation, and it is also somewhat faster, a little bit longer. The additional speed comes
from only pushing three directions onto the stack each time instead of four.
 fillFast (x, y, fillColor)
 if ((x < 0) || (x >=width)) return
 if ((y < 0) || (y >=height)) return
 int oldColor = getPixel (x, y)
 if (oldColor == fill) return
 setPixel (fillColor, x, y)
 fillEast (x+1, y, fillColor, oldColor)
 fillSouth (x, y+1, fillColor, oldColor)
 fillWest (x-1, y, fillColor, oldColor)
 fillNorth (x, y-1, fillColor, oldColor)

 fillEast (x, y, fillColor, oldColor)
 if (x >= width) return
 if (getPixel(x, y) == oldColor)
 setPixel(fillColor, x, y)
 fillEast (x+1, y, fillColor, oldColor)
 fillSouth (x, y+1, fillColor, oldColor)
 fillNorth (x, y-1, fillColor, oldColor)

 fillSouth(x, y, fillColor, oldColor)
 if (y >=height) return
 if (getPixel (x, y) == oldColor)
 setPixel (fillColor, x, y)
 fillEast (x+1, y, fillColor, oldColor)
 fillSouth (x, y+1, fillColor, oldColor)
 fillWest (x-1, y, fillColor, oldColor)

 fillWest(x, y, fillColor, oldColor)
 {

9-Filled-Area Primitives-II VU

© Copyright Virtual University of Pakistan

102

 if (x < 0) return
 if (getPixel (x, y) == oldColor)
 setPixel (fillColor, x, y)
 fillSouth (x, y+1, fillColor, oldColor)
 fillWest (x-1, y, fillColor, oldColor)
 fillNorth (x, y-1, fillColor, oldColor)

 fillNorth (x, y, fill, old)
 if (y < 0) return
 if (getPixel (x, y) == oldColor)
 setPixel (fill, x, y)
 fillEast (x+1, y, fillColor, oldColor)
 fillWest (x-1, y, fillColor, oldColor)
 fillNorth (x, y-1, fillColor, oldColor)

A final consideration when writing an area-fill algorithm is the size and connectivity of
the neighborhood around a given pixel.

The eight-connected neighborhood is able to get into nooks and crannies that an
algorithm based on a four-connected neighborhood cannot.

Here's the code for an eight-connected flood fill.
 floodFill8 (x, y, fill, old)
 if ((x < 0) || (x >=width)) return
 if ((y < 0) || (y >=height)) return
 if (getPixel (x, y) == oldColor)
 setPixel (fill, x, y);
 floodFill8 (x+1, y, fillColor, oldColor)
 floodFill8 (x, y+1, fillColor, oldColor)
 floodFill8 (x-1, y, fillColor, oldColor)
 floodFill8 (x, y-1, fillColor, oldColor)
 floodFill8 (x+1, y+1, fillColor, oldColor)
 floodFill8 (x-1, y+1, fillColor, oldColor)
 floodFill8 (x-1, y-1, fillColor, oldColor)
 floodFill8 (x+1, y-1, fillColor, oldColor)

10-3D Concepts VU

© Copyright Virtual University of Pakistan

103

Lecture No.10 Mathematics Fundamentals

Matrices and Simple Matrix Operations
In many fields matrices are used to represent objects and operations on those objects. In
computer graphics matrices are heavily used especially their major role is in case of
transformations (we will discuss in very next lecture), but not only transformation there
are many areas where we use matrices and we will see in what way matrices help us.
Anyhow today we are going to discuss matrix and their operation so that we will not face
any problem using matrices in coming lectures and in later lectures. Today we will cover
following topics:

What a Matrix is?
Dimensions of a Matrix
Elements of a Matrix
Matrix Addition
Zero Matrix
Matrix Negation
Matrix Subtraction
Scalar multiplication of a matrix
The transpose of a matrix

Definition of Matrix
A matrix is a collection of numbers arranged into a fixed number of rows and columns.
Usually the numbers are real numbers. In general, matrices can contain complex numbers
but we won't see those here. Here is an example of a matrix with three rows and three
columns:

The top row is row 1. The leftmost column is column 1. This matrix is a 3x3 matrix
because it has three rows and three columns. In describing matrices, the format is:
rows X columns
Each number that makes up a matrix is called an element of the matrix. The elements in a
matrix have specific locations.

The upper left corner of the matrix is row 1 column 1. In the above matrix the element at
row 1 column 1 is the value 1. The element at row 2 columns 3 is the value 4.6.

Matrix Dimensions
The numbers of rows and columns of a matrix are called its dimensions. Here is a matrix
with three rows and two columns:

10-3D Concepts VU

© Copyright Virtual University of Pakistan

104

Sometimes the dimensions are written off to the side of the matrix, as in the above matrix.
But this is just a little reminder and not actually part of the matrix. Here is a matrix with
different dimensions. It has two rows and three columns. This is a different "data type"
than the previous matrix.

Question: What do you suppose a square matrix is? Here is an example:

Answer: The number of rows == the number of columns

Square Matrix
In a square matrix the number of rows equals the number of columns. In computer
graphics, square matrices are used for transformations.

A column matrix consists of a single column. It is a N x 1 matrix. These notes, and most
computer graphics texts, use column matrices to represent geometrical vectors. At left is a
4 x 1 column matrix. A row matrix consists of a single row.

A column matrix is also called column vector and call a row matrix a row vector.

Question: What are square matrices used for?
Answer: Square matrices are used (in computer graphics) to represent geometric
transformations.

Names for Matrices
Try to remember that matrix starts from rows never from columns so if order of matrix is
3*2 that means there are three rows and two columns. A matrix can be given a name. In
printed text, the name for a matrix is usually a capital letter in bold face, like A or M.
Sometimes as a reminder the dimensions are written to the right of the letter, as in B3x3.
The elements of a matrix also have names, usually a lowercase letter the same as the
matrix name, with the position of the element written as a subscript. So, for example, the
3x3 matrix A might be written as:

10-3D Concepts VU

© Copyright Virtual University of Pakistan

105

Sometimes you write A = [aij] to say that the elements of matrix A are named aij.
Question: (Thought Question:) If two matrices contain the same numbers as elements, are
the two matrices equal to each other?
Answer: No, to be equal, two matrices must have the same dimensions, and must have the
same values in the same positions.

Matrix Equality
For two matrices to be equal, they must have
The same dimensions.
Corresponding elements must be equal.
In other words, say that An x m = [aij] and that Bp x q = [bij].
Then A = B if and only if n=p, m=q, and aij=bij for all i and j in range.

Here are two matrices which are not equal even though they have the same elements.

Matrix Addition
If two matrices have the same number of rows and same number of columns, then the
matrix sum can be computed:

If A is an MxN matrix, and B is also an MxN matrix, then their sum is an MxN matrix
formed by adding corresponding elements of A and B
Here is an example of this:

Of course, in most practical situations the elements of the matrices are real numbers with
decimal fractions, not the small integers often used in examples.

Question: What 3x2 matrix could be added to a second 3x2 matrix without changing that
second matrix?

Answer: The 3x2 matrix that has all its elements zero.

10-3D Concepts VU

© Copyright Virtual University of Pakistan

106

Zero Matrix
A zero matrix is one; which has all its elements zero. Here is a 3x3 zero matrix:

The name of a zero matrix is a boldface zero: 0, although sometimes people forget to
make it bold face. Here is an interesting problem:

Question: Form the above sum. No electronic calculators allowed!
Answer: Of course, the sum is the same as the non-zero matrix.

Rules for Matrix Addition
You should be happy with the following rules of matrix addition. In each rule, the
matrices are assumed to all have the same dimensions.
A + B = B + A
A + 0 = 0 + A = A
0 + 0 = 0
These look the same as some rules for addition of real numbers. (Warning!! Not all rules
for matrix math look the same as for real number math.)
The first rule says that matrix addition is commutative. This is because ordinary addition
is being done on the corresponding elements of the two matrices, and ordinary (real)
addition is commutative:

Question: Do you think that (A + B) + C = A + (B + C)
Answer: Yes — this is another rule that works like real number math.

Practice with Matrix Addition
Here is another matrix addition problem. Mentally form the sum (or use a scrap of paper):

10-3D Concepts VU

© Copyright Virtual University of Pakistan

107

Hint: this problem is not as tedious as it might at first seem.
Question: What is the sum?
Answer: Each element of the 3x3 result is 10.

Multiplication of a Matrix by a Scalar
A matrix can be multiplied by a scalar (by a real number) as follows:
To multiply a matrix by a scalar, multiply each element of the matrix by the scalar.
Here is an example of this. (In this example, the variable a is a scalar.)

Question: Show the result if the scalar a in the above is the value -1.
Answer: Each element in the result is the negative of the original, as seen below.

Negative of a Matrix
The negation of a matrix is formed by negating each element of the matrix:

-A = -1A
So, for example:

It will not surprise you that A + (-A) = 0
Question: Look at the above fact. Can you think of a way to define matrix subtraction?
Answer: It seems like subtraction could be defined as adding a negation of a matrix.

Matrix Subtraction
If A and B have the same number of rows and columns, then A - B is defined as A + (-B).
Usually you think of this as:
To form A - B, from each element of A subtract the corresponding element of B.
Here is a partly finished example:

Notice in particular the elements in the first row of the answer. The way the result was
calculated for the elements in row 1 column 2 is sometimes confusion.
Question: Mentally fill in the two question marks.
Answer:

10-3D Concepts VU

© Copyright Virtual University of Pakistan

108

Transpose
The transpose of a matrix is a new matrix whose rows are the columns of the original
(which makes its columns the rows of the original). Here is a matrix and its transpose:

The superscript "T" means "transpose". Another way to look at the transpose is that the
element at row r column c if the original is placed at row c column r of the transpose. We
will usually work with square matrices, and it is usually square matrices that will be
transposed. However, non-square matrices can be transposed, as well:

Question: What is the transpose of:

Answer:

A Rule for Transpose
If a transposed matrix is itself transposed, you get the original back:

This illustrates the rule (AT)T = A.
Question: What is the transpose of:

Answer:

10-3D Concepts VU

© Copyright Virtual University of Pakistan

109

The transpose of a row matrix is a column matrix. And the transpose of a column matrix
is a row matrix.

Rule Summary
Here are some rules that cover what has been discussed. You should check that they seem
reasonable, rather than memorize them. For each rule the matrices have the same number
of rows and columns.

A + 0 = A A + B = B + A 0 + 0 = 0

A + (B + C) = (A + B) + C (ab)A = a(bA) a(A + B) = aB + aA

a0 = 0 (-1)A = -A A - A= 0

(AT)T = A 0T = 0

In the above, a and b are scalars (real numbers). A and B are matrices, and 0 is the zero
matrix of appropriate dimension.
Question: If A = B and B = C, then does A = C?
Answer: Yes

Vectors
Another important mathematical concept used in graphics is the Vector. If P1 = (x1, y1, z1)
is the starting point and P2 = (x2, y2, z2) is the ending point, then the vector V = (x2 – x1,
y2 – y1, z2 – z1)

and if P2 = (x2, y2, z2) is the starting point and P1 = (x1, y1, z1) is the ending point, then
the vector V = (x1 – x2, y1 – y2, z1 – z2)

10-3D Concepts VU

© Copyright Virtual University of Pakistan

110

This just defines length and direction, but not position.

Vector Projections

Projection of v onto the x-axis

Projection of v onto the xz plane

2D Magnitude and Direction
The magnitude (length) of a vector:
 |V| = sqrt (Vx

2 + Vy
2)

The equation is derived from the Pythagorean theorem.
The direction of a vector:
 tan α = Vy / Vx
 α = tan-1 (Vy / Vx)
Where α is angular displacement from the x-axis.

3D Magnitude and Direction
3D magnitude is a simple extension of 2D
 |V| = sqrt(Vx

2 + Vy
2 + Vz

2)

10-3D Concepts VU

© Copyright Virtual University of Pakistan

111

3D direction is a bit harder than in 2D. Particularly it needs 2 angles to fully describe
direction. Latitude/ longitude is a real-world example.

Direction Cosines are often used:

• α, β, and γ are the positive angles that the vector makes with each positive
coordinate axes x, y, and z, respectively

 cos α = Vx / |V|
 cos β = Vy / |V|
 cos γ = Vz / |V|

Vector Normalization
“Normalizing” a vector means shrinking or stretching it so its magnitude is 1. A simple
way is normalize by dividing by its magnitude:

 V = (1, 2, 3)
 |V| = sqrt(12 + 22 + 32) = sqrt(14) + 3.74
Vnorm = V / |V| = (1, 2, 3) / 3.74 =
 (1 / 3.74, 2 / 3.74, 3 / 3.74) = (.27, .53, .80)

|Vnorm| = sqrt(.272 + .532 + .802) = sqrt(.9) = .95

Note that the last calculation doesn’t come out to exactly 1. This is because of the error
introduced by using only 2 decimal places in the calculations above.

Vector Addition
Equation:
V3 = V1 + V2 = (V1x + V2x , V1y + V2y , V1z + V2z)

Vector Subtraction

Equation:
V3 = V1 - V2 = (V1x - V2x , V1y - V2y , V1z - V2z)

10-3D Concepts VU

© Copyright Virtual University of Pakistan

112

Dot Product
The dot product of 2 vectors is a scalar

V1 . V2 = (V1x V2x) + (V1y V2y) + (V1z V2z)
Or, perhaps more importantly for graphics:

V1 . V2 = |V1| |V2| cos(θ)
where θ is the angle between the 2 vectors and θ is in the range 0 ≤ θ ≤ Π

Why is dot product important for graphics?
It is zero if and only if the 2 vectors are perpendicular cos (90) = 0

10-3D Concepts VU

© Copyright Virtual University of Pakistan

113

The Dot Product computation can be simplified when it is known that the vectors are unit
vectors
 V1 . V2 = cos(θ)
because |V1| and |V2| are both 1

Saves 6 squares, 4 additions, and 2 sqrts.

Cross Product
The cross product of 2 vectors is a vector
V1 x V2 = (V1y V2z - V1z V2y ,
 V1z V2x - V1x V2z ,
 V1x V2y - V1y V2x)

Note that if you are big into linear algebra there is also a way to do the cross product
calculation using matrices and determinants

Again, just as with the dot product, there is a more graphical definition:
V1 x V2 = u |V1| |V2| sin (θ)

where θ is the angle between the 2 vectors and θ is in the range 0 ≤ θ ≤ Π and u is the unit
vector that is perpendicular to both vectors

Why u?
 |V1| |V2| sin(θ) produces a scalar and the result needs to be a vector.

The direction of u is determined by the right hand rule.
The perpendicular definition leaves an ambiguity in terms of the direction of u
Note that you can’t take the cross product of 2 vectors that are parallel to each other
Sin (0) = sin (180) = 0 à produces the vector (0, 0, 0)

Forming Coordinate Systems
Cross products are great for forming coordinate system frames (3 vectors that are
perpendicular to each other) from 2 random vectors.

1) Cross V1 and V2 to form V3.
V3 is now perpendicular to both V1 and V2

2) Cross V2 and V3 to form V4
V4 is now perpendicular to both V2 and V3
Then V2, V4, and V3 form your new frame

10-3D Concepts VU

© Copyright Virtual University of Pakistan

114

V1 and V2 are in the new xy plane

11-2D Transformation I VU

© Copyright Virtual University of Pakistan

115

LLeeccttuurree NNoo..1111 2D Transformations I

In the previous lectures so far we have discussed output primitive as well as filling
primitives. With the help of them we can draw an attractive 2D drawing but that will be
static whereas in most of the cases we require moving pictures for example games,
animation, and different model; where we show certain objects moving or rotating or
changing their size.

Therefore, changes in orientation that is displacement, rotation or change in size is called
geometric transformation. Here, we have certain basic transformations and some special
transformation. We start with basic transformation.

Basic Transformations

Translation
Rotation
Scaling

Above are three basic transformations. Where translation is independent of others
whereas rotation and scaling depends on translation in most of cases. We will see how in
their respective sections but here we will start with translation.

Translation
A translation is displacement from original
place. This displacement happens to be
along a straight line; where two distances
involves one is along x-axis that is tx and
second is along y-axis that is ty. The same
is shown in the figure also we can express
it with following equation as well as by
matrix:

x′ = x + tx , y′ = y + ty

Here (tx, ty) is translation vector or shift
vector. We can express above equations as a single matrix equation by using column
vectors to represent coordinate positions and the translation vector:

 P′ = P + T

Where P = P′= T =

Translation is a rigid-body transformation that moves objects without deformation. That
is, every point on the object is translated by the same amount.

A straight line can be translated by applying the above transformation equation to each of
the line endpoints and redrawing the line between the new coordinates. Similarly a

11-2D Transformation I VU

© Copyright Virtual University of Pakistan

116

polygon can be translated by applying the above transformation equation to each vertices
of the polygon and redrawing the polygon with new coordinates. Similarly curved objects
can be translated. For example to translate circle or ellipse, we translate the center point
and redraw the same using new center point.

Rotation
A two dimensional rotation is applied to an object by repositioning it along a circular path
in the xy plane. To rotate a point, its coordinates and rotation angle is required. Rotation
is performed around a fixed point called pivot point. In start we will assume pivot point to
be the origin or in other words we will find rotation equations for the rotation of object
with respect to origin, however later we will see if we change our pivot point what should
be done with the same equations.

Another thing is to be noted that for a positive angle the rotation will be anti-clockwise
where for negative angle rotation will be clockwise.

Now for the rotation around the origin
as shown in the above figure we
required original position/ coordinates
which in our case is P(x,y) and rotation
angle θ. Now using polar coordinates
assume point is already making angle Ф
from origin and distance of point from
origin is r, therefore we can represent x
and y in the form:

x = r cosФ and y = r sinФ

Now if we want to rotate point by an angle θ, we have new angle that is (Ф+ θ), therefore
now point P′(x′,y′) can be represented as:

x′ = r cos(Ф + θ) = r cosФ cosθ – r sinФ sinθ
and
y′ = r sin(Ф + θ) = r cosФ sinθ + r sinФ cosθ

Now replacing r cosФ = x and r sinФ = y in above equations we get:

x′ = x cosθ – y sinθ and y′= x sinθ + y cosθ

Again we can represent above equations with the help of column vectors:

 P′= R . P
Where

11-2D Transformation I VU

© Copyright Virtual University of Pakistan

117

When coordinate positions are represented as row vectors instead of column vectors, the
matrix product in rotation equation is transposed so that the transformed row coordinate
vector [x′,y′] is calculated as:

 P′ T = (R . P)T
 = PT . RT

Where PT and the other transpose matrix can be obtained by interchanging rows and
columns. Also, for rotation matrix, the transpose is obtained by simply changing the sign
of the sine terms.

Rotation about an Arbitrary Pivot Point:
As we discussed above that pivot point may be
any point as shown in the above figure,
however for the sake of simplicity we assume
above that pivot point is at origin.

Anyhow, the situation can be dealt easily as
we have equations of rotation with respect to
origin. We can simply involve another
transformation already read that is translation
so simply translate pivot point to origin. By
translation, now points will make angle with
origin, therefore apply the same rotation equations and what next? Simply retranslate the
pivot point to its original position that is if we subtract xr,yr now add them therefore we
get following equations:

x′ = xr + (x - xr) cosθ – (y - yr) sinθ
y′ = yr + (x - xr) sinθ – (y - yr) cosθ

As it is discussed in translation rotation is also rigid-body transformation that moves the
object along a circular path. Now if we want to rotate a point we already achieved it. But
what if we want to move a line along its one end point very simple treat that end point as
pivot point and perform rotation on the other end point as discussed above. Similarly we
can rotate any polygon with taking some pivot point and recalculating vertices and then
redrawing the polygon.

Scaling
A scaling transformation changes the size of an object. Scaling may be in any terms
means either increasing the original size or decreasing the original size. An exemplary
scaling is shown in the above figure
where scaling factors used Sx=3 and
Sy=2. So, what are these scaling factors
and how they work very simple, simply
we multiply each coordinate with its
respective scaling factor.

Therefore, scaling with respect to origin
is achieved by multiplying x coordinate
with factor Sx and y coordinate with

Sx=3
Sy=2

11-2D Transformation I VU

© Copyright Virtual University of Pakistan

118

factor Sy. Therefore, following equations can be expressed:

 x′ = x.Sx

y′ = y.Sy
In matrix form it can be expressed as:

 P′ = S.P

Now we may have different values for scaling factor. Therefore, as it is multiplying factor
therefore, if we have scaling factor > 1 then the object size will be increased than original
size; whereas; in reverse case that is scaling factor < 1 the object size will be decreased
than original size and obviously there will be no change occur in size for scaling factor
equal 1.

Two variations are possible in scaling that is having scaling factors to be kept same that is
to keep original shape; which is called uniform scaling having Sx factor equal Sy factor.
Other possibility is to keep Sx and Sy factor unequal that is called differential scaling and
that will alter the original shape that is a square will no more remain square.

Now above equation of scaling can be applied to any line, circle and polygon etc.
However, as in case of line and polygon we will scale ending points or vertices then
redraw the object but in circle or ellipse we will scale the radius.

Now coming to the point when scaling with respect to any point other then origin, then
same methodology will work that is to apply translation before scaling and retranslation
after scaling. So here if we consider fixed/ pivot point (xf,yf), then following equations
will be achieved:

x′ = xf + (x - xf)Sx
y′ = yf + (y - yf)Sy

These can be rewritten as:

x′ = x. Sx + xf (1 – Sx)
y′ = y. Sy + yf (1 – Sy)

Where the terms xf (1 – Sx) and yf (1 – Sy) are constant for all points in the object.

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

119

LLeeccttuurree NNoo..1122 2D Transformations II

Before starting our next lecture just recall equations of three basic transformations i.e.
translation, rotation and scaling:

 Translation: P′= P + T

 Rotation: P′= R. P

 Scaling: P′= S. P

In many cases of computer graphics applications we require sequence of transformations.
For example in animation on each next move we may have object to be translated than
scaled. Similarly in games an object in a particular moment may have to be rotated as
well as translated. That means we have to perform sequence of matrix operations but the
matrix we have seen in the previous lecture have order which restrict them to be operated
in sequence. However, with slight reformulated we can bring them into the form where
they can easily be operated in any sequence thus efficiency can be achieved.

Homogeneous Coordinates

Again considering our previous lecture all the three basic transformations covered in
that lecture can be expressed by following equation:

 P′= M1.P + M2

With coordinate positions P and P’ represented as column vectors. Matrix M1 is a 2
by 2 array containing multiplicative factors, and M2 is a two-element column
matrix containing translation terms. For translation, M1 is a the identity matrix, For
rotation or scaling, M2 contains the translational terms associated with the pivot
point or scaling fixed point. To produce a sequence of transformations with these
equations, such as scaling followed by rotation then translation, we must calculate
the transformed coordinate’s one step at a time. First, coordinate positions are
scaled, then these scaled coordinates are rotated, and finally the rotated coordinates
are translated.

Now the question is can we find a way to eliminate the matrix addition associated with
translation? Yes, we can but for that M1 will have to be rewritten as a 3x3 matrix and also
the coordinate positions will have to be expressed as a homogeneous coordinate triple:

 (x, y) as (xh, yh, h) where

 x = xh , y = yh
 h h
We can choose the h as any non-zero value. However, a convenient choice is 1, thus (x,
y) has homogeneous coordinates as (x, y, 1). Expressing positions in homogeneous
coordinates allows us to represent all geometric transformation equations as matrix

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

120

multiplications. Coordinates are represented with three-element column vectors, and
transformation operations are written as 3 by 3 matrices.

Translation with Homogeneous Coordinates
The translation can now be expressed using homogeneous coordinates as:

Abbreviated as:
 P′ = T (tx, ty) . P

Rotation with Homogeneous Coordinates
The rotation can now be expressed using homogeneous coordinates as:

Abbreviated as:
 P′ = R (θ) . P

Scaling with Homogeneous Coordinates
The scaling can now be expressed using homogeneous coordinates as:

Abbreviated as:
 P′ = S (Sx, Sy) . P
Matrix representations are standard methods for implementing transformations in
graphics systems. In many systems, rotation and scaling functions produce
transformations with respect to the coordinate origin as expressed in the equation above.
Rotations and scaling relative to other reference positions are then handled as a
succession of transformation operations.

Composite Transformations

As in the previous section we achieved homogenous matrices for each of the basic
transformation, we can find a matrix for any sequence of transformation as a
composite transformation matrix by calculating the matrix product of the individual
transformations.

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

121

Translations
If two successive translations vectors (tx1, ty1) and (tx2, ty2) are applied to a

coordinate position P, the final transformed location P is calculated as

P′ = T(tx2,ty2) . {T(tx1,ty1) . P}
 = {T(tx2,ty2) . T(tx1,ty1)} . P

where P and P′ are represented as homogeneous-coordinate column vectors. The

composite transformation matrix for this sequence of translations is

or

T(tx2,ty2) . T(tx1,ty1) = T(tx1 + tx2 , ty1 + ty2)

Which means that two successive translations are additive. Hence,

Composite Rotations
Two successive Rotations applied to a point P produce the transformed position

 P′ = R(θ2) . {R(θ1) . P}
 = {R(θ2) . R(θ1)} . P
By multiplying the two rotation matrices, we can verify that two successive rotations are
additive:

 R(θ2) . R(θ1) = R(θ1 + θ2)
so that the final rotated coordinates can be calculated with the composite rotation matrix
as
 P′ = R(θ1 + θ2) . P

Composite Scaling
Concatenating transformation matrices for two successive scaling operations produces the
following composite scaling matrix:

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

122

 or
 S (sx2,sy2).S(sx1,sy1) = S(sx1.sx2, sy1.sy2)
The resulting matrix in the case indicates that successive scaling operations are
multiplicative. That is, if we were to triple the size of an object twice in succession, the
final size would be nine times that of the original.

General Pivot Point Rotation

With a graphics package that only provides a rotate function for revolving object about
the coordinate origin, we can generate rotations about any selected pivot point (xr, yr) by
performing the following sequence of translate-rotate-translate operations:

Translate the object so that the pivot-point positions is moved to the coordinate origin
Rotate the object about the coordinate origin
Translate the object so that the pivot point is returned to its original position

which can be expressed in the form

T(xr , yr) . R(θ) . T(-xr ,-yr) = R(xr, yr , θ)

where T(-xr , -yr) = T-1(xr , yr).

General Fixed Point Scaling
Following figure is showing a transformation sequence to produce scaling with respect to
a selected fixed point (xf, yf) using a scaling function that can only scale relative to the
coordinate origin.

Translate object so that the fixed point coincides with the coordinate origin
Scale the object with respect to the coordinate origin
Use the inverse translation of step 1 to return the object to its original position

Concatenating the matrices for these three operations produces the required scaling
matrix.

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

123

T(xf,yf).S(sx,sy).T(-xf,-yf) = S(xf,yf , sx,sy)

This transformation is automatically generated on systems that provide a scale function
that accepts coordinates for the fixed point.

Concatenation Properties
Matrix multiplication is associative. For any three matrices A, B and C, the matrix
product A. B. C can b3e performed by first multiplying A and B or by first multiplying B
and C:

A . B . C = (A . B) . C = A . (B . C)
Therefore, we can evaluate matrix products using a left-to-right or a right-to-left
associative grouping. On the other hand, transformation products may not be
commutative. The matrix product A. B is not equal to B. A, in general. This means that if
we want to translate and rotate an object, we must be careful about the order in which the
composite matrix is evaluated as show in following figure.

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

124

Reversing the order in which a sequence of transformations is performed may affect the
transformed position of an object. In above figure an object is first translated, and then
rotated. Whereas, in this figure an object is rotated first, then translated.

For some special cases, such as a sequence of transformations all of same kind, the
multiplication of transformation matrices is commutative. As an example, two successive
rotations could be performed in either order and the final position would be the same.
This commutative property holds also for two successive translations or two successive
scalings. Another commutative pair of operation is rotation and uniform scaling (Sx = Sy).

General Composite Transformations and Computational Efficiency

A general two-dimensional transformation, representing a combination of translations,
rotations, and scaling, can be expressed as

The four elements rsij are the multiplicative rotation-scaling terms in the transformation
that involve only rotating angles and scaling factors. Elements trsx and trsy are the
translational terms containing combinations of translation distances, pivot-point and
fixed-point coordinates, and rotation angles and scaling parameters. For example, if an
object is to be scaled and rotated about its centroid coordinates (xc, yc) and then
translated, the values for the elements of the composite transformation matrix are

T (tx,ty) . R(xc,yc, θ) . S(xc,yc,sx,sy)

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

125

Although matrix given before above matrix requires nine multiplications and six
additions, the explicit calculations for the transformed coordinates are

x’ = x.rsxx + y.rsxy + trsx
y’ = x.rsyx + y.rsyy + trsy

Thus, we only need to perform four multiplications and four additions to transform
coordinate positions. This is the maximum number of computations required for any
transformation sequence, once the individual matrices have been concatenated and the
elements of the composite matrix evaluated. Without concatenation, the individual
transformations would be applied one at a time and the number of calculations could be
significantly increased. An efficient implementation for the transformation operations,
therefore, is to formulate transformation matrices, concatenate any transformation
sequence, and calculate transformed coordinates using above equations.

Other Transformations
Basic transformations such as translation, rotation, and scaling are included in most
graphics packages. Some packages provide a few additional transformations that are
useful in certain applications. Two such transformations are reflection and shear.

Reflection
A reflection is a transformation that produces a mirror image of an object. The

mirror image for a two-dimensional reflection is generated relative to an axis of
reflection by rotating the object 180o about the reflection axis. We can choose an
axis of reflection in the xy plane or perpendicular to the xy plane. When the
reflection axis is a line in the xy plane; the rotation path about this axis is in a
plane perpendicular to the xy plane. For reflection axes that are perpendicular to
the xy plane, the rotation path in the xy plane. Following are examples of some
common reflections.

Reflection about the line y=0, the x-axis, relative to axis of reflection can be

achieved by rotating the object about axis of reflection by 180o.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

100
010
001

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

126

The transformation matrix is

Similarly in case of reflection about y-axis the transformation matrix will be, also

the reflection is shown in following figure:

Shear
A transformation that distorts the shape of an object such that the transformed

shape appears as if the object were composed of internal layers that had been
caused to slide over each other is called a shear. Two common shearing
transformations are those that shift coordinate x values and those that shift y
values.

An x direction shear relative to the x axis is produced with the transformation

matrix

12-2D Transformation II VU

© Copyright Virtual University of Pakistan

127

which transforms coordinate position as
 x′ = x + shx . y
 y′ = y

Any real number can be assigned to the shear parameter shx. A coordinate position (x,y) is
then shifted horizontally by an amount proportional to its distance (y value) from the x
axis (y=0). Setting shx to 2, for example, changes the square in following figure into a
parallelogram. Negative values for shx shift coordinate positions to the left.

Similarly y-direction shear relative to the y-axis is produced with the transformation
matrix

and coordinate positions transformed as
x′ = x
y′ = shy . x + y

Another similar transformation may be in x and y direction shear, where matrix will be

and coordinate positions transformed as

x′ = x + shx . y
y′ = shy . x + y

13-Drawing Example VU

© Copyright Virtual University of Pakistan

128

Lecture No.13 Drawing Example

Let us now learn some of the implementation techniques. So far we already have done
with learning drawing primitives including output primitives as well as filling primitives.
Also we have studied transformations. So we should be in position to make use of them in
two-dimensional drawing. Though most of you will think that they can draw two-
dimensional drawing very easily yet it may not be true due to lack of knowledge of some
implementation techniques, which are very useful in drawing as well as in transformation.
So we will cover this with some examples.

Drawing Table
First of all we are going to draw a very simple drawing that is a “table”. Yes, a simple
rectangular table with four legs. So, in order to draw such table we have to draw “table
top” plus four legs connecting four edges of the rectangle.

Design
Here we will first design the table like an ordinary student. So, what we will do we will
see the location of the table. For example assume that our screen has dimensions 640*480
and initially we want to draw table right in the middle of the center. Also, another factor
is important that is y axis travels from top to bottom. That is y=0 will be the top edge of
the screen and 480 will be the lower edge of the screen. Another thing is the dimension of
the table we want to draw. Therefore, we have table that has width 20, length 14 and
height 10.

Therefore, we have to find out four vertices that make the corners of the table. So, first of
all consider x coordinate. Left edge of the table will be 10 less from the center of the
screen that is 320. Therefore, x1 and x4 values will be 310. Similarly right edge of the
table will be 10 plus center of the screen. Therefore, x2 and x3 values will be 330.
Similarly, top edge of the table will be 10 less from the center of the screen that is 240.
Therefore, y1 and y2 values will be 233 and y3 and y4, which are lying on the lower
edge, will be 247. Finally, last parameter is required to define the length of legs. Having
length of legs we have to simply draw vertical lines of that length starting from each
corner respectively. Therefore, following code will be required to draw such a table:

 void translate(int tx, int ty)
 {
 xc+=tx;
 yc+=ty;
 x1+=tx;
 x2+=tx;
 x3+=tx;
 x4+=tx;
 y1+=ty;
 y2+=ty;
 y3+=ty;
 y4+=ty;
 }

13-Drawing Example VU

© Copyright Virtual University of Pakistan

129

 void rotate (float angle)
 {
 int tempx=x1;
 x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle);
 y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle);
 tempx=x2;
 x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle);
 y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle);
 tempx=x3;
 x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle);
 y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle);
 tempx=x4;
 x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle);
 y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle);
 }

 void scale(int sx, int sy)
 {
 x1=xc+(x1-xc)*sx;
 x2=xc+(x2-xc)*sx;
 x3=xc+(x3-xc)*sx;
 x4=xc+(x4-xc)*sx;
 y1=yc+(y1-yc)*sy;
 y2=yc+(y2-yc)*sy;
 y3=yc+(y3-yc)*sy;
 y4=yc+(y4-yc)*sy;
 legLength*=sy;
 }

x1=310, x2=330, x3=330, x4=310;
 y1=233, y2=233, y3=247, y4=247;
 legLength=10;

So, what I want that you should observe the issue. Now consider first of all translation. In
translation you have to translate all the points one by one and redraw the picture.
Instruction to translate the table will be of the form:

Now in this design drawing is pretty simple. We have to draw 4 lines between corner
points. That is from (x1, y1) to (x2, y2), from (x2, y2) to (x3, y3), from (x3, y3) to
(x4, y4) and from (x4, y4) to (x1, y1). That will suffice our table top. Next simply
draw four lines each starting from one of the corner of the table in the vertical
direction having length 10. Now let us see the simple code of drawing such table:

 //Table Top

line (x1, y1, x2, y2);
 line (x2, y2, x3, y3);
 line (x3, y3, x4, y4);
 line (x4, y4, x1, y1);
 //Table Legs

13-Drawing Example VU

© Copyright Virtual University of Pakistan

130

 line (x1, y1, x1, y1+legLength);
 line (x2, y2, x2, y2+legLength);
 line (x3, y3, x3, y3+legLength);
 line (x4, y4, x4, y4+legLength);

 Now is not that easy to draw table in the same manner? We will discuss the problem after
take a bit look at basic transformations (translation, rotation, scaling). The code is:

void translate(int tx, int ty)
 {
 xc+=tx;
 yc+=ty;
 x1+=tx;
 x2+=tx;
 x3+=tx;
 x4+=tx;
 y1+=ty;
 y2+=ty;
 y3+=ty;
 y4+=ty;
 }

Now seeing the code you can easily understand the idea. In translation we have to
translate all points one by one and then redrawing the table at new calculated points. Later
you will see in the other method that translation will only involve one line.

Anyhow next we will move to other transformation (rotation). Having pivot point at the
center of the screen, we have to perform translation in three steps. That is translation then
rotation and then translation. So take a look at the code:

 void rotate (float angle)
 {
 int tempx=x1;
 x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle);
 y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle);
 tempx=x2;
 x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle);
 y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle);
 tempx=x3;
 x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle);
 y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle);
 tempx=x4;
 x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle);
 y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle);
 }

So, here calculations required each time and for each pixel; whereas; you will observe
that we can make that rotation pretty simple. A similar problem is lying in the case of
scaling that is to perform three steps; translation then scaling and then translation. So look
at the code given below:

13-Drawing Example VU

© Copyright Virtual University of Pakistan

131

 void scale(int sx, int sy)
 {
 x1=xc+(x1-xc)*sx;
 x2=xc+(x2-xc)*sx;
 x3=xc+(x3-xc)*sx;
 x4=xc+(x4-xc)*sx;
 y1=yc+(y1-yc)*sy;
 y2=yc+(y2-yc)*sy;
 y3=yc+(y3-yc)*sy;
 y4=yc+(y4-yc)*sy;
 legLength*=sy;
 }

Therefore, same heavy calculations involves in scaling. So, here we will conclude our
first method and will start next method so that we can judge how calculations become
simple. Now having all discussion on table drawing, let us now consider the complete
implementation of class Table:

/**
Table is designed without considering pivot point simply taking points according to the
requirement.

Therefore, translation of table involves translation of all points.

Scaling and Rotation will be done after translation.
**/

#include <graphics.h>
#include <iostream.h>
#include <conio.h>
#include <math.h>

float round(float x)
{
 return x+0.5;
}

class Table
{
 private:
 int xc, yc;//Center of the figure
 int xp, yp;//Pivot point for this figure
 int x1, x2, x3, x4;
 int y1, y2, y3, y4;
 int legLength;

 public:
 Table()
 {

13-Drawing Example VU

© Copyright Virtual University of Pakistan

132

 xc=320, yc=240;//Center of the figure
 xp=0; yp=0;//Pivot point for this figure
 x1=310, x2=330, x3=330, x4=310;
 y1=233, y2=233, y3=247, y4=247;
 legLength=10;
 }

 void translate(int tx, int ty)
 {
 xc+=tx;
 yc+=ty;
 x1+=tx;
 x2+=tx;
 x3+=tx;
 x4+=tx;
 y1+=ty;
 y2+=ty;
 y3+=ty;
 y4+=ty;
 }

 void rotate (float angle)
 {
 int tempx=x1;
 x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle);
 y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle);
 tempx=x2;
 x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle);
 y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle);
 tempx=x3;
 x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle);
 y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle);
 tempx=x4;
 x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle);
 y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle);
 }

 void scale(int sx, int sy)
 {
 x1=xc+(x1-xc)*sx;
 x2=xc+(x2-xc)*sx;
 x3=xc+(x3-xc)*sx;
 x4=xc+(x4-xc)*sx;
 y1=yc+(y1-yc)*sy;
 y2=yc+(y2-yc)*sy;
 y3=yc+(y3-yc)*sy;
 y4=yc+(y4-yc)*sy;
 legLength*=sy;
 }

13-Drawing Example VU

© Copyright Virtual University of Pakistan

133

 void draw()
 {
 line (x1, y1, x2, y2);
 line (x2, y2, x3, y3);
 line (x3, y3, x4, y4);
 line (x4, y4, x1, y1);
 line (x1, y1, x1, y1+legLength);
 line (x2, y2, x2, y2+legLength);
 line (x3, y3, x3, y3+legLength);
 line (x4, y4, x4, y4+legLength);
 }
};

void main()
{
 clrscr();
 int gdriver = DETECT, gmode, errorcode;
 initgraph(&gdriver, &gmode, "c:\\tc\\bgi");
 Table table;
 table.draw();
 setcolor(CYAN);
 table.translate(15, 25);
 table.draw();
 table.translate(50, 75);
 table.scale(3,2);
 table.draw();
 table.translate(-100, 75);
 table.rotate(3.14/4);
 table.draw();
 getch();
 closegraph();
}

--

Second Method

Well now we will design our table by considering pivot point. That is we will decide our
pivot point and next all points will be taken according to that pivot point. Similarly you
will see that this consideration will do a little effect on drawing portion of the code;
otherwise all other things will become simpler.

Table Design
So let us start with designing the table, that is to calculate parameters of the table. That is
4 corners plus length of legs. First of all we assume that our pivot point is lying on the
center of the screen and initially that is (0, 0). So having pivot point we will calculate
other points with respect to that point.

13-Drawing Example VU

© Copyright Virtual University of Pakistan

134

So having length 20 units, left edge of the table will be ten digits away from the pivot
point and away on the left side; therefore; x1 and x4 will be –10; and similarly right edge
of the table will be ten digits away from the pivot point on the right side. Therefore, x2
and x3 will be 10 (yes, positive ten).

Now consider the top and lower edges of the table they will be 7 points away from the
pivot point in each direction; therefore value of y on the upper edge will be –7 and on the
lower edge it will be 7 (yes, positive seven). Now finally y1, y2 will be –7 and y3, y4 will
be 7. Well, length of the leg will be simple ten. Therefore, now take a look at the
parameters in this design:

 xc=320, yc=240;//Center of the figure
 xp=0; yp=0;//Pivot point for this figure
 x1=-10, x2=10, x3=10, x4=-10;
 y1=-7, y2=-7, y3=7, y4=7;
 legLength=10;

Table Drawing
So, points x1, x2, x3, and x4 are not having the value at which they will appear on the
screen rather they are at the relative distance from the pivot point. Here, we are also using
xc, yc that is center on the screen that will keep pivot point align. Now having vertices
defined in this fashion our drawing method will be differ from the older one. That is
while drawing lines we will add center of the screen and pivot point in each vertex. That
will take us to the exact position of the screen. Let us look at the drawing code:
 int xc=this->xc+xp;
 int yc=this->yc+yp;
 line (xc+x1, yc+y1, xc+x2, yc+y2);
 line (xc+x2, yc+y2, xc+x3, yc+y3);
 line (xc+x3, yc+y3, xc+x4, yc+y4);

line (xc+x4, yc+y4, xc+x1, yc+y1);
 line (xc+x1, yc+y1, xc+x1, yc+y1+legLength);
 line (xc+x2, yc+y2, xc+x2, yc+y2+legLength);
 line (xc+x3, yc+y3, xc+x3, yc+y3+legLength);
 line (xc+x4, yc+y4, xc+x4, yc+y4+legLength);

So, in the above code first we have added xp to xc in order to reduce some of the
calculations required in each line drawing command. Next, we have added that calculated
figure to all line drawing commands in order to draw them exactly at the position where it
should be appear in the screen.

Now having a bit difficulty while drawing there are many more facilities that we will
enjoy in especially transformation.

Table Transformation
So, first of all consider Translation. In this technique translation is quite simple that is
simply add translation vector in the pivot point. All other points will be calculated
accordingly. Now look at the very simple code of translation:
 void translate(int tx, int ty)
 {
 xp+=tx;

13-Drawing Example VU

© Copyright Virtual University of Pakistan

135

 yp+=ty;
 }
So how simple add tx to xp and ty to yp. Similarly next consider rotation that is again
very simple; no need of translation. Let us look at the code:
 void rotate (float angle)
 {
 int tempx=x1;
 x1=tempx*cos(angle)-y1*sin(angle);
 y1=tempx*sin(angle)+y1*cos(angle);
 tempx=x2;
 x2=tempx*cos(angle)-y2*sin(angle);
 y2=tempx*sin(angle)+y2*cos(angle);
 tempx=x3;
 x3=tempx*cos(angle)-y3*sin(angle);
 y3=tempx*sin(angle)+y3*cos(angle);
 tempx=x4;
 x4=tempx*cos(angle)-y4*sin(angle);
 y4=tempx*sin(angle)+y4*cos(angle);
 }

So, here you can check that there is no extra calculation simply rotated points are
calculated using formula that is used to rotate a point around the origin. Now similarly
given below you can see calculations of scaling.

 void scale(int sx, int sy)
 {
 x1=x1*sx;
 x2=x2*sx;
 x3=x3*sx;
 x4=x4*sx;
 y1=y1*sy;
 y2=y2*sy;
 y3=y3*sy;
 y4=y4*sy;
 legLength=legLength*sy;
 }

So very simple calculation is done again that is to multiply scaling factor with old vertices
and new vertices will be obtained.

So, now we look at the class Table in which table is designed considering pivot point and
taking all other points accordingly.

/**
Table is designed with considering pivot point and taking all other
points with respect to that pivot point.

Therefore, translation of table involves translation of only pivot
point, all other points will change respectively.

13-Drawing Example VU

© Copyright Virtual University of Pakistan

136

Scaling and Rotation will be done directly no translation or other
transformation is required.
**/

#include <graphics.h>
#include <iostream.h>
#include <conio.h>
#include <math.h>

float round(float x)
{
 return x+0.5;
}

class Table
{
 private:
 int xc, yc;//Center of the figure
 int xp, yp;//Pivot point for this figure
 int x1, x2, x3, x4;
 int y1, y2, y3, y4;
 int legLength;
 int sfx, sfy; //Scaling factor
 public:
 Table()
 {
 xc=320, yc=240;//Center of the figure
 xp=0; yp=0;//Pivot point for this figure
 x1=-10, x2=10, x3=10, x4=-10;
 y1=-7, y2=-7, y3=7, y4=7;
 legLength=10;
 sfx=1, sfy=1;
 }

 void translate(int tx, int ty)
 {
 xp+=tx;
 yp+=ty;
 }

 void rotate (float angle)
 {
 int tempx=x1;
 x1=tempx*cos(angle)-y1*sin(angle);
 y1=tempx*sin(angle)+y1*cos(angle);
 tempx=x2;
 x2=tempx*cos(angle)-y2*sin(angle);
 y2=tempx*sin(angle)+y2*cos(angle);
 tempx=x3;

13-Drawing Example VU

© Copyright Virtual University of Pakistan

137

 x3=tempx*cos(angle)-y3*sin(angle);
 y3=tempx*sin(angle)+y3*cos(angle);
 tempx=x4;
 x4=tempx*cos(angle)-y4*sin(angle);
 y4=tempx*sin(angle)+y4*cos(angle);
 }
 void scale(int sx, int sy)
 {
 x1=x1*sx;
 x2=x2*sx;
 x3=x3*sx;
 x4=x4*sx;
 y1=y1*sy;
 y2=y2*sy;
 y3=y3*sy;
 y4=y4*sy;
 legLength=legLength*sy;
 }
 void draw()
 {
 int xc=this->xc+xp;
 int yc=this->yc+yp;
 line (xc+x1, yc+y1, xc+x2, yc+y2);
 line (xc+x2, yc+y2, xc+x3, yc+y3);
 line (xc+x3, yc+y3, xc+x4, yc+y4);
 line (xc+x4, yc+y4, xc+x1, yc+y1);
 line (xc+x1, yc+y1, xc+x1, yc+y1+legLength);
 line (xc+x2, yc+y2, xc+x2, yc+y2+legLength);
 line (xc+x3, yc+y3, xc+x3, yc+y3+legLength);
 line (xc+x4, yc+y4, xc+x4, yc+y4+legLength);
 }};
void main()
{
 clrscr();
 int gdriver = DETECT, gmode, errorcode;
 initgraph(&gdriver, &gmode, "c:\\tc\\bgi");
 Table table;
 table.draw();
 setcolor(CYAN);
 table.translate(15, 25);
 table.draw();
 table.translate(50, 0);
 table.scale(3,2);
 table.draw();
 table.translate(-100, 0);
 table.rotate(3.14/4);
 table.draw();
 getch();
 closegraph();
}

14-Clipping-I VU

© Copyright Virtual University of Pakistan

138

Lecture No.14 Clipping-I

Concept
It is desirable to restrict the effect of graphics primitives to a sub-region of the canvas, to
protect other portions of the canvas. All primitives are clipped to the boundaries of this
clipping rectangle; that is, primitives lying outside the clip rectangle are not drawn.

The default clipping rectangle is the full canvas (the screen), and it is obvious that we
cannot see any graphics primitives outside the screen.
A simple example of line clipping can illustrate this idea:

This is a simple example of line clipping: the display window is the canvas and also the
default clipping rectangle, thus all line segments inside the canvas are drawn.

The red box is the clipping rectangle we will use later, and the dotted line is the extension
of the four edges of the clipping rectangle.

Point Clipping
Assuming a rectangular clip window, point clipping is easy. we save the point if:

14-Clipping-I VU

© Copyright Virtual University of Pakistan

139

xmin <= x <=xmax
ymin <= y <= ymax

Line Clipping
This section treats clipping of lines against rectangles. Although there are specialized
algorithms for rectangle and polygon clipping, it is important to note that other graphic
primitives can be clipped by repeated application of the line clipper.

Clipping Individual Points
Before we discuss clipping lines, let's look at the simpler problem of clipping individual
points.
If the x coordinate boundaries of the clipping rectangle are Xmin and Xmax, and the y
coordinate boundaries are Ymin and Ymax, then the following inequalities must be
satisfied for a point at (X, Y) to be inside the clipping rectangle:
 Xmin < X < Xmax

 and

 Ymin < Y < Ymax

If any of the four inequalities does not hold, the point is outside the clipping rectangle.
Trivial Accept - save a line with both endpoints inside all clipping boundaries.
Trivial Reject - discard a line with both endpoints outside the clipping boundaries.
For all other lines - compute intersections of line with clipping boundaries.

Parametric representation of a line:

x = x1 + u (x2 - x1)
y = y1 + u (y2 - y1), and 0 <= u <= 1.
If the value of u for an intersection with a clipping edge is outside the range 0 to 1, then
the line does not enter the interior of the window at that boundary. If the value of u is
within this range, then the line does enter the interior of the window at that boundary.

Solve Simultaneous Equations
To clip a line, we need to consider only its endpoints, not its infinitely many interior
points. If both endpoints of a line lie inside the clip rectangle (eg AB, refer to the first
example), the entire line lies inside the clip rectangle and can be trivially accepted. If one
endpoint lies inside and one outside(eg CD), the line intersects the clip rectangle and we
must compute the intersection point. If both endpoints are outside the clip rectaangle, the
line may or may not intersect with the clip rectangle (EF, GH, and IJ), and we need to
perform further calculations to determine whether there are any intersections.
The brute-force approach to clipping a line that cannot be trivially accepted is to intersect
that line with each of the four clip-rectangle edges to see whether any intersection points
lie on those edges; if so, the line cuts the clip rectangle and is partially inside. For each
line and clip-rectangle edge, we therefore take the two mathematically infinite lines that
contain them and intersect them. Next, we test whether this intersection point is "interior"
-- that is, whether it lies within both the clip rectangle edge and the line; if so, there is an
intersection with the clip rectangle. In the first example, intersection points G' and H' are
interior, but I' and J' are not.

14-Clipping-I VU

© Copyright Virtual University of Pakistan

140

The Cohen-Sutherland Line-Clipping Algorithm
The more efficient Cohen-Sutherland Algorithm performs initial tests on a line to
determine whether intersection calculations can be avoided.
Steps for Cohen-Sutherland algorithm
End-points pairs of the line are checked for trivial acceptance or trivial reject using
outcode.
If not trivial-acceptance or trivial-reject, the line is divided into two segments at a clip
edge.
Line is iteratively clipped by testing trivial-acceptance or trivial-rejected, and divided into
two segments until completely inside or trivial-rejected.
Trivial acceptance/reject test
To perform trivial accept and reject tests, we extend the
edges of the clip rectangle to divide the plane of the clip
rectangle into nine regions. Each region is assigned a 4-
bit code determined by where the region lies with
respect to the outside halfplanes of the clip-rectangle
edges. Each bit in the outcode is set to either 1 (true) or
0 (false); the 4 bits in the code correspond to the
following conditions:
Bit 1: outside halfplane of top edge, above top edge Y >
Ymax
Bit 2: outside halfplane of bottom edge, below bottom
edge Y < Ymin
Bit 3: outside halfplane of right edge, to the right of right edge X > Xmax
Bit 4: outside halfplane of left edge, to the left of left edge X < Xmin
Conclusion
In summary, the Cohen-Sutherland algorithm is efficient when out-code testing can be
done cheaply (for example, by doing bit-wise operations in assembly language) and
trivial acceptance or rejection is applicable to the majority of line segments. (For
example, large windows - everything is inside, or small windows - everything is outside).

Liang-Barsky Algorithm
Faster line clippers have been developed that are based on analysis of the parametric
equation of a line segment, which we can write in the form:

 x = x1 + u ∆x
 y = y1 + u ∆y, where 0 <= u <= 1

Where ∆x = x2 - x1 and ∆y = y2 - y1. Using these parametric equations, Cryus and Beck
developed an algorithm that is generally more efficient than the Cohen-Sutherland
algorithm. Later, Liang and Barsky independently devised an even faster parametric line-
clipping algorithm. Following the Liang-Barsky approach, we first write the point-
clipping in a parametric way:

xmin <= x1 + u ∆x <= xmax
 ymin <= y1 + u ∆y <= ymax

of these four inequalities can be expressed as

14-Clipping-I VU

© Copyright Virtual University of Pakistan

141

u * pk <= qk, for k = 1, 2, 3, 4

Where parameters p and q are defined as:

 p1 = -∆x, q1 = x1 - xmin

 p2 = -∆x, q2 = xmax - x1
 p3 = -∆y, q3 = y1 - ymin
 p4 = -∆y, q4 = ymax - y1

Any line that is parallel to one of the clipping boundaries has pk = 0 for the value of k
corresponding to that boundary (k = 1, 2, 3, 4 correspond to the left, bottom, and top
boundaries, respectively). If, for that value of k, we also find qk >= 0, the line is inside the
parallel clipping boundary.

When pk < 0, the infinite extension of the line proceeds from the outside to the inside of
the infitite extension of the particular clipping boundary. If pk > 0, the line proceeds from
the inside to the outside. For a nonzero value of pk = 0, we can calculate the value of u
that corresponds to the point where the infinitely extended line intersects the extension of
boundary k as:

u = qk / pk

For each line, we can calculate values for parameters u1 and u2 that defines that part of the
line that lies within the clip rectangle. The value of u1 is determined by looking at the
rectangle edges for which the line proceeds from the outer side to the inner side. (p < 0).
For these edges we calculate rk = qk / pk.

The value of u1 is taken as the largest of the set consisting of o and the various values of r.
Conversely, the value of u2 is determined by examining the boundaries for which the line
proceeds from inside to outside (p > o). A value of rk is calculated for each of these
boundaries and the value of u2 is the minimum of the set consisting of 1 and the
calculated r values. If u1 > u2, the line is completely outside the clip window and it can be
rejected. Otherwise, the end points of the clipped line are calculated from the two values
of parameter u.

This algorithm is presented in the following procedure. Line intersection parameters are
initialized to the values u1 = 0 and u2 = 1. For each clipping boundary, the appropriate
values for p and q are calculated and used by the function clipTest to determine whether
the line can be rejected or whether the intersection parameters are to be adjusted.

When p < 0, the parameter r is used to update u1; when p < 0, the parameter r is used to
update u2.

If updating u1 or u2 results in u1 > u2, we reject the line.

Otherwise, we update the appropriate u parameter only if the new value results in a
shortening of the line.

14-Clipping-I VU

© Copyright Virtual University of Pakistan

142

When p = 0 and q < 0, we can discard the line since it is parallel to and outside of this
boundary.

If the line has not been rejected after all four values of p and q have been tested, the
endpoints of the clipped line are determined from values of u1 and u2.

Conclusion

In general, the Liang-Barsky algorithm is more efficient than the Cohen Sutherland
algorithm, since intersection calculations are reduced. Each update of parameters u1 and
u2 requires only one division; and window intersections of the line are computed only
once, when the final values of u1 and u2 have computed. In contrast, the Cohen-
Sutherland algorithm can repeatedly calculate intersections along a line path, even though
the line may be completely outside the clip window, and, each intersection calculation
requires both a division and a multiplication. Both the Cohen Sutherland and the Liang
Barsky algorithms can be extended to three-dimensional clipping.

15-Clipping-II VU

© Copyright Virtual University of Pakistan

143

Lecture No.15 Clipping-II

Polygon Clipping
A polygon is usually defined by a sequence of vertices and edges. If the polygons are un-
filled, line-clipping techniques are sufficient however, if the polygons are filled, the
process in more complicated. A polygon may be fragmented into several polygons in the
clipping process, and the original colour associated with each one. The Sutherland-
Hodgeman clipping algorithm clips any polygon against a convex clip polygon. The
Weiler-Atherton clipping algorithm will clip any polygon against any clip polygon. The
polygons may even have holes.
An algorithm that clips a polygon must deal with many different cases. The case is
particularly note worthy in that the concave polygon is clipped into two separate
polygons. All in all, the task of clipping seems rather complex. Each edge of the polygon
must be tested against each edge of the clip rectangle; new edges must be added, and
existing edges must be discarded, retained, or divided. Multiple polygons may result from
clipping a single polygon. We need an organized way to deal with all these cases.
The following example illustrates a simple case of polygon clipping.

Given below are some examples to elaborate further.

15-Clipping-II VU

© Copyright Virtual University of Pakistan

144

Polygon clipping - disjoint polygons.

Polygon clipping - disjoint polygons.

15-Clipping-II VU

© Copyright Virtual University of Pakistan

145

Polygon clipping - open polygons.

Polygon clipping - open polygons.

15-Clipping-II VU

© Copyright Virtual University of Pakistan

146

Polygon clipping - open polygons.

Sutherland and Hodgman's polygon-clipping algorithm
Sutherland and Hodgman's polygon-clipping algorithm uses a divide-and-conquer
strategy: It solves a series of simple and identical problems that, when combined, solve
the overall problem. The simple problem is to clip a polygon against a single infinite clip
edge. Four clip edges, each defining one boundary of the clip rectangle, successively clip
a polygon against a clip rectangle.

Note the difference between this strategy for a polygon and the Cohen-Sutherland
algorithm for clipping a line: The polygon clipper clips against four edges in succession,
whereas the line clipper tests outcode to see which edge is crossed, and clips only when
necessary.

Steps of Sutherland-Hodgman's polygon-clipping algorithm

• Polygons can be clipped against each edge of the window one at a time.
Windows/edge intersections, if any, are easy to find since the X or Y coordinates
are already known.

• Vertices which are kept after clipping against one window edge are saved for
clipping against the remaining edges.

• Note that the number of vertices usually changes and will often increase.
• We are using the Divide and Conquer approach.

Here is a STEP-BY-STEP example of polygon clipping.

Four Cases of polygon clipping against one edge
The clip boundary determines a visible and invisible region. The edges from vertex i to
vertex i+1 can be one of four types:
Case 1 : Wholly inside visible region - save endpoint
Case 2 : Exit visible region - save the intersection
Case 3 : Wholly outside visible region - save nothing
Case 4 : Enter visible region - save intersection and endpoint

15-Clipping-II VU

© Copyright Virtual University of Pakistan

147

Because clipping against one edge is independent of all others, it is possible to arrange the
clipping stages in a pipeline. The input polygon is clipped against one edge and any
points that are kept are passed on as input to the next stage of the pipeline. In this way
four polygons can be at different stages of the clipping process simultaneously. This is
often implemented in hardware.

Example No # 1 Clipping a Polygon

Original polygon

15-Clipping-II VU

© Copyright Virtual University of Pakistan

148

Clip Left

Clip Right

15-Clipping-II VU

© Copyright Virtual University of Pakistan

149

Clip Bottom

Clip Top

Example No #2 Clipping a Rectangle

If Clipping Rectangle is denoted by dashed lines and Line is defined
by using points P1 and P2
Case i

15-Clipping-II VU

© Copyright Virtual University of Pakistan

150

For each boundary b in [L(Left), R(Right), T(Top), B(Bottom)]
If P1 outside and P2 inside.
Output:
intersection Point (P1’)
Point P2

Case ii

For each boundary b in [L(Left), R(Right), T(Top), B(Bottom)]
If P1 inside and P2 inside
Output:
 Point P2

15-Clipping-II VU

© Copyright Virtual University of Pakistan

151

Case iii

For each boundary b in [L(Left), R(Right), T(Top), B(Bottom)]
If P1 outside and P2 outside
Do nothing
Case iv

For each boundary b in [L(Left), R(Right), T(Top), B(Bottom)]
If P1 inside and P2 outside (We are going from P1 to P2)
 Output:
Point of intersection (P2’) only.

15-Clipping-II VU

© Copyright Virtual University of Pakistan

152

Pipeline Clipping Approach
An array, s records the most recent point that was clipped for each clip-window boundary.
The main routine passes each vertex p to the clipPoint routine for clipping against the
first window boundary. If the line defined by endpoints p and s (boundary) crosses this
window boundary, the intersection is calculated and passed to the next clipping stage. If p
is inside the window, it is passed to the next clipping stage. Any point that survives
clipping against all window boundaries is then entered into the output array of points. The
array firstPoint stores for each window boundary the first point flipped against that
boundary. After all polygon vertices have been processed, a closing routine clips lines
defined by the first and last points clipped against each boundary.

Shortcoming of Sutherlands -Hodgeman Algorithm
Convex polygons are correctly clipped by the Sutherland-Hodegeman algorithm, but
concave polygons may be displayed with extraneous lines. This occurs when the clipped
polygon should have two or more separate sections. But since there is only one output
vertex list, the last vertex in the list is always joined to the first vertex. There are several
things we could do to correct display concave polygons. For one, we could split the
concave polygon into two or more convex polygons and process each convex polygon
separately.

Another approach to check the final vertex list for multiple vertex points along any clip
window boundary and correctly join pairs of vertices. Finally, we could use a more
general polygon clipper, such as wither the Weiler-Atherton algorithm or the Weiler
algorithm described in the next section.

Weiler-Atherton Polygon Clipping

In this technique, the vertex-processing procedures for window boundaries are modified
so that concave polygons are displayed correctly. This clipping procedure was developed
as a method for identifying visible surfaces, and so it can be applied with arbitrary
polygon-clipping regions.

The basic idea in this algorithm is that instead of always proceeding around the polygon
edges as vertices are processed, we sometimes want to follow the window boundaries.
Which path we follow depends on the polygon-processing direction(clockwise or
counterclockwise) and whether the pair of polygon vertices currently being processed
represents an outside-to-inside pair or an inside-to-outside pair. For clockwise processing
of polygon vertices, we use the following rules:

 For an outside-top inside pair of vertices, follow the polygon boundary
 For an inside-to-outside pair of vertices, follow the window boundary in a clockwise

direction

In following figure, the processing direction in the Wieler-Atherton algorithm and the
resulting clipped polygon is shown for a rectangular clipping window.

15-Clipping-II VU

© Copyright Virtual University of Pakistan

153

Inside

1

2

3

4

5

6

7

8

go up

go up

16-3D Concepts VU

© Copyright Virtual University of Pakistan

154

Lecture No.16 3D Concepts

Welcome! You are about to embark on a journey into the wondrous world of three-
dimensional computer graphics. Before we take the plunge into esoteric 3D jargon and
mathematical principles (as we will in the next lectures), let’s have a look at what the
buzzword “3D” actually means.
We have heard the term “3D” applied to everything from games to the World Wide Web
to Microsoft’s new look for Windows XP. The term 3D is often confusing because games
(and other applications) which claim to be 3D, are not really 3D. In a 3D medium, each of
our eyes views the scene from slightly different angles. This is the way we perceive the
real world. Obviously, the flat monitors most of us use when playing 3D games 3D
applications can’t do this. However, some Virtual Reality (VR) glasses have this
capability by using a separate TV-like screen for each eye. These VR glasses may
become common place some years from now, but today, they are not the norm. Thus, for
present-day usage, we can define “3D to mean “something using a three-dimensional
coordinate system.”

A three-dimensional coordinate system is just a fancy term for a system that measures
objects with width, height, and depth (just like the real world). Similarly, 2-dimensional
coordinate systems measure objects with width and height --- ignoring depth properties
(so unlike the real world).

16-3D Concepts VU

© Copyright Virtual University of Pakistan

155

Shadow of a 3D object on paper
16.1 Coordinate Systems
Coordinate systems are the measured frames of reference within which geometry is
defined, manipulated and viewed. In this system, you have a well-known point that serves
as the origin (reference point), and three lines(axes) that pass through this point and are
orthogonal to each other (at right angles – 90 degrees).

With the Cartesian coordinate system, you can define any point in space by saying how
far along each of the three axes you need to travel in order to reach the point if you start at
the origin.

Following are three types of the coordinate systems.
a) 1-D Coordinate Systems:

This system has the following characteristics:

• Direction and magnitude along a single axis, with reference to an origin

• Locations are defined by a single coordinate

• Can define points, segments, lines, rays

• Can have multiple origins (frames of reference) and transform coordinates among
them

16-3D Concepts VU

© Copyright Virtual University of Pakistan

156

b) 2-D Coordinate Systems:

• Direction and magnitude along two axes, with reference to an origin

• Locations are defined by x, y coordinate pairs

• Can define points, segments, lines, rays, curves, polygons, (any planar geometry)

• Can have multiple origins (frames of reference and transform coordinates among
them

c) 3-D Coordinate Systems:

• 3D Cartesian coordinate systems

• Direction and magnitude along three axes, with reference to an origin

• Locations are defined by x, y, z triples

• Can define cubes, cones, spheres, etc., (volumes in space) in addition to all one-
and two-dimensional entities

• Can have multiple origins (frames of reference) and transform coordinates among
them

16-3D Concepts VU

© Copyright Virtual University of Pakistan

157

16.2 Left-handed versus Right-handed

• Determines orientation of axes and direction of rotations

• Thumb = pos x, Index up = pos y, Middle out = pos z

• Most world and object axes tend to be right handed

• Left handed axes often are used for cameras

a) Right Handed Rule:
“Right Hand Rule” for rotations: grasp axis with right hand with thumb oriented in
positive direction, fingers will then curl in direction of positive rotation for that axis.

Right handed Cartesian coordinate system describes the relationship of the X,Y, and Z
in the following manner:

16-3D Concepts VU

© Copyright Virtual University of Pakistan

158

• X is positive to the right of the origin, and negative to the left.

• Y is positive above the origin, and negative below it.

• Z is negative beyond the origin, and positive behind it.

b) Left Handed Rule:

+Z

-Z

+X

+Y

East

North

West

Sout

Origin

-Z

+Z

+X

+Y

East

North

West

Sout

Origin

16-3D Concepts VU

© Copyright Virtual University of Pakistan

159

Left handed Cartesian coordinate system describes the relationship of the X, Y and Z
in the following manner:

• X is positive to the right of the origin, and negative to the left.

• Y is positive above the origin, and negative below it.

• Z is positive beyond the origin, and negative behind it.

Defining 3D points in mathematical notations
3D points can be described using simple mathematical notations

P = (X, Y, Z)

Thus the origin of the Coordinate system is located at point (0,0,0), while five units to
the right of that position might be located at point (5,0,0).

Y-up versus Z-up:

• z-up typically used by designers

• y-up typically used by animators

• orientation by profession supposedly derives from past work habits

• often handled differently when moving from application to application

16-3D Concepts VU

© Copyright Virtual University of Pakistan

160

16.3 Global and Local Coordinate Systems:

• Local coordinate systems can be defined with respect to global coordinate system

• Locations can be relative to any of these coordinate systems

• Locations can be translated or "transformed" from one coordinate system to
another.

16.4 Multiple Frames of Reference in a 3-D Scene:

• In fact, there usually are multiple coordinate systems within any 3-D screen

16-3D Concepts VU

© Copyright Virtual University of Pakistan

161

• Application data will be transformed among the various coordinate systems,
depending on what's to be accomplished during program execution

• Individual coordinate systems often are hierarchically linked within the scene

16.5 Defining points in C language structure
 You can now define any point in the 3D by saying how far east, up, and north it is
from your origin. The center of your computer screen ? it would be at a point such as
“1.5 feet east, 4.0 feet up, 7.2 feet north.” Obviously, you will want a data structure to
represent these points. An example of such a structure is shown in this code snippet:

typedef struct _POINT3D
{
 float x;

float y;
float z;

}POINT3D;

POINT3D screenCenter = {1.5, 4.0, 7.2};

16.6 The Polar Coordinate System
Cartesian systems are not the only ones we can use. We could have also described the
object position in this way: “starting at the origin, looking east, rotate 38 degrees
northward, 65 degrees upward, and travel 7.47 feet along this line. “As you can see, this
is less intuitive in a real world setting. And if you try to work out the math, it is harder to
manipulate (when we get to the sections that move points around). Because such polar
coordinates are difficult to control, they are generally not used in 3D graphics.
16.7 Using Multiple Coordinate Systems
As we start working with 3D objects, you may find that it is more efficient to work with
groups of points instead of individual single points. For example, if you want to model
your computer, you may want to store it in a structure such as that shown in this code
snippet:
typedef struct _CPU{

POINT3D center; // the center of the CPU, in World coordinates
POINT3D coord[8]; // the 8 corners of the CPU box relative to the center point

}CPU;

In next lectures we will learn how we can show 3D point on 2D computer screen.
16.8 Defining Geometry in 3-D
Here are some definitions of the technical names that will be used in 3D lectures.
Modeling: is the process of describing an object or scene so that we can construct an
image of it.
Points & Polygons:

16-3D Concepts VU

© Copyright Virtual University of Pakistan

162

• Points: three-dimensional locations (or coordinate triples)

• Vectors: - have direction and magnitude; can also be thought of as displacement

• Polygons: - sequences of “correctly” co-planar points; or an initial point and a
sequence of vectors

Primitives

Primitives are the fundamental geometric entities within a given data structure.

16-3D Concepts VU

© Copyright Virtual University of Pakistan

163

• We have already touched on point, vector and polygon primitives

• Regular Polygon Primitives - square, triangle, circle, n-polygon, etc.

• Polygon strips or meshes

• Meshes provide a more economical description than multiple individual polygons

For example, 100 individual triangles, each requiring 3 vertices, would require
100 x 3 or 300 vertex definitions to be stored in the 3-D database.

By contrast, triangle strips require n + 2 vertex definitions for any n number or
triangles in the strip. Hence, a 100 triangle strip requires only 102 unique vertex
definitions.

• Meshes also provide continuity across surfaces which is important for shading
calculations

• 3D primitives in a polygonal database

16-3D Concepts VU

© Copyright Virtual University of Pakistan

164

3D shapes are represented by polygonal meshes that define or approximate geometric
surfaces.

• With curved surfaces, the accuracy of the approximation is directly proportional to the
number of polygons used in the representation.

• More polygons (when well used) yield a better approximation.

• But more polygons also exact greater computational overhead, thereby degrading
interactive performance, increasing render times, etc.

Rendering - The process of computing a two dimensional image using a combination of
a three-dimensional database, scene characteristics, and viewing transformations. Various
algorithms can be employed for rendering, depending on the needs of the application.

Tessellation - The subdivision of an entity or surface into one or more non-overlapping
primitives. Typically, renderers decompose surfaces into triangles as part of the rendering
process.

Sampling - The process of selecting a representative but finite number of values along a
continuous function sufficient to render a reasonable approximation of the function for
the task at hand.

Level of Detail (LOD) - To improve rendering efficiency when dynamically viewing a
scene, more or less detailed versions of a model may be swapped in and out of the scene
database depending on the importance (usually determined by image size) of the object in
the current view.

16-3D Concepts VU

© Copyright Virtual University of Pakistan

165

Polygons and rendering

• Clockwise versus counterclockwise

Surface normal - a vector that is perpendicular to a surface and “outward” facing

• Surface normals are used to determine visibility and in the calculation of shading
values (among other things)

• Convex versus concave

• A shape is convex if any two points within the shape can be connected
with a straight line that never goes out of the shape. If not, the shape is
concave.

• Concave polygons can cause problems during rendering (e.g. tears, etc., in
apparent surface).

16-3D Concepts VU

© Copyright Virtual University of Pakistan

166

• Polygon meshes and shared vertices

• Polygons consisting of non-co-planar vertices can cause problems when rendering
(e.g. visible tearing of the surface, etc.)

• With quad meshes, for example, vertices within polygons can be inadvertently
transformed into non-co-planer positions during modeling or animation
transformations.

• With triangle meshes, all polygons are triangles and therefore all vertices within
any given polygon will be coplanar.

With polygonal databases:

• Explicit, low-level descriptions of geometry tend to be employed

• Object database files can become very large relative to more economical, higher
order descriptions.

• Organic forms or free-form surfaces can be difficult to model.

16.9 Surface models

Here is brief over view of surface models:

16-3D Concepts VU

© Copyright Virtual University of Pakistan

167

• Surfaces can be constructed from mathematical descriptions

• Resolution independent - surfaces can be tessellated at rendering with an
appropriate level of approximation for current display devices and/or viewing
parameters

• Tessellation can be adaptive to the local degree of curvature of a surface.

• Primitives

• Free-form surfaces can be built from curves

• Construction history, while also used in polygonal modeling, can be particularly
useful with curve and surface modeling techniques.

16-3D Concepts VU

© Copyright Virtual University of Pakistan

168

• Parameterization

• Curve direction and surface construction

• Surface parameterization (u, v, w) are used

o For placing texture maps, etc.

o For locating trimming curves, etc.

16-3D Concepts VU

© Copyright Virtual University of Pakistan

169

Metaballs (blobby surfaces)

• Potential functions (usually radially symmetric Gaussian functions) are used to
define surfaces surrounding points

Lighting Effects

Texture Mapping:

The texture mapping is of the following types that we will be studying in our coming
lectures on 3D:
1. Perfect Mapping:
2. Affine Mapping
3. Area Subdivision
4. Scan-line Subdivision
5. Parabolic Mapping
6. Hyperbolic Mapping
7. Constant-Z Mapping

17-3D Transformations I VU

© Copyright Virtual University of Pakistan

170

Lecture No.17 3D Transformations I

Definition of a 3D Point

A point is similar to its 2D counterpart; we simply add an extra component, Z, for the 3rd
axis:

Points are now represented with 3 numbers: <x, y, z>. This particular method of
representing 3D space is the "left-handed" coordinate system. In the left-handed system
the x axis increases going to the right, the y axis increases going up, and the z axis
increases going into the page/screen. The right-handed system is the same but with the z-
axis pointing in the opposite direction.

Distance between Two 3D Points

The distance between two points <Ax,Ay,Az> and <Bx,By,Bz> can be found by again
using the Pythagoras theorem:
dx = Ax-Bx
dy = Ay-By
dz = Az-Bz
distance = sqrt(dx*dx + dy*dy + dz*dz)
Definition of a 3D Vector

Like it's 2D counterpart, a vector can be thought of in two ways: either a point at <x,y,z>
or a line going from the origin <0,0,0> to the point <x,y,z>.

3D Vector addition and subtraction is virtually identical to the 2D case. You can add a 3D
vector <vx,vy,vz> to a 3D point <x,y,z> to get the new point <x',y',z'> like so:
x' = x + vx
y' = y + vy
z' = z + vz
Vectors themselves can be added by adding each of their components, or they can be
multiplied (scaled) by multiplying each component by some constant k (where k <> 0).
Scaling a vector by 2 (say) will still cause the vector to point in the same direction, but it
will now be twice as long. Of course you can also divide the vector by k (where k <> 0)
to get a similar result.

To calculate the length of a vector we simply calculate the distance between the origin
and the point at <x, y, z>:

17-3D Transformations I VU

© Copyright Virtual University of Pakistan

171

Length = | <x,y,z> - <0,0,0> |
 = sqrt((x-0)*(x-0) + (y-0)*(y-0) + (z-0)*(z-0))
 = sqrt(x*x + y*y + z*z)
Unit Vector

Often in 3D computer graphics you need to convert a vector to a unit vector, ie a vector
that points in the same direction but has a length of 1.

This is done by simply dividing each component by the length:
Let <x,y,z> be our vector, length = sqrt(x*x + y*y + z*z)
Unit vector = <x,y,z> = | x , y , z |
 length | length length length |
(Where length = |<x,y,z>|)

Note that if the vector is already a unit vector then the length will be 1, and the new
values will be the same as the old.

Definition of a Line

As in 2D, we can represent a line by it's endpoints (P1 and P2) or by the parametric
equation:
P = P1 + k * (P2-P1)
Where k is some scalar value between 0 and 1

Transformations:
 A static set of 3D points or other geometric shapes on screen is not very
interesting. You could just use a paint program to produce one of these. To make your
program interesting, you will want a dynamic landscape on the screen. You want the
points to move in the world coordinate system, and you even want the point-of-view
(POV) to move. In short, you want to model the real world. The process of moving points
in space is called transformation, and can be divided into translation, rotation and other
kind of transformations.

Translation
 Translation is used to move a point, or a set of points, linearly in space, for
example, you may want to move a point “3 meters east, -2 meters up, and 4 meters
north.” Looking at this textual description, you might think that this looks very much like
a Point3D, and you would be close. But the above does not require one critical piece of
information: it does not reference the origin. The above only encapsulates direction and
distance, not an absolute point in space. This called a vector and can be represented in a
structure identical to Point3D:

 struct Vector3D
 float x; distance along x axes
 float y; distance along y axes
 float z; distance along z axes

end struct

17-3D Transformations I VU

© Copyright Virtual University of Pakistan

172

Vector Addition
 You translate a point by adding a vector to it; you add points and vectors by
adding the components piecewise:

Point3D point = {0, 0, 0}
Vector3D vector = {10, -3, 2.5 }

Adding vector to point

point.x = point.x + vector.x;
point.y = point.y + vector.y;
point.z = point.z + vector.z;

Point will be now at the absolute point < 10,-3 2.5>. you could move it again:

point.x = point.x + vector.x;
point.y = point.y + vector.y;
point.z = point.z + vector.z;

And point would now be at the absolute point <20, -6, 5>.

In pure mathematical sense, you cannot add two points together – such an operation
makes no sense (what is Lahore plus Karachi?). However, you can subtract a point from
another in order to uncover the vector that would have to be added to the first to translate
it into the second:

Point3D p1,p2
Vector3D v;

Set p1 and p2 to the desired points
v.x = p2.x – p1.x
v.y = p2.y – p1.y
v.z = p2.z – p1.z

Now you can add v to p1, you would translate it into the point p2.

The following lists the operations you can do between points and vectors:

point – point => vector
point + point = point - (- point) => vector
vector – vector => vector
vector + vector => vector
point – vector = point + (-vector) => point
point + vector => point

17-3D Transformations I VU

© Copyright Virtual University of Pakistan

173

Multiplying: Scalar Multiplication

Multiplying a vector by a scalar (a number with no units), and could be coded with:

 Vector.x = Vector.x * scalarValue
 Vector.y = Vector.y * scalarValue
 Vector.z = Vector.z * scalarValue

If you had a vector with a length of 4 and multiplied it by 2.5, you would end up with a
vector of length 10 that points in the same direction the original vector pointed. If you
multiplied by -2.5 instead, you would still end up with a vector of length 10; but now it
would be pointing in the opposite direction of the original vector.

Multiplying: Vector Multiplication

You can multiply with vectors two other ways; both involve multiplying a vector by a
vector.

Dot Product

The dot product of two vectors is defined by the formula:
Vector A, B

A * B = A.x * B.x + A.y * B.y + A.z * B.z

The result of a dot product is a number and has units of A’s units times B’s units. Thus, if
you calculate the dot product for two vectors that both use feet for units, your answer will
be in square feet. However, in 3D graphics we usually ignore the units and just treat it
like a scalar.
Consider the following definition of the dot product that is used by physicists (instead of
mathematicians):

A * B = |A| * |B| * cos(theta)

Where theta is the angle between the two vectors

Remember that |v| represents the length of vector V and is a non-negative number; we can
replace the vector lengths above and end up with:

K = |A| * |B| (therefore k > = 0)

A * B = K * cos (theta)

Therefore:

17-3D Transformations I VU

© Copyright Virtual University of Pakistan

174

A * B => cos(theta)

Where “=>” means “directly correlates to.” Now, if you remember, the cos(theta)
function has the following properties:

cos(theta) > 0 iff theta is less than 90 degrees or greater than 270 degrees
cos(theta) < iff theta is greater than 90 degrees and less than 270 degrees
cos(theta) = 0 iff theta is 90 degrees or 270 degrees

We can extend this to the dot product of two vectors, since it directly correlates to the
angle between the two vectors:

A*B > 0 iff the angle between them is less than 90 or greater than 270 degrees
A*B < 0 iff the angle between them is greater than 90 and less than 270 degrees
A*B = 0 iff the angle between them is 90 or 270 degrees (they are orthogonal).

Use of Dot Product
 Assume you have a point of view at < px,py,pz>. It is looking along the vector
<vx,vy,vz>, and you have a point in space <x,y,z> you want to know if the point–of-view
can possible see the point, of if the point is “behind “ the POV, as shown in figure.

Point3D pov;
Vector3D povDir;
Point3D test;
Vector3D vTest
float dotProduct;
vTest.x = pov.x – test.x;
vTest.y = pov.y – test.y;
vTest.z = pov.z – test.z;

Direction of View
<vx,vy,vz>

Point of View
<px,py,pz>

Test vector
<tx, ty, tz>

Point
<x, y, z>

17-3D Transformations I VU

© Copyright Virtual University of Pakistan

175

dotProduct == vTest.x*povDir.x + vTest.y*povDir.y + vTest.z * povDir.z;

if(dotProduct > 0)
 point is “in front of “ POV
else if (dotProduct < 0)
 point is “behind” POV
else
 point is orthogonal to the POV direction

Cross Product
Another kind of multiplication that you can do with vectors is called the cross product
this is defined as:
Vector A, B

A X B = < A.y * B.z – A.z * B.y, A.z * B.x – A.x * B.z, A.x * B.y – A.y * B.x >

For physicists:

|A x B| = |A| * |B| sin(theta)

Where theta is the angle between the two vectors.

The above formula for A x B came from the determinate of order 3 of the matrix:

| X Y Z |
|A.x A.y A.z|
|B.x B.y B.z|

Transformations
The process of moving points in space is called transformation.
Types of Transformation
There are various types of transformations as we have seen in case of 2D transformations.
These include:

a) Translation
b) Rotation
c) Scaling
d) Reflection
e) Shearing

Translation
Translation is used to move a point, or a set of points, linearly in space. Since now we are
talking about 3D, therefore each point has 3 coordinates i.e. x, y and z. similarly, the
translation distances can also be specified in any of the 3 dimensions. These Translation
Distances are given by tx, ty and tz.
For any point P(x,y,z) after translation we have P′(x′,y′,z′) where

x′ = x + tx ,
y′ = y + ty ,

17-3D Transformations I VU

© Copyright Virtual University of Pakistan

176

z′ = z + tz
and (tx, ty , tz) is Translation vector

Now this can be expressed as a single matrix equation:
 P′ = P + T

Where:

3D Translation Example
We may want to move a point “3 meters east, -2 meters up, and 4 meters north.” What
would be done in such event?
Steps for Translation
Given a point in 3D and a translation vector, it can be translated as follows:

Point3D point = (0, 0, 0)
Vector3D vector = (10, -3, 2.5)

Adding vector to point
point.x = point.x + vector.x;
point.y = point.y + vector.y;
point.z = point.z + vector.z;

And finally we have translated point.

Homogeneous Coordinates
Analogous to their 2D Counterpart, the homogeneous coordinates for 3D translation can
be expressed as :

' 1 0 0
' 0 1 0

.
' 0 0 1

1 0 0 0 1 1

x

y

z

x t x
y t y
z t z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Abbreviated as:
 P’ = T (tx, ty, tz). P
On solving the RHS of the matrix equation, we get:

'
'
'

1 1

x

y

z

x x t
y y t
z z t

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Which shows that each of the 3 coordinates gets translated by the corresponding
translation distance.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z
y
x

P
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

'
'
'

'
z
y
x

P
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

t
t
t

T

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

177

Lecture No.18 3D Transformations II

Rotation
Rotation is the process of moving a point in space in a non-linear manner. More
particularly, it involves moving the point from one position on a sphere whose center is at
the origin to another position on the sphere. Why would you want to do something like
this? As we will show in later section, allowing the point of view to move around is only
an illusion – projection requires that the POV be at the origin. When the user thinks the
POV is moving, you are actually translating all your points in the opposite direction; and
when the user thinks the POV is looking down a new vector, you are actually rotating all
the points in the opposite direction; and when the user thinks the POV is looking down a
new vector, you are actually rotating all the points in the opposite direction.

Normalization: Note that this process of moving your points so that your POV is at the
origin looking down the +Z axis is called normalization.

Rotation a point requires that you know
the coordinates for the point, and
That you know the rotation angles.

You need to know three different angles: how far to rotate around the X axis(YZ
rotation, or “pitch”); how far to rotate around the Y axis (XZ plane, or “yaw”); and how
far to rotate around the Z axis (XY rotation, or “roll”). Conceptually, you do the three
rotations separately. First, you rotate around one axis, followed by another, then the last.
The order of rotations is important when you cascade rotations; we will rotate first around
the Z axis, then around the X axis, and finally around the Y axis.

To show how the rotation formulas are derived, let’s rotate the point <x,y,z> around the Z
axis with an angle of θ degrees.
ROLL:-

If you look closely, you should note that when we rotate around the Z axis, the Z element
of the point does not change. In fact, we can just ignore the Z – we already know what it
will be after the rotation. If we ignore the Z element, then we have the same case as if we
were rotating the two-dimensional point <x,y> through the angle θ.

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

178

This is the way to rotate a 2-D point. For simplicity, consider the pivot at origin and rotate
point P (x,y) where x = r cosФ and y = r sinФ
If rotated by θ then:
x′ = r cos(Ф + θ)
 = r cosФ cosθ – r sinФ sinθ
and
y′ = r sin(Ф + θ)
 = r cosФ sinθ + r sinФ cosθ

Replacing r cosФ with x and r sinФ with y, we have:
x′ = x cosθ – y sinθ
and
y′ = x sinθ + y cosθ
and
z′ = z (as it does not change when rotating around z-axis)

Now for rotation around other axes, cyclic permutation helps
form the equations for yaw and pitch as well:

In the above equations replacing x with y and y with z gives
equations for rotation around x-axis. Now in the modified
equations if we replace y with z and z with x then we get the
equations for rotation around y-axis.

X Y

Z

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

179

Rotation about x-axis (i.e. in yz plane):
x′ = x
y′ = y cosθ – z sinθ
z′ = y sinθ + z cosθ

Rotation about y-axis (i.e. in xz plane):
x′ = z sinθ + x cosθ
y ′ = y
z′ = z cosθ – x sinθ

Using Matrices to create 3D
A matrix is usually defined as a two-dimensional array of numbers. However, I think you
will find it much more useful to think of a matrix as an array of vectors. When we talk
about vectors, what it really mean is an ordered set of numbers (a tuple in mathematics
terms). We can use 3D graphics vectors and points interchangeably for this, since they are
both 3-tuples (or triples).

In general we work with “square” matrices. This means that the number of vectors in the
matrix is the same as the number of elements in the vectors that comprise it.
Mathematically, we show a matrix as a 2-D array of numbers surrounded by vertical
lines. For example:

|x1 y1 z1|
|x2 y2 z2|
|x3 y3 z3|

we designate this as a 3*3 matrix (the first 3 is the number of rows, and the second 3 is
the number of columns).
The “rows” of the matrix are the horizontal vectors that make it up; in this case, <x1,
y1,z1>, <x2,y2,z2>, and <x3,y3,z3>. In mathematics, we call the vertical vectors
“columns.” In this case they are < x1,x2,x3>, <y1,y2,y3> and <z1,z2,z3>.
The most important thing we do with a matrix is to multiply it by a vector or another
matrix. We follow one simple rule when multiplying something by a matrix: multiply
each column by a multiplicand and store this as an element in the result. Now as I said

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

180

earlier, you can consider each column to be a vector, so when we multiply by a matrix,
we are just doing a bunch of vector multiplies. So which vector multiply do you use-the
dot product, or the crosss product? You use the dot product.
We also follow on simple rule when multiplying a matrix by something: mubliply each ro
by the multiplier. Again, rows are just vectors, and the type of ultiplicaiton is the dot
product.
Let’s look at some examples. First, let’s assume that I have a matrix M, and I want to
multiply it by a point < x,y,z>, the first ting I know is that the vector rows of the matrix
must contain three elements (in other words, three columns). Why ? because I have to
multiply those rows by my point using a dot product, and to do that, the two vectors must
have the same number of element. Since I am going to get dot product for each row in M,
I will end up with a tuple that has one element for each row in M. as I stated earlier, we
work almost exclusively with square matrices, since I must have three columns, M will
also have three rows. Lets see:
 |1 0 0|
< x,y,z> * |0 1 0| ={<x,y,z>*< 1,0,0> ,<x,y,z><0,1,0>,<x,y,z> *<0,0,1>}={ x,y,z}
 |0 0 1|

Using Matrices for Rotation

Roll (rotate about the Z axis):

Pitch (rotate about the X axis):

Yaw (rotate about the Y axis):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

.

1000
0100
00cossin
00sincos

1
'
'
'

z
y
x

z
y
x

θθ
θθ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

.

1000
0cossin0
0sincos0
0001

1
'
'
'

z
y
x

z
y
x

θθ
θθ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

.

1000
0cos0sin
0010
0sin0cos

1
'
'
'

z
y
x

z
y
x

θθ

θθ

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

181

Example:
To show this happening, let's manually rotate the point <2,0,0> 45 degrees clockwise
about the z axis.

Now you can take an object and apply a sequence of transformations to it to make it do
whatever you want. All you need to do is figure out the sequence of transformations
needed and then apply the sequence to each of the points in the model.
As an example, let's say you want to rotate an object sitting at a certain point p around its
z axis. You would perform the following sequence of transformations to achieve this:

The first transformation moves a point such that it is situated about the world origin
instead of being situated about the point p. The next one rotates it (remember, you can
only rotate about the origin, not arbitrary points in space). Finally, after the point is
rotated, you want to move it back so that it is situated about p. The final translation
accomplishes this.

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

182

Rotation w.r.t. Arbitrary Axis:
If an object is required to be rotated with respect to a line acting as an axis of rotation,
arbitrarily, then the problem is addressed using multiple transformations. Let us assume
that such an arbitrary axis is parallel to one of the coordinate axes, say x-axis.

The first step in such case would be to translate the object such that the arbitrary axis
coincides with the x-axis.

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

183

The next step would be to rotate the object w.r.t. x-axis through angle θ.

Then the object is translated such that the arbitrary axis gets back to its original position.

And thus the job is done.
An interesting usage of compound transformations:-

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

184

Now, if the arbitrary axis is not parallel to any of the coordinate axes, then the problem is
slightly more difficult. It only adds to the number of steps required to get the job done.
Let P1, P2 be the line arbitrary axis.

In the first step, the translation takes place that coincides the point P1 to the origin. Points
after this step are P1’ and P2’.

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

185

Now the arbitrary axis is rotated such that the point P2’ rotates to become P2’’ and lies on
the z-axis.

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

186

In the next step the object of interest is rotated around z-axis.

Now the object of interest is rotated about origin such that the arbitrary axis is poised like
in above figure. Point P2’’ gets back to its previous position P2’.

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

187

Finally the translation takes place to position the arbitrary axis back to its original
position.

Scaling
Coordinate transformations for scaling relative to the origin are
 X` = X . Sx
 Y` = Y. Sy
 Z` = Z. Sz
Scaling an object with transformation changes the size of the object and reposition the
object relative to the coordinate origin. If the transformation parameters are not all equal,
relative dimensions in the object are changed.

Uniform Scaling : We preserve the original shape of an object with a uniform scaling (
Sx = Sy = Sz)

Differential Scaling : We do not preserve the original shape of an object with a
differential scaling (Sx <> Sy <> Sz)

Scaling relative to the coordinate Origin:

 Scaling transformation of a position P = (x, y, z) relative to the coordinate origin
can be written as

Scaling with respect to a selected fixed position:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

S
S

S

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

188

Scaling with respect to a selected fixed position (Xf,Yf,Zf) can be represented with the
following transformation sequence:

Translate the fixed point to the origin.
Scale the object relative to the coordinate origin
Translate the fixed point back to its original position

For these three transformations we can have composite transformation matrix by
multiplying three matrices into one

Reflection
A three-dimensional reflection can be performed relative to a selected reflection axis or
with respect to a selected reflection plane. In general, three-dimensional reflection
matrices are set up similarly to those for two dimensions. Reflections relative to a given
axis are equivalent to 180 degree rotations.

The matrix representation for this reflection of points relative to the X axis

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

.

1000
000
000
000

.

1000
100
010
001

f

f

f

z

y

x

f

f

f

Z
Y
X

S
S

S

Z
Y
X

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

1000
)1(00
)1(00
)1(00

fzz

fyy

fxx

ZSS
YSS
XSS

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
0010
0001

18-3D Transformations II VU

© Copyright Virtual University of Pakistan

189

The matrix representation for this reflection of points relative to the Y axis

The matrix representation for this reflection of points relative to the xy plane is

Shears
Shearing transformations can be used to modify object shapes.
As an example of three-dimensional shearing, the following transformation produces a
z-axis shear:

Parameters a and b can be assigned and real values. The effect of this transformation
matrix is to alter x and y- coordinate values by an amount that is proportional to the z
value, while leaving the z coordinate unchanged.

y-axis Shear

x-axis Shear

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
010
001

b
a

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
010
0010
001

c

a

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
010
001
0001

c
b

19-Projections VU

© Copyright Virtual University of Pakistan

190

Lecture No.19 Projections

For centuries, artists, engineers, designers, drafters, and architects have been facing
difficulties and constraints imposed by the problem of representing a three-dimensional
object or scene in a two-dimensional medium -- the problem of projection. The
implementers of a computer graphics system face the same challenge.

Projection can be defined as a mapping of point P(x,y,z) onto its image P`(x`,y`,z`) in the
projection plane or view plane, which constitutes the display surface. The mapping is
determined by a projection line called the projector that passes through P and intersects
the view plane.

There are two basic methods of projection

Parallel Projection
Perspective Projection

These methods are used to solve the basic problems of pictorial representations

We characterize each method and introduce the mathematical description of the
projection process respectively.
Taxonomy of Projection
We can construct different projections according to the view that is desired.
Following figure provides taxonomy of the families of perspective and parallel
projections. Some projections have names – cavalier, cabinet, isometric, and so on. Other
projections qualify the main type of projection – one principal vanishing–point
perspective and so forth.

19-Projections VU

© Copyright Virtual University of Pakistan

191

Parallel Projection
Parallel projection methods are used by drafters and engineers to create working drawings
of an object which preserves its scale and shape. The complete representation of these
details often requires two or more views (projections) of the object onto different view
planes.
In parallel projection, image points are found as the intersection of the view plane with a
projector drawn from the object point and having a fixed direction. The direction of
projection is the prescribed direction for all projections. Orthographic projections are
characterized by the fact that the direction of projection is perpendicular to the view
plane. When the direction of projection is parallel to any of the principal axes, this
produces the front, top, and side views of mechanical drawings (also referred to as multi
view drawings).
Axonometric projections are orthographic projections in which the direction of projection
is not parallel to any of the three principal axes. Non orthographic parallel projections
are called oblique parallel projection.

Mathematical Description of a Parallel Projection
Projection rays (projectors) emanate from a Center of Projection (COP) and intersect
Projection Plane (PP). The COP for parallel projectors is at infinity. The length of a line
on the projection plane is the same as the "true Length".

19-Projections VU

© Copyright Virtual University of Pakistan

192

There are two different types of parallel projections:
Orthographic
Oblique
1) Orthographic Projection
If the direction of projection is perpendicular to the projection plane then it is an
orthographic projection.

Look at the parallel projection of a point (x, y, z). (Note the left handed coordinate
system). The projection plane is at z = 0. x, y are the orthographic projection values and
xp, yp are the oblique projection values (at angle a with the projection plane)

19-Projections VU

© Copyright Virtual University of Pakistan

193

Look at orthographic projection: it is simple, just discard the z coordinates. Engineering
drawings frequently use front, side, top orthographic views of an object.
Axonometric orthographic projection
Orthographic projections that show more than one side of an object are called
axonometric orthographic projections.
Here are three orthographic views of an object.

There are three axonometric projections
isometric
Dimetric
Trimetric
1) Isometric
The most common axonometric projection is an isometric projection where the
projection plane intersects each coordinate axis in the model coordinate system at an
equal distance or the direction of projection makes equal angles with all of the three
principal axes

19-Projections VU

© Copyright Virtual University of Pakistan

194

The projection plane intersects the x, y, z axes at equal distances and the projection plane
Normal makes an equal angle with the three axes.
To form an orthographic projection xp = x, yp= y , zp = 0. To form different types e.g.,
Isometric, just manipulate object with 3D transformations.
2) Dimetric
The direction of projection makes equal angles with exactly two of the principal axes
3) Trimetric
The direction of projection makes unequal angles with the three principal axes
Oblique Projection
If the direction of projection is not perpendicular to the projection plane then it is an
oblique projection.

The projectors are not perpendicular to the projection plane but are parallel from the
object to the projection plane.
Transformation equations for an orthographic parallel projection are straightforward. If
the view plane is placed at position Zvp along the Z axis, Then any point (x,y,z) in
viewing coordinates is transformed to projection coordinates as:
 Xp = x
 Yp = y

19-Projections VU

© Copyright Virtual University of Pakistan

195

Where the original Z-coordinate value is preserved for the depth information needed in
depth cueing and visible-surface determination procedures.
 An oblique projection is obtained by projecting points along parallel lines that are
not perpendicular to the projection plane. In some applications packages, an oblique
projection vector is specified with two angles, alpha and phi, as shown in the figure. Point
(x,y,z) is projected to position(Xp,Yp) on the view plane. Orthographic projection
coordinates on the plane are (x,y). The oblique projection line from (x,y,z) to (Xp,Yp)
makes an angle alpha with the line on the projection plane that joins (Xp,Yp) and (x, y).
This line, of length L, is at an angle phi with the horizontal direction in the projection
plane. We can express the projection coordinates in terms of x, y, L, and phi as

cos(phi) = Xp – x / L
sin(phi) = Yp – y / L
Xp = x + L cos(phi)
Yp = y + L sin(phi)
Length L depends on the angle alpha and the z coordinate of the point to be projected:
 tan (alpha) = z / L
Thus,
 L = z * 1/ tan (alpha)
 L = z * L1
Where L1 is the inverse of tan(alpha), which is also the value of L when z = 1, we can
then write the oblique projection equations.
Xp = x + z (L1 cos(phi))
Yp = y + z (L1 sin(phi))

19-Projections VU

© Copyright Virtual University of Pakistan

196

The transformation matrix for producing any parallel projection onto the xy plane can be
written as

Now if Alpha = 90° (projection line is perpendicular to Projection Plane) then
tan (Alpha) = infinity => L1 = 0, so have an orthographic projection.
Two special cases of oblique projection
Cavalier
Cabinet
1) Cavalier
Alpha = 45°, tan (Alpha) = 1 => L1 = 1 this is a Cavalier projection such that all lines
perpendicular to the projection plane are projected with no change in length.

2) Cabinet
tan (Alpha) = 2, Alpha= 63.40°, L1 = 1 / 2
Lines which are perpendicular to the projection plane are projected at 1 / 2 length. This is
a Cabinet projection

20-Perspective Projections VU

© Copyright Virtual University of Pakistan

197

Lecture No.20 Perspective Projection

Now that you have a structure that can store a three dimensional point (Point3D), how do
you calculate the corresponding screen pixel? First, let’s look at what you are modeling.
Following figure shows how it would look.

This is a mathematical task as pictured. However, we can make it much simpler if we
impose the following requirements:

the point of View (POV) must lie on the Z axis, and
the screen plane must be parallel to the X-Y plane,
with the left and right edges of the screen parallel to the Y axis, and
the top and bottom edges of the screen parallel to the X axis,
for your view to come out correctly, you will also want the Z axis to pass through
the middle of the screen.
Why?
The POV represents the viewer’s eye, and we presume that the viewer will be
behind the center of the screen.

Note: We will use Left hand rule to describe 3D coordinate system.
Two common approaches are used with this;
1. The first approach is where the POV is at some point (0, 0, -z) and the screen lies on
the X-Y plane, graphically, this looks like figure given below:

20-Perspective Projections VU

© Copyright Virtual University of Pakistan

198

2. The second approach is where the POV lies at the origin, and the screen lies on a plane
at some +z coordinate, as shown in figure given below:

As we will see later, this second approach is much more convenient when we add features
making it possible for the POV to move around the 3D world or for objects to move
around in the world.
Calculating the screen pixel that correlates to a 3D point is now a matter of simple
geometry. From a viewpoint above the screen and POV (looking at the X-Z plane), the
geometry appears like the one shown in figure below:

20-Perspective Projections VU

© Copyright Virtual University of Pakistan

199

In geometric terms, we say that the triangle from A to B to S is similar to the triangle
from A to C to P because the three angles that make up the triangles are the same: the
angle from AB to AS is the same as the angle from AC to AP, the two right angles are
both 90 degrees, and therefore the remaining two angles are the same (the sum of the
angles in a triangle is always 180 degrees). What also holds true from similar triangles is
that the ratio of two sides holds between the similar triangles; this means that the ratio of
BS to AB is the same as the ratio of CP to AC. But we know what AB is-it is Screen.z!
and we know what AC is-it is point.z! and we know what CP is-it is point.x! Therefore:
|BS| / |AB| = |CP| / |AC|
|BS| = |AB| * |CP| / |AC|
|BS| = Screen.z * point.x / point.z

Screen.z is the distance d from the point of view at origin or the scaling factor.
Notice that |BS| is the length of the line segment that goes from B to S in world units. But
we normally address the screen with the point (0,0) at the top left, with +X pixels moving
to the right, and +Y pixels moving down—and not from the middle of the screen. And we
draw to the screen in pixel units – not our world units (unless, of course, 1.0 in your
world represents one pixel).

There is a final transformation that the points must go through in the transformation
process. This transformation maps 3D points defined with respect to the view origin (in
view space) and turns them into 2D points that can be drawn on the display. After
transforming and clipping the polygons that make up the scene such that they are visible
on the screen, the final step is to move them into 2D coordinates, since in order to
actually draw things on the screen you need to have absolute x, y coordinates on the
screen to draw.
The way this used to be done was without matrices, just as an explicit projection
calculation. The point (x,y,z) would be mapped to (x′, y′) using the following equations

20-Perspective Projections VU

© Copyright Virtual University of Pakistan

200

Where xCenter and yCenter were half of the width and height of the screen respectively,
these days more complex equations are used, especially since there is now the need to
make provisions for z-buffering. While you want x and y to still behave the same way,
you don't want to use a value as arbitrary as scale.
Instead, a better value to use in the calculation of the projection matrix is the horizontal
field of view (fov). The horizontal fov will be hard coded, and the code chooses a vertical
field of view that will keep the aspect ratio of the screen. This makes sense: You couldn't
get away with using the same field of view for both horizontal and vertical directions
unless the screen was square; it would end up looking vertically squashed.
Finally, you also want to scale the z values appropriately. In future, We'll teach you about
z-buffering, but for right now just make note of an important feature: They let you clip
out certain values of z-range. Given the two variables znear and zfar, nothing in front of znear
will be drawn, nor will anything behind zfar. To make the z-buffer work swimmingly on
all ranges of znear and zfar, you need to scale the valid z values to the range of 0.0 to 1.0.

The Perspective Projection Matrix
The aspect ratio of screen, width and height is calculated as

With these parameters, the following projection matrix can be made:

Just for a sanity check, check out the result of this matrix multiplication:

20-Perspective Projections VU

© Copyright Virtual University of Pakistan

201

This is almost the result wanted, but there is more work to be done. Remember that in
order to extract the Cartesian (x,y,z) coordinates from the vector, the homogenous w
component must be 1.0. Since, after the multiplication, it's set to z (which can be any
value), all four components need to be divided by z to normalize it (and have the
homogeneity factor equal 1). This gives the following Cartesian coordinate:

As you can see, this is exactly what was wanted. The width and height are still scaled by
values as in the above equation and they are still divided by z. The visible x and y pixels
are mapped to [−1,1], so before rasterization Application multiplies and adds the number
by xCenter or yCenter. This, in essence, maps the coordinates from [−1,1] to [0,width]
and [0,height].

With this last piece of the puzzle, it is now possible to create the entire transformation
pipeline. When you want to render a scene, you set up a world matrix (to transform an
object's local coordinate points into world space), a view matrix (to transform world
coordinate points into a space relative to the viewer), and a projection matrix (to take
those viewer-relative points and project them onto a 2D surface so that they can be drawn
on the screen). You then multiply the world, view, and projection matrices together (in
that order) to get a total matrix that transforms points from object space to screen space.

To draw a triangle, for example, you would take its local space points defining its three
corners and multiply them by the transformation matrix. Then you have to remember to
divide through by the w component. The points are now in screen space and can be filled
in using a 2D raster algorithm. Drawing multiple objects is a snap, too. For each object in
the scene all you need to do is change the world matrix and reconstruct the total
transformation matrix.
The Perspective Projection Matrix Used by Microsoft Direct3D
The projection matrix is typically a scale and perspective projection. The projection
transformation converts the viewing frustum into a cuboid shape. Because the near end of
the viewing frustum is smaller than the far end, this has the effect of expanding objects
that are near to the camera; this is how perspective is applied to the scene.
The Viewing Frustum
A viewing frustum is 3-D volume in a scene positioned relative to the viewport's camera.
The shape of the volume affects how models are projected from camera space onto the
screen. The most common type of projection, a perspective projection, is responsible for
making objects near the camera appear bigger than objects in the distance. For
perspective viewing, the viewing frustum can be visualized as a pyramid, with the camera

20-Perspective Projections VU

© Copyright Virtual University of Pakistan

202

positioned at the tip. This pyramid is intersected by a front and back clipping plane. The
volume within the pyramid between the front and back clipping planes is the viewing
frustum. Objects are visible only when they are in this volume.

If you imagine that you are standing in a dark room and looking through a square
window, you are visualizing a viewing frustum. In this analogy, the near clipping plane is
the window, and the back clipping plane is whatever finally interrupts your view—the
skyscraper across the street, the mountains in the distance, or nothing at all. You can see
everything inside the truncated pyramid that starts at the window and ends with whatever
interrupts your view, and you can see nothing else.

The viewing frustum is defined by fov (field of view) and by the distances of the front and
back clipping planes, specified in z-coordinates.

In this illustration, the variable D is the distance from the camera to the origin of the
space that was defined in the last part of the geometry pipeline—the viewing
transformation. This is the space around which you arrange the limits of your viewing
frustum. For information about how this D variable is used to build the projection matrix
The Matrix
In the viewing frustum, the distance between the camera and the origin of the viewing
transformation space is defined arbitrarily as D, so the projection matrix looks like:

20-Perspective Projections VU

© Copyright Virtual University of Pakistan

203

The viewing matrix translates the camera to the origin by translating in the z direction by
- D. The translation matrix is as follows:

Multiplying the translation matrix by the projection matrix (T*P) gives the composite
projection matrix. It looks like:

The following illustration shows how the perspective transformation converts a viewing
frustum into a new coordinate space. Notice that the frustum becomes cuboid and also
that the origin moves from the upper-right corner of the scene to the center.

In the perspective transformation, the limits of the x- and y-directions are -1 and 1. The
limits of the z-direction are 0 for the front plane and 1 for the back plane.
This matrix translates and scales objects based on a specified distance from the camera to
the near clipping plane, but it doesn't consider the field of view (fov), and the z-values that
it produces for objects in the distance can be nearly identical, making depth comparisons
difficult. The following matrix addresses these issues, and it adjusts vertices to account
for the aspect ratio of the viewport, making it a good choice for the perspective
projection.

20-Perspective Projections VU

© Copyright Virtual University of Pakistan

204

In this matrix, Zn is the z-value of the near clipping plane. The variables w, h, and Q have
the following meanings. Note that fovw and fovh represent the viewport's horizontal and
vertical fields of view, in radians.

For your application, using field-of-view angles to define the x- and y-scaling coefficients
might not be as convenient as using the viewport's horizontal and vertical dimensions (in
camera space). As the math works out, the following two formulas for w and h use the
viewport's dimensions, and are equivalent to the preceding formulas.

In these formulas, Zn represents the position of the near clipping plane, and the Vw and Vh
variables represent the width and height of the viewport, in camera space.

21-Triangles and Planes VU

© Copyright Virtual University of Pakistan

205

Lecture No.21 Triangles and Planes

Triangles

Triangles are to 3D graphics what pixels are to 2D graphics. Every PC hardware
accelerator under the sun uses triangles as the fundamental drawing primitive (well …
scan line aligned trapezoids actually, but that's a hardware implementation issue). When
you draw a polygon, hardware devices really draw a fan of triangles. Triangles "flesh out"
a 3D object, connecting them together to form a skin or mesh that defines the boundary
surface of an object. Triangles, like polygons, generally have an orientation associated
with them, to help in normal calculations. The ordering of the vertices goes clockwise
around the triangle. Figure below shows what a clockwise ordered triangle would look
like.

Figure: Three points in space, and the triangle connecting them
When defining a mesh of triangles that define the boundary of a solid, you set it up so that
all of the triangles along the skin are ordered clockwise when viewed from the outside.

It is impossible to see triangles that face away from you. (You can find this out by
computing the triangle's plane normal and performing a dot product with a vector from
the camera location to a location on the plane.)

Now let's move on to the code. To help facilitate using the multiple types, I'll implement
triangles structure. I only define constructors and keep the access public.
struct tri
 {

 type v[3]; // Array access useful for loops

 tri()
 {
 // nothing
 }

 tri(type v0, type v1, type v2)

21-Triangles and Planes VU

© Copyright Virtual University of Pakistan

206

 {
 v[0] = v0;
 v[1] = v1;
 v[2] = v2;
 }
 };
Strips and Fans

Lists of triangles are generally represented in one of three ways. The first is an explicit
list or array of triangles, where every three elements represent a new triangle. However,
there are two additional representations, designed to save bandwidth while sending
triangles to dedicated hardware to draw them. They are called triangle strips and triangle
fans.

Triangle fans, conceptually, look like the folding fans you see in Asian souvenir shops.
They are a list of triangles that all share a common point. The first three elements indicate
the first triangle. Then each new element is combined with the first element and the
current last element to form a new triangle. Note that an N-sided polygon can be
represented efficiently using a triangle fan

Figure below illustrates what I'm talking about.

Figure: A list of points composing a triangle fan
Triangles in a triangle strip, instead of sharing a common element with all other triangles
like a fan, only share elements with the triangle immediately preceding them. The first
three elements define the first triangle. Then each subsequent element is combined with
the two elements before it, in clockwise order, to create a new triangle. See Figure below
for an explanation of strips.

21-Triangles and Planes VU

© Copyright Virtual University of Pakistan

207

Figure: A list of points composing a triangle strip

Planes

The next primitive to discuss is the plane. Planes are to 3D what lines are in 2D; they're
n–1 dimensional hyperplanes that can help you accomplish various tasks. Planes are
defined as infinitely large, infinitely thin slices of space, like big pieces of paper.
Triangles that make up your model each exist in their own plane. When you have a plane
that represents a slice of 3D space, you can perform operations like classification of
points and polygons and clipping.

So how do you represent planes? Well it is best to build a structure from the equation that
defines a plane in 3D. The implicit equation for a plane is:

What do these numbers represent? The triplet <a,b,c> represents what is called the
normal of the plane. A normal is a unit vector that, conceptually speaking, sticks directly
out of a plane. A stronger mathematical definition would be that the normal is a vector
that is perpendicular to all of the points that lie in the plane.

The d component in the equation represents the distance from the plane to the origin. The
distance is computed by tracing a line towards the plane until you hit it. Finally the triplet
<x,y,z> is any point that satisfies the equation. The set of all points <x,y,z> that solve the
equation is exactly all the points that lie in the plane.

All of the pictures I'm showing you will be of the top-down variety, and the 3D planes
will be on edge, appearing as 2D lines. This makes figure drawing much easier.

Following are two examples of planes. The first has the normal pointing away from the
origin, which causes d to be negative (try some sample values for yourself if this doesn't
make sense). The second has the normal pointing towards the origin, so d is positive. Of
course, if the plane goes through the origin, d is zero (the distance from the plane to the
origin is zero). Figures 1 and Figure 2 provide some insight into this relation.

21-Triangles and Planes VU

© Copyright Virtual University of Pakistan

208

Figure 1: d is negative when the normal faces away from the origin

Figure 2: d is positive when it faces towards the origin
It's important to notice that technically the normal <a,b,c> does not have to be unit-length
for it to have a valid plane equation. But since things end up nicer if the normal is unit-
length.

Constructing a plane given three points that lie in the plane is a simple task. You just
perform a cross product between the two vectors made up by the three points

<point2 − point0>

<point1 − point0>

and find a normal for the plane. After generating the normal and making it unit length,
finding the d value for the plane is just a matter of storing the negative dot product of the
normal with any of the points. This holds because it essentially solves the plane equation
above for d. Of course plugging a point in the plane equation will make it equal 0, and
this constructor has three of them. Following has the code to construct a plane from three
points.

To calculate a plane from 3 given points we first calculate the normal. If we imagine the 3
points form three edges in the plane then we can take two of the edges and calculate the

21-Triangles and Planes VU

© Copyright Virtual University of Pakistan

209

cross-product between them. The resulting directional vector will be the normal, and then
we can plug any of the 3 known points into the plane equation to solve for k. For points
p1,p2 and p3 we get:
normal = (p1-p2) x (p3-p2)
k = normal * p1

Note that it is extremely important to keep track of which direction your points are stored
in. Let's take 3 points stored in clockwise direction in the x/y plane:

The normal to the plane these 3 points define is:

normal = (p1-p2) x (p3-p2)
 = (0,-1,0) x (1,-1,0)
 = <(-1)*0 - 0*(-1), 0*1 - 0*0, 0*(-1) - (-1)*1>
 = <0,0,1>
ie the z axis. If we were to store the points counter-clockwise the normal calculated would
be <0,0,-1>, which is still the z axis but in the "opposite" direction. It's important to keep
track of these things since we often need plane equations to be correct in order to
determine which side of a polygon an object (such as the view point) is on.
Constructing a plane from three points on the plane:

 Normal vector = n
 n = cross product ((b-a),(c-a))
 Normalize(n); find a unit vector

 d = - dot product(n,a)
If you already have a normal and also have a point on the plane, the first step can be
skipped.

21-Triangles and Planes VU

© Copyright Virtual University of Pakistan

210

Constructing a plane from a normal and a point on the plane:

 Normalize(n); find a unit vector
 d = - dot product(n,a)

This brings up an important point. If you have an n-sided polygon, nothing discussed up
to this point is forcing all of the points to be coplanar. However, problems can crop up if
some of the points in the polygon aren't coplanar. For example, when I discuss back-face
culling in a moment, you may misidentify what is actually behind the polygon, since there
won't be a plane that clearly defines what is in front of and what is behind the plane. That
is one of the advantages of using triangles to represent geometry—three points define a
plane exactly.
Defining Locality with Relation to a Plane
One of the most important operations planes let you perform is defining the location of a
point with respect to a plane. If you drop a point into the equation, it can be classified into
three cases: in front of the plane, in back of the plane, or coplanar with the plane. Front is
defined as the side of the plane the normal sticks out of.
Here, once again, precision will rear its ugly head. Instead of doing things the theoretical
way, having the planes infinitely thin, I'm going to give them a certain thickness of (you
guessed it) epsilon.
How do you orient a point in relation to a plane? Well, simply plug x, y, and z into the
equation, and see what you get on the right side. If you get zero (or a number close
enough to zero by plus or minus epsilon), then the point satisfied the equation and lies on
the plane. Points like this can be called coplanar. If the number is greater than zero, then
you know that you would have to travel farther along the origin following the path of the
normal than you would need to go to reach the plane, so the point must be in front of the
plane. If the number is negative, it must be behind the plane. Note that the first three
terms of the equation simplify to the dot product of the input vector and the plane normal.
Figure below has a visual representation of this operation.

Figure: Classifying points with respect to a plane
Once you have code to classify a point, classifying other primitives, like polygons,
becomes pretty trivial, as shown below. The one issue is there are now four possible
definition states when the element being tested isn't infinitesimally small. The element
may be entirely in front of the plane, entirely in back, or perfectly coplanar. It may also be

21-Triangles and Planes VU

© Copyright Virtual University of Pakistan

211

partially in front and partially in back. I'll refer to this state as splitting the plane. It's just a
term; the element isn't actually splitting anything.
Back-face Culling
Now that you know how to define a point with respect to a plane, you can perform back-
face culling, one of the most fundamental optimization techniques of 3D graphics.
Let's suppose you have a triangle whose elements are ordered in such a fashion that when
viewing the triangle from the front, the elements appear in clockwise order. Back-face
culling allows you to take triangles defined with this method and use the plane equation
to discard triangles that are facing away. Conceptually, any closed mesh, a cube for
example, will have some triangles facing you and some facing away. You know for a fact
that you'll never be able to see a polygon that faces away from you; they are always
hidden by triangles facing towards you. This, of course, doesn't hold if you're allowed to
view the cube from its inside, but this shouldn't be allowed to happen if you want to really
optimize your engine.
Rather than perform the work necessary to draw all of the triangles on the screen, you can
use the plane equation to find out if a triangle is facing towards the camera, and discard it
if it is not. How is this achieved? Given the three points of the triangle, you can define a
plane that the triangle sits in. Since you know the elements of the triangle are listed in
clockwise order, you also know that if you pass the elements in order to the plane
constructor, the normal to the plane will be on the front side of the triangle. If you then
think of the location of the camera as a point, all you need to do is perform a point-plane
test. If the point of the camera is in front of the plane, then the triangle is visible and
should be drawn.
There's an optimization to be had. Since you know three points that lie in the plane (the
three points of the triangle) you only need to hold onto the normal of the plane, not the
entire plane equation. To perform the back-face cull, just subtract one of the triangle's
points from the camera location and perform a dot product with the resultant vector and
the normal. If the result of the dot product is greater than zero, then the view point was in
front of the triangle. Figure below can help explain the point.

Figure: A visual example of back-face culling
In practice, 3D accelerators can actually perform back-face culling by themselves, so as
the triangle rates of cards increase, the amount of manual back-face culling that is
performed has steadily decreased. However, the information is useful for custom 3D
engines that don't plan on using the facilities of direct hardware acceleration.

21-Triangles and Planes VU

© Copyright Virtual University of Pakistan

212

Intersection between a Line and a Plane
This occurs at the point which satisfies both the line and the plane equations.
Line equation: p = org + u * dir (1)
Plane equation: p * normal - k = 0. (2)
Substituting (1) into (2) and rearranging we get:
(org + u * dir) * normal - k = 0
ie u * dir * normal = k - org * normal
ie u = (k - org * normal) / (dir * normal)
If (d * normal) = 0 then the line runs parrallel to the plane and no intersection occurs. The
exact point at which intersection does occur can be found by plugging u back into the line
equation in (1).

Clipping Lines
One thing that you'll need is the ability to take two points (a and b) that are on different
sides of a plane defining a line segment, and find the point making the intersection of the
line with the plane.
This is easy enough to do. Think of this parametrically. Point a can be thought of as the
point at time 0 and point b as the point at time 1, and the point of intersection you want to
find is somewhere between those two.
Take the dot product of a and b. Using them and the inverse of the plane's d parameter,
you can find the scale value (which is a value between 0 and 1 that defines the parametric
location of the particle when it intersects the plane). Armed with that, you just use the
scale value, plugging it into the linear parametric equation to find the intersection
location. Figure 5.17 shows this happening visually, and Listing 5.20 has the code.

Figure 5.17: Finding the intersection of a plane and a line
Listing 5.20: plane3::Split

inline const point3 plane3::Split(const point3 &a, const point3 &b) const
 {
 float aDot = (a * n);
 float bDot = (b * n);

 float scale = (-d - aDot) / (bDot - aDot);
 return a + (scale * (b - a));
 }

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

213

Lecture No.22 Triangle Rasterization

Introduction

High performance triangle rasterization is a very important topic in Computer Graphics in
today’s world.
Triangles are the foundation of modern real time graphics, and are by far the most popular
rendering primitive. Most computer games released in the last few years are almost
completely dependent on triangle rasterization performance. Recently the focus of
graphics performance optimization is beginning to shift to bandwidth requirements as
well as transformation and lighting. Nevertheless, rasterization performance is still a
factor, and this lecture will provide most of the basics of high performance triangle
rasterization. Also, it will go into detail about two often neglected rendering quality
improvements, sub-pixel and sub-texel accuracy. Also, smooth shading and texture
mapping techniques will be described.

Solid Fill Triangle Rendering

The first step in triangle rasterization is to be able to render a solid filled triangle. All
triangle drawing routines should fill the same pixels on the screen so it makes sense to
start with the simplest example and work up. The goal is to draw a filled triangle by
plotting pixels on the screen given three vertex points.
The first step is to sort the triangle vertices by y. Label the top vertex (x0 ,y0), the middle
vertex (x1 ,y1), and the bottom vertex (x2 ,y2). Now the triangle fill can be thought of as
two separate routines, filling the top half (the region between y0 and y1) and filling the
bottom half (the region between y1 and y2). Each of the fill routines consists of filling the
triangle region one scanline at a time, using the DDA algorithm to find the x values of the
beginning and the end of each pixel span to draw. The top half will uses DDA to find the
x values on edge01 and edge02. The bottom half uses DDA to find the x values on edge12
and edge02.

Sub-pixel Accuracy

The afore mentioned rasterization technique is works well when vertex coordinates are
integers, but there are some subtle changes that should be made to the DDA algorithm
when the vertex coordinates do not fall on integer bounds. In essence, sub-pixel accuracy
is a way of accounting for the fractional components of the vertex positions in the triangle
rasterizer. The changes that need to be made are mainly used to prevent jumpiness when
there are amounts of motion that are smaller than a pixel. The edges of the triangle reflect
the fractional change, and without sub-pixel accuracy, the entire triangle would jump
down a pixel at a time. Also, the calculations performed for sub-pixel accuracy allow for
quicker edge anti-aliasing.

The idea of sub-pixel accuracy is to pre-step the x coordinate of each of the edge DDAs
an amount corresponding to the fractional component of the y position of the vertex. For

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

214

notation sake we denote the upper vertex of an edge as xa,ya and the lower vertex as xb,yb.
For each edge the starting x coordinate for the DDA algorithm xs is obtained by a prestep
amount xprestep to the original x coordinate of the vertex:

The pre step amount ‘xf’ for x, is calculated by multiplying ∂x/∂y by the fix up distance, yf
. This fix up distance is just the distance of ya to the next lowest scan line. For
clarification purposes, here is some pseudo code for the sub-pixel accurate DDA, which
can be used to find endpoints for the pixel spans in our triangle rasterizer. This technique
can be used to draw sub-pixel accurate lines also.

SubPixDDA(float xa, float ya, float xb, float yb)
 {
 int yai,ybi, /*scanline range to draw*/
 y; /*iterator for scanline*/

 float xp, /*prestep in x */
 x, /*current x position*/
 yf, /*fractional distance in y */
 dxdy; /*amount to change x by per scanline (1/slope) */

 dxdy=(xb-xa)/(yb-ya); /*perform slope calculation using true */
/*vertex positions*/
 yai=ceiling(ya);
 ybi=ceiling(yb);

 yf=yai-ya;
 xp=(dxdy*yf);
 x=xa+xp;

 for(y=yai;y<ybi;y++) /*iterate over scanlines*/
 {
 /*do scanline stuff using x,y */
x+=dxdy;
 }
 }

Smooth Shaded Triangle Rasterization

So far we have described a method for solid filled triangle rasterization, but there are a
variety of other fill types that are use. Smooth shaded triangles can be used to
approximate the effects of lighting over a surface. They can be used for light falloff, or
can be used to give the appearance to a curved surface.
The idea behind smooth shading is to linearly interpolate the vertex colors over the
triangle being drawn. Luckily for us, we already have the tool to do this, DDA. In fact,
drawing smooth shaded polygons is not much more difficult than drawing solid filled
ones. The vertex colors must be interpolated along each edge of the triangle using DDA.
This gives us a separate pair of colors for the beginning and end of each pixel span for

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

215

each scan line. The last step that needs to be performed is to use DDA to interpolate the
colors across each pixel span.

To do smooth shading with RGB color, you must use separate DDA interpolation routines
for the red, green, and blue components of the color. Also note that inside the smooth
shading routine r, g, and b must be represented as a type with a fractional component
(type float is a good choice). To avoid visual artifacts it is recommended that you use the
sub-texel accuracy technique that is described further on in these notes.

Texture Mapped Triangle Rasterization

Another common triangle fill method is called texture mapping. Texture mapping is a
technique for interpolating an image over the triangle being rasterized. The image being
interpolated is known as a texture map, and each pixel in the texture map is known as a
texel. Because it allows for the use of images to represent a surface on an object, it has
the potential to greatly reduce the number of triangles needed to represent an object. In
addition to this, texture mapping can also be used to simulate the effects of complex
lighting conditions on an object.

This section describes bilinear texture mapping, which is the simplest technique to
implement. In order to perform bilinear texture mapping, each vertex contains a u, v
texture coordinate. This specifies the location in the texture map that this vertex
corresponds to. Given these texture coordinates, texture mapping isn’t much more
difficult than smooth shading. The texture coordinates u, v are interpolated over the
triangle using DDA just like the r, g, and b values are in smooth shading. The difference
is that the resulting u, v location for every pixel is used to lookup a color value in the
texture map image for the pixel to be drawn.

However, there is the problem how to deal with the fractional component of the u, v
values; looking up color values in the texture map requires integer coordinates.

One technique is to round the u, v values to the nearest integer. This is the quickest
approach, but produces a blocky looking triangle image when the texture map is small in
comparison to the triangle size. Most software based texture mapping routines used in
computer games take use this approach because of the speed advantages. However, the
majority of hardware based texture mapping routines has an option to do bilinear
sampling. Bilinear sampling uses the fractional component of the u, v coordinate to
perform a weighted average of 4 adjacent texel colors. The fractional components of u, v
are used to find the distance of u, v from the texels themselves. This distance is used as
the weighting, and the formula for the pixel color to be drawn cbilin_samp is:

Here is some pseudocode to do this:

color BilinearSampling(float u, float v, color texMap[256][256])

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

216

 {
 color c00,c01,c10,c11;
 int u0,u1,v0,v1;
 float ufrac,vfrac;

 u0=floor(u);
 u1=ceiling(u);
 v0=floor(u);
 v1=ceiling(u);
 ufrac=u-u0;
 vfrac=v=v0;

 c00=texMap[u0][v0];
 c01=texMap[u0][v1];
 c10=texMap[u1][v0];
 c11=texMap[u1][v1];

 return(vfrac * (ufrac*c11 + (1-ufrac)*c01) +
 (1-vfrac) * (ufrac*c10 + (1-ufrac)*c00));

 }

Sub-Texel Accuracy

The disparity between integer screen pixel locations and the mathematical equations for
the triangle also causes problems for texture mapping, and smooth shading. Any value
that is interpolated over the triangle such as r, g, and b for smooth shading and u and v for
texture mapping must take into account the fractional component of the vertex
information. Taking these fractional quantities into account is called sub-texel accuracy,
for the reason that it is used most commonly with texture mapping. In actuality, sub-texel
accuracy can be applied to any quantity interpolated over the triangle. Without sub-texel
accuracy, the texture will visibly jump around by a pixel when the triangle undergoes
small amounts of motion.

The sub-texel accurate DDA interpolators for texture mapping are very similar to the sub-
pixel accurate DDA routine presented earlier. For each edge of the triangle, the sub-texel
DDA for the interpolated values is identical to the sub-pixel DDA, when u or v is
substituted for x. However, for each scan line, the beginning and end x locations of the
pixel span have fractional components which need to be accounted for. To interpolate the
texels coordinates correctly over the pixel span for each scan line, a subtexel accurate
pixel span DDA is required. Luckily for us, this formulation is also virtually identical to
the sub-pixel DDA. All that need to be done is to substitute u or v for x in the original,
and substitute x for y in the original.

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

217

Flat Filling Triangles

Drawing triangle (or in general convex polygon, but as we discussed we will use only
triangles) is very simple. The basic idea of the line triangle drawing algorithm is as
follows.
For each scan line (horizontal line on the screen), find the points of intersection with the
edges of the triangle. Then, draw a horizontal line between intersections and do this for
all scan lines.
But how can we find these points quickly?
Using linear interpolation!

We have 3 vertices and we want to find coordinates of all points belonging to segments
determined by these vertices.
Assume we have segment given by points:
(xa,ya) and (xb,yb).
Our task is to find points: (xc,ya+1), (xd,ya+2), ... , (xm,yb-1), (xn,yb).
Notice that xa changes to xb in (yb-ya) steps.

We also have:
xa=xa+0*(xb-xa)/(yb-ya),

Xb = xa + (yb-ya) * (xb-xa) / (yb-ya)
and, in general, xi = xa + (yi – ya) * delta ,

where delta=(xb-xa)/(yb-ya).

The general function for linear interpolation is:

f(X) = A + X * ((B-A) / steps) where we slide from A to B in steps steps

Here is pseudo code for a triangle filling algorithm.

The coordinates of vertices are (A. x,A. y), (B. x,B. y), (C. x,C. y); we assume that A. y
<= B. y <= C. y (you should sort them first)

dx1,dx2,dx3 are deltas used in interpolation

Horizontal line draws horizontal segment with coordinates
(S. x, Y), (E. x, Y)

S. x, E. x are left and right x-coordinates of the segment we have to draw

S = A means that S. x = A. x; S. y = A. y;

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

218

if (B.y - A.y > 0) dx1 = (B.x-A.x) / (B.y-A.y)
else dx1=0;

if (C.y - A.y > 0) dx2=(C.x-A.x)/(C.y-A.y)
else dx2=0;

if (C.y-B.y > 0) dx3=(C.x-B.x)/(C.y-B.y)
else dx3=0;

S = E = A

if(dx1 > dx2)
 {
 for(; S.y<=B.y; S.y++, E.y++, S.x+=dx2, E.x += dx1)
 horizontal line (S.x,E.x,S.y, E.x,color);
 E=B;
 for(;S.y<=C.y;S.y++,E.y++,S.x+=dx2,E.x+=dx3)
 horizontal line(S.x,E.x,S.y, E.x,color);
}
else
{
 for(;S.y<=B.y;S.y++,E.y++,S.x+=dx1,E.x+=dx2)
 horizontal line(S.x,E.x,S.y, E.x,color);
 S=B;
 for(;S.y<=C.y;S.y++,E.y++,S.x+=dx3,E.x+=dx2)
 horizontal line(S.x,E.x,S.y, E.x,color);
}

I ought to explain what is the comparision dx1 > dx2 for. It's optimization trick: in the
horizontal line routine, we don't need to compare the x's (S.x is always less than or equal
to E.x).

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

219

Gouraud Shading

The idea of gouraud and flat triangle is nearly the same. Gouraud takes only three
parameters more (the color value of each of the vertices), and the routine just interpolates
among them drawing a beautiful, shaded triangle.
You can use 256-colors mode, in which vertices' colors are simply indices to palette or hi-
color mode (recommended).

Flat triangle interpolated only one value (x in connection with y), 256 colors gouraud
needs three (x related to y, color related to y, and color related to x), hi-color gouraud
needs seven (x related to y, red, green and blue components of color related to y, and
color related to x (also three components))

Drawing a gouraud triangle, we add only two parts to the flat triangle routine. The
horizline routine gets a bit more complicated due to the interpolation of the color value
related to x but the main routine itself remains nearly the same.

We'll give you a full gouraud routine because good pseudo code is better than the best
description:
the coordinates of vertices are (A.x,A.y), (B.x,B.y), (C.x,C.y) we assume that
A.y<=B.y<=C.y (you should sort them first)
vertex A has color (A.r,A.g,A.b), B (B.r,B.g,B.b), C (C.r,C.g,C.b), where X.r is color's
red component, X.g is color's green component and X.b is color's blue component
dx1,dx2,dx3 are deltas used in interpolation of x-coordinate
dr1,dr2,dr3, dg1,dg2,dg3, db1,db2,db3 are deltas used in interpolation of color's
components
putpixel(P) plots a pixel with coordinates (P.x,P.y) and color (P.r,P.g,P.b)
S=A means that S.x=A.x; S.y=A.y; S.r=A.r; S.g=A.g; S.b=A.b;

Drawing triangle:

if (B.y-A.y > 0) {
 dx1=(B.x-A.x)/(B.y-A.y);
 dr1=(B.r-A.r)/(B.y-A.y);
 dg1=(B.g-A.g)/(B.y-A.y);
 db1=(B.b-A.b)/(B.y-A.y);
 } else
 dx1=dr1=dg1=db1=0;

 if (C.y-A.y > 0) {
 dx2=(C.x-A.x)/(C.y-A.y);
 dr2=(C.r-A.r)/(C.y-A.y);
 dg2=(C.g-A.g)/(C.y-A.y);

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

220

 db2=(C.b-A.b)/(C.y-A.y);
 } else
 dx2=dr2=dg2=db2=0;

 if (C.y-B.y > 0) {
 dx3=(C.x-B.x)/(C.y-B.y);
 dr3=(C.r-B.r)/(C.y-B.y);
 dg3=(C.g-B.g)/(C.y-B.y);
 db3=(C.b-B.b)/(C.y-B.y);
 } else
 dx3=dr3=dg3=db3=0;

 S=E=A;
 if(dx1 > dx2) {
 for(;S.y<=B.y;S.y++,E.y++) {
 if(E.x-S.x > 0) {
 dr=(E.r-S.r)/(E.x-S.x);
 dg=(E.g-S.g)/(E.x-S.x);
 db=(E.b-S.b)/(E.x-S.x);
 } else
 dr=dg=db=0;
 P=S;
 for(;P.x < E.x;P.x++) {
 putpixel(P);
 P.r+=dr; P.g+=dg; P.b+=db;
 }
 S.x+=dx2; S.r+=dr2; S.g+=dg2; S.b+=db2;
 E.x+=dx1; E.r+=dr1; E.g+=dg1; E.b+=db1;
 }

 E=B;
 for(;S.y<=C.y;S.y++,E.y++) {
 if(E.x-S.x > 0) {
 dr=(E.r-S.r)/(E.x-S.x);
 dg=(E.g-S.g)/(E.x-S.x);
 db=(E.b-S.b)/(E.x-S.x);
 } else
 dr=dg=db=0;
 P=S;
 for(;P.x < E.x;P.x++) {
 putpixel(P);
 P.r+=dr; P.g+=dg; P.b+=db;
 }
 S.x+=dx2; S.r+=dr2; S.g+=dg2; S.b+=db2;
 E.x+=dx3; E.r+=dr3; E.g+=dg3; E.b+=db3;
 }
 } else {
 for(;S.y<=B.y;S.y++,E.y++) {
 if(E.x-S.x > 0) {
 dr=(E.r-S.r)/(E.x-S.x);

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

221

 dg=(E.g-S.g)/(E.x-S.x);
 db=(E.b-S.b)/(E.x-S.x);
 } else
 dr=dg=db=0;

 P=S;
 for(;P.x < E.x;P.x++) {
 putpixel(P);
 P.r+=dr; P.g+=dg; P.b+=db;
 }
 S.x+=dx1; S.r+=dr1; S.g+=dg1; S.b+=db1;
 E.x+=dx2; E.r+=dr2; E.g+=dg2; E.b+=db2;
 }

 S=B;
 for(;S.y<=C.y;S.y++,E.y++) {
 if(E.x-S.x > 0) {
 dr=(E.r-S.r)/(E.x-S.x);
 dg=(E.g-S.g)/(E.x-S.x);
 db=(E.b-S.b)/(E.x-S.x);
 } else
 dr=dg=db=0;

 P=S;
 for(;P.x < E.x;P.x++) {
 putpixel(P);
 P.r+=dr; P.g+=dg; P.b+=db;
 }
 S.x+=dx3; S.r+=dr3; S.g+=dg3; S.b+=db3;
 E.x+=dx2; E.r+=dr2; E.g+=dg2; E.b+=db2;
 }
 }

I hope you are familiar with idea of interpolation now.

Textured Triangles

We can also apply any bitmap on triangle for filling it.
I'll show you the idea of linear (or 'classical') texture mapping (without perspective
correction). Linear mapping works pretty well (read: fast) in some scenes, but perspective
correction is in some way needed in most 3D systems.
Again we're using the idea of interpolation: now we'll code a texture triangle filler. And
again the idea is perfectly the same, only two more values to interpolate, that is five
values total. In texture mapping, we interpolate x, u, and v related to y, and u and v
related to x (u and v are coordinates in the 2D bitmap space). The situation is maybe
easier to understand by looking at the following picture:

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

222

The left triangle is the triangle which is drawn onto the screen. There's a single scanline
(one call to the horizline routine) pointed out as an example. The triangle on the right is
the same triangle in the bitmap space, and there's the same scanline drawn from another
point of view into it, too. So we need just to interpolate, interpolate, and once more
interpolate in texture filler - an easy job if you've understood the idea of gouraud filler.
An optimization trick: the color deltas in gouraud and (u,v) coordinate deltas in texture
remain constant, so we need to calculate them only once per polygon. Let's take the u
delta in linear texturing as an example. Assume, that dx2<=dx3 (we are using the same
symbols like in flat and gouraud filler). As we know, we need to interpolate S.u to E.u in
the horizline routine in (S.x-E.x) steps. We are in the need of a u delta (du) which would
be the same for the whole polygon. So instead of calculating in each scanline this:

du = (E.u-S.u) / (E.x-S.x),
we do like this in the setup part of the polygon routine: We know that
S.x = Ax + (B.y - A.y) * dx1,
S.u = A.u + (B.y-A.y) * du1,
E.x = B.x = A.x + (B.y-A.y) * dx2,
E.u = B.u = A.u + (B.y-A.y) * du2,
When
y = B.y (when y is the y-coordinate of the second vertex).
When we place the values of the variables S.u,E.u,S.x and E.x (above) to the u delta
statement,

du = (E.u-S.u) / (E.x-S.x),

we get the following statement as a result:

 [A.u+(B.y-A.y)*du2] - [A.u+(B.y-A.y)*du1]
 du = ---
 [A.x+(B.y-A.y)*dx2] - [A.x+(B.y-A.y)*dx1]

 (B.y-A.y)*(A.u-A.u+du2-du1)
 du = ---------------------------
 (B.y-A.y)*(A.x-A.x+dx2-dx1)

 du2-du1
 du = -------
 dx2-dx1

22-Triangle Rasterization VU

© Copyright Virtual University of Pakistan

223

 outerUdelta2-outerUdelta1
 innerUdelta = --------------------------------
 outerXdelta2-outerXdelta1
Nice! But what if dx2 = dx1? This of course means that the polygon is just one line, so du
doesn't need any specific value; zero does the job very well.
Note! I find it hard to get good results using fixed point math because of inadequate
precision.

Environmental Mapping

As I said in 'shading' part, the way demos do environment mapping is very simple. Take
the X and Y components of your pseudo-normal vectors (perpendicular to vertices), and
use them to index your texture map!

Your formulae would be:
U = N.x * 128 + 127
V = N.y * 128 + 127 (assuming 256x256 texture maps).
Or in general
U = N.x * (width / 2) + (width / 2) - 1
V = N.y * (height / 2) + (height / 2) - 1

Using texturing and shading at the same time is quite straightforward to implement: the
basic idea being that we just interpolate the values of both texture and shade and blend
them in a suitable ratio (alpha-blending).

23-Lighting I VU

© Copyright Virtual University of Pakistan

224

Lecture No.23 Lighting I

MATHEMATICS OF COLOR IN COMPUTER GRAPHICS

It is important to understand how color is represented in computer graphics so that we can
manipulate it effectively. A color is usually represented in the graphics pipeline by a
three-element vector representing the intensities of the red, green, and blue components,
or for a more complex object, by a four-element vector containing an additional value
called the alpha component that represents the opacity of the color. Thus we can talk
about rgb or rgba colors and mean a color that's made up of either three or four elements.
There are many different ways of representing the intensity of a particular color element.
Colors can also be represented as floating point values in the range [0,1].
Nowadays every PC we can buy has hardware that can render images with thousands or
millions of individual colors. Rather than have an array with thousands of color entries,
the images instead contain explicit color values for each pixel. A 16-bit display is named
since each pixel in a 16-bit image is taken up by 16 bits (2 bytes): 5 bits of red
information, 6 bits of green information, and 5 bits of blue information. Incidentally, the
extra bit (and therefore twice as much color resolution) is given to green because our eyes
are more sensitive to green. A 24-bit display, of course, uses 24 bits, or 3 bytes per pixel,
for color information. This gives 1 byte, or 256 distinct values each, for red, green, and
blue. This is generally called true color, because 2563 (16.7 million) colors is about as
much as your eyes can discern, so more color resolution really isn't necessary, at least for
computer monitors.

Finally, there is 32-bit color, something seen on most new graphics cards. Many 3D
accelerators keep 8 extra bits per pixel around to store transparency information, which is
generally referred to as the alpha channel, and therefore take up 4 bytes, or 32 bits, of
storage per pixel. Rather than re-implementing the display logic on 2D displays that don't
need alpha information, these 8 bits are usually just wasted.
Representing Color
Before we can go about giving color to anything in a scene, we need to know how to
represent color! Usually we use the same red, green, and blue (rgb) channels discussed
above, but for this there will also be a fourth component called alpha. The alpha
component stores transparency information about a surface. Practically we will use two
structures to ease the color duties: color3 and color4. They both use floating-point values
for their components; color3 has red, green, and blue, while color4 has the additional
fourth component of alpha in there.

Colors aren't like points—they have a fixed range. Each component can be anywhere
between 0.0 and 1.0 (zero contribution of the channel or complete contribution). If
performing operations on colors, such as adding them together, the components may rise
above 1.0 or below 0.0.

23-Lighting I VU

© Copyright Virtual University of Pakistan

225

The code for color4 appears below.
The color4 structure

 struct color4
 {
 union {
 struct
 {
 float r, g, b, a; // Red, Green, and Blue color data
 };
 float c[4];
 };

 color4(){}

 color4(float inR, float inG, float inB, float inA) :
 r(inR), g(inG), b(inB), a(inA)
 {
 }

 color4(const color3& in, float alpha = 1.f)
 {
 r = in.r;
 g = in.g;
 b = in.b;
 a = alpha;
 }

 color4(unsigned long color)
 {
 b = (float)(color&255) / 255.f;
 color >>= 8;
 g = (float)(color&255) / 255.f;
 color >>= 8;
 r = (float)(color&255) / 255.f;
 color >>= 8;
 a = (float)(color&255) / 255.f;
 }

 unsigned long MakeDWord()
 {
 unsigned long iA = (int)(a * 255.f) << 24;
 unsigned long iR = (int)(r * 255.f) << 16;
 unsigned long iG = (int)(g * 255.f) << 8;
 unsigned long iB = (int)(b * 255.f);
 return iA | iR | iG | iB;
 }

 // if any of the values are >1, cap them.

23-Lighting I VU

© Copyright Virtual University of Pakistan

226

 void Saturation()

 {
 if(r > 1)
 r = 1.f;
 if(g > 1)
 g = 1.f;
 if(b > 1)
 b = 1.f;
 if(a > 1)
 a = 1.f;
 if(r < 0.f)
 r = 0.f;
 if(g < 0.f)
 g = 0.f;
 if(b < 0.f)
 b = 0.f;
 if(a < 0.f)
 a = 0.f;
 }

};

We should also point out that when dealing with colors, particularly with some of the
subtleties that we'll be getting into with lights and shades, we should understand the
gamut of the target device. This is where our beautiful clean mathematics meets the real
world. The gamut of a device is simply the physical range of colors the device can
display. Typically, a high-quality display has a better gamut than a cheap one. A good
printer has a gamut that is significantly different from that of a monitor. If we are
interested in getting some color images for printing, we shall have to do some
manipulation on the color values to make the printed image look like the one our program
generated on the screen. We should also be aware that there are color spaces other than
the RGB color space. HSV (hue, saturation, and value) is one that's typically used by
printers, for example.

WHY WE MIGHT WANT 128-BIT COLOR

In one of the early magazines articles of Mike Abrash [ABRASH 1992], he tells a story
about going from a 256-color palette to hardware that supported 256 levels for each RGB
color–16 million colors! What would we do with all those colors? He goes on to tell of a
story by Sheldon Linker at the eighth Annual Computer Graphics Show on how the folks
at the Jet Propulsion Lab back in the 1970s had a printer that could print over 50 million
distinct colors. As a test, they printed out words on paper where the background color was
only one color index from the word's color. To their surprise, it was easy to discern the
words—the human eye is very sensitive to color graduations and edge detection. The JPL
team then did the same tests on color monitors and discovered that only about 16 million
colors could be distinguished. It seems that the eye is (not too surprisingly) better at
perceiving detail from reflected light (such as from a printed page) than from emissive
light (such as from a CRT). The moral is that the eye is a lot more perceptive than you

23-Lighting I VU

© Copyright Virtual University of Pakistan

227

might think. Twenty four-bits of color really is not that much range, particularly if we are
performing multiple passes. Round-off error can and will show up if we aren't careful!

An example of the various gamuts is shown in the figure below. The CIE diagrams are
the traditional way of displaying perceived color space, which, we should note, is very
different from the linear color space used by today's graphics hardware. The colored area
is the gamut of the human eye. The gamut of printers and monitors are subsets of this
gamut.

Figure 1: The 1931 CIE diagram shows the gamut of the eye and the lesser gamut of
output devices.

Multiplying Color Values

First we need to be aware of how to treat colors. The calculation of the color of a
particular pixel depends, for example, on the surface's material properties that we've
programmed in, the color of the ambient light (lighting model), the color of any light
shining on the surface (perhaps of the angle of the light to the surface), the angle of the
surface to the viewpoint, the color of any fog or other scattering material that's between
the surface and the viewpoint, etc. No matter how you are calculating the color of the
pixel, it all comes down to color calculations, at least on current hardware, on rgb or
rgba vectors where the individual color elements are limited to the [0,1] range.
Operations on colors are done piecewise–that is, even though we represent colors as rgb
vectors, they aren't really vectors in the mathematical sense. Vector multiplication is
different from the operation we perform to multiply color. We'll use the symbol to
indicate such piecewise multiplication.
Colors are multiplied to describe the interaction between a surface and a light source. The
colors of each are multiplied together to estimate the reflected light color–this is the color
of the light that this particular light reflects off this surface. The problem with the

23-Lighting I VU

© Copyright Virtual University of Pakistan

228

standard rgb model is just that we're simulating the entire visible spectrum by three colors
with a limited range.
Let's start with a simple example of using reflected colors. Later on we will discuss on
lighting, we'll discover how to calculate the intensity of a light source, but for now, just
assume that we've calculated the intensity of a light, and it's a value called id. This
intensity of our light is represented by, say, a nice lime green color.

Thus

Let's say we shine this light on a nice magenta surface given by cs.

So, to calculate the color contribution of this surface from this particular light, we
perform a piecewise multiplication of the color values.

Note: Piecewise multiplication is denoted by that is element-by-element
multiplication, used in color operations, where the vector just represents a convenient
notation for an array of scalars that are operated on simultaneously but independently.

This gives us the dark plum color shown in figure below. We should note that since the
surface has no green component, that no matter what value we used for the light color,
there would never be any green component from the resulting calculation. Thus a pure
green light would provide no contribution to the intensity of a surface if that surface
contained a zero value for its green intensity. Thus it's possible to illuminate a surface
with a bright light and get little or no illumination from that light. We should also note
that using anything other than a full-bright white light [1,1,1] will involve multiplication
of values less than one, which means that using a single light source will only illuminate a
surface to a maximum intensity of its color value, never more. This same problem also
happens when a texture is modulated by a surface color. The color of the surface will be
multiplied by the colors in the texture. If the surface color is anything other than full
white, the texture will become darker. Multiple texture passes can make a surface very
dark very quickly.

23-Lighting I VU

© Copyright Virtual University of Pakistan

229

Figure 2: Multiplying (modulating) color values results in a color equal to or less than
(darker) the original two.

Given that using a colored light in a scene makes the scene darker, how do we make the
scene brighter? There are a few ways of doing this. Given that color multiplication will
never result in a brighter color, it's offset a bit since we end up summing all the light
contributions together, which, as we'll see in the next section, brings with it its own
problems. But if we are just interested in increasing the brightness on one particular light
or texture, one way is to use the API (Library routines e.g. OpenGL or DirectX) to
artificially brighten the source–this is typically done with texture preprocessing. Or, we
can artificially brighten the source, be it a light or a texture, by adjusting the values after
we modulate them.

Dealing with Saturated Colors

On the other hand, what if we have too much contribution to a color? While the colors of
lights are modulated by the color of the surface, each light source that illuminates the
surface is added to the final color. All these colors are summed up to calculate the final
color. Let's look at such a problem. We'll start with summing the reflected colors off a
surface from two lights. The first light is an orange color and has rgb values
[1.0,0.49,0.0], and the second light is a nice light green with rgb values [0.0,1.0,0.49].
Summing these two colors yields [1.0, 1.49, 0.49], which we can't display because of the
values larger than one figure below shows.

Figure 3: Adding colors can result in colors that are outside the displayable range.

So, what can be done when color values exceed the range that the hardware can display?
It turns out that there are three common approaches [HALL 1990].
Clamping the color values is implemented in hardware, so for shaders (technology used in
today computer graphics for lighting and shading), it's the default, and it just means that
we clamp any values outside the [0,1] range. Unfortunately, this results in a shift in the
color.
The second most common approach is to scale the colors by the largest component. This
maintains the color but reduces the overall intensity of the color.
The third is to try to maintain the intensity of the color by shifting (or clipping) the color
toward pure bright white by reducing the colors that are too bright while increasing the
other colors and maintaining the overall intensity. Since we can't see what the actual color
for (figure above) is, let's see what color each of these methods yields (figure below).

23-Lighting I VU

© Copyright Virtual University of Pakistan

230

Figure 4: The results of three strategies for dealing with the same oversaturated color.

As we can see, we get three very different results. In terms of perceived color, the scaled
is probably the closest though it's darker than the actual color values. If we weren't
interested in the color but more in terms of saturation, then the clipped color is closer.
Finally, the clamped value is what we get by default, and as you can see, the green
component is biased down so that we lose a good sense of the "greenness" of the color we
were trying to create.

24-Lighting II VU

© Copyright Virtual University of Pakistan

231

Lecture No.24 Lighting II

Clamping Color Values

Now it's perfectly fine to end up with an oversaturated color and pass this result along to
the graphics engine. What happens in the pipeline is an implicit clamping of the color
values. Any value that's greater than one is clamped to one, and any less than zero are
clamped to zero. So this has the benefit of requiring no effort on the part of the shader
(technology that is being used today for lighting and shading supported by Graphics
hardware) writer. Though this may make the rendering engine happy, it probably isn't
what we want. Intuitively, we'd think that shining orange and green lights on a white
surface would yield a strong green result. But letting the hardware clamp eradicates any
predominant effect from the green light. Clamping is fast, but it tends to lose fidelity in
the scene, particularly in areas where we would want and expect subtle changes as the
light intensities interact, but end up with those interactions getting eradicated because the
differences are all getting clamped out by the graphics hardware.

Scaling Color Values by Intensity
Instead of clamping, we might want to scale the color by dividing by the largest color
value, thus scaling the rgb values into the [0,1] range. In the example from figure 1, the
final color values were [1.0,1.49,0.49] meaning our largest color value was the green, at
1.49. Using this approach, we divide each element by 1.49, yielding a scaled color of
[0.671,1.0,0.329]. Thus any values greater than one are scaled to one, while any other
values are also scaled by the same amount. This maintains the hue and saturation but
loses the intensity. This might not be acceptable because the contrast with other colors is
lost, since contrast perception is nonlinear and we're applying a linear scaling. By looking
at the three results, we can see the large difference between the resulting colors.

Figure 1: Adding colors can result in colors that are outside the displayable range.

Shifting Color Values to Maintain Saturation

One problem with clamping or scaling colors is that they get darker (lose saturation). An
alternative to scaling is to maintain saturation by shifting color values. This technique is
called clipping, and it's a bit more complicated than color scaling or clamping. The idea is
to create a gray-scale vector that runs along the black-white axis of the color cube that's
got the same brightness as the original color and then to draw a ray at right angles to this
vector that intersects (i.e., clips) the original color's vector. We need to check to make
sure that the grayscale vector is itself within the [0,1] range and then to check the sign of
the ray elements to see if the color elements need to be increased or decreased. As we are
probably wondering, this can result in adding in a color value that wasn't in the original
color, but this is a direct result of wanting to make sure that the overall brightness is the

24-Lighting II VU

© Copyright Virtual University of Pakistan

232

same as the original color. And, of course, everything goes to hell in a handbasket if
we've got overly bright colors, which leave we with decisions about how to nudge the
gray-scale vector into the [0,1] range, since that means you can't achieve the input color's
saturation value. Then we're back to clamping or scaling again.

ColorSpace Tool

The ColorSpace tool is a handy tool that we can use to interactively add two colors
together to see the effects of the various strategies for handling oversaturated colors. We
simply use the sliders to select the rgb color values for each color. The four displays in
Figure 5 show the composite, unmodified values of the resulting color (with no color
square) and the clamped, clipped, and scaled color rgb values along with a color square
illustrating those color values.

Figure 2: The ColorSpace tool interface.

Negative Colors and Darklights

We may be wondering, if we can have color values greater than the range in intermediate
calculations, can we have negative values? Yes, we can! They are called "darklights" after
their description in an article [GLASSNER 1992] in Graphic Gems III. Since this is all
just math until we pass it back to the graphics hardware, we can pretty much do anything
we want, which is pretty much the idea behind programmable shaders (technology used
by today graphics hardware for lighting and shading)! Darklights are nothing more than
lights in which one or more of the color values are negative. Thus instead of contributing
to the overall lighting in a scene, we can specify a light that diminishes the overall
lighting in a scene. Darklights are used to eliminate bright areas when we're happy with
all the lighting in your scene except for an overly bright area. Darklights can also be used
to affect a scene if we want to filter out a specific rgb color. If we wanted to get a night

24-Lighting II VU

© Copyright Virtual University of Pakistan

233

vision effect, we could use a darklight with negative red and blue values, for example,
which would just leave the green channel.

Alpha Blending
Up to this point, we’ve been fairly dismissive of the mysterious alpha component that
rides along in all of the color4 structure. Now, we may finally learn its dark secrets. A lot
of power is hidden away inside the alpha component.

Loosely, the alpha component of the RGBA quad represents the opaqueness of a surface.
An alpha value of 0xFF (255) means the color is completely opaque, and an alpha value
of 0x00 (0) means the color is completely transparent. Of course, the value of the alpha
component is fairly meaningless unless we actually activate the alpha blending step. If we
want, we can set things up a different way, such as having 0x00(0) mean that the color is
completely opaque. The meaning of alpha is dependent on how we set up the alpha
blending step.

As you rasterize primitives, each pixel that we wish to change in the frame buffer gets
sent through the alpha blending step. That pixel is combined using blending factors to the
pixel that is currently in the frame buffer. We can add the two pixels together, multiply
them together, linearly combine them using the alpha component, and so forth. The name
"alpha blending" comes from the fact that generally the blending factors used are either
the alpha or the inverse of the alpha.

The Alpha Blending Equation
The equation that governs the behavior of the blending is defined as follows:

Final color is the color that goes to the frame buffer after the blending operation. Source
is the pixel we are attempting to draw to the frame buffer, generally one of the many
pixels in a triangle we have to draw. Destination is the pixel that already exists in the
frame buffer before we attempt to draw a new one. The source and destination blend
factors are variables that modify how the colors are combined together. The blend factors
are the components we have control over in the equation; we cannot modify the positions
of any of the terms or modify the operations performed on them.

For example, say we want an alpha blending equation to do nothing—to just draw the
pixel from the triangle and not consider what was already there at all. An equation that
would accomplish this would be:

As we can see, the destination-blending factor is 0 and the source-blending factor is 1.
This reduces the equation to:

A second example would be if we wanted to multiply the source and destination
components together before writing them to the frame buffer. This initially would seem
difficult, as in the above equation they are only added together. However, the blending
factors defined need not be constants; they can in fact be actual color components (or
inverses thereof). The equation setup would be:

24-Lighting II VU

© Copyright Virtual University of Pakistan

234

In this equation, the destination blend factor is set to the source color itself. Also, since
the source blend factor is set to zero, the left-hand side of the equation drops away and we
are left with:

Code Example
//This code will blend one image into the second

struct COLOR3{
 BYTE b;
 BYTE g;
 BYTE r;
};

 //Assume the two bitmaps have the same size

COLOR3 *p1; //pointer to first bitmap;
 COLOR3 *p2; //pointer to Second bitmap;

 int k=0;

 now we compute the blending factor av.

 float av=(float)(alpha&255)/255;// alphaValue in floating point

compute the new pixel by using the alpha blending formula.

 for(int i=firstBMP.Height; i>0; i--)
 {
 for(int j=0; j<firstBMP.Width; j++)
 {
 get the red color
 p1->r =(BYTE)((p1->r * (av))+ p2->r*(1.0f-(av)));
 get the green color
 p1->g =(BYTE)((p1->g * (av))+ p2->g*(1.0f-(av)));
 get the blue color
 p1->b =(BYTE)((p1->b * (av))+ p2->b*(1.0f-(av)));

 p1++;
 p2++;
 }
 }

send the new bitmap to display device

BlitData(displaydeviceContext, 0,0,firstImage.Width,firstImage.Height);

24-Lighting II VU

© Copyright Virtual University of Pakistan

235

Following images shows the result of the above code.

Figure 3: First Image

Figure 4: Second Image

Figure 5: Blended image

25-Mathiematics of Lighting and Shading Part I VU

© Copyright Virtual University of Pakistan

236

Lecture No.25 Mathematics of Lighting and Shading Part I

LIGHTS AND MATERIALS

In order to understand how an object's color is determined, we'll need to understand the
parts that come into play to create the final color. First, we need a source of illumination,
typically in the form of a light source in our scene. A light has the properties of color (an
rgb value) and intensity. Typically, these are multiplied to give scaled rgb values. Lights
can also have attenuation, which means that their intensity is a function of the distance
from the light to the surface. Lights can additionally be given other properties such as a
shape (e.g., spotlights) and position (local or directional), but that's more in the
implementation rather than the math of lighting effects. Given a source of illumination,
we'll need a surface on which the light will shine. Here's where we get interesting effects.
Two types of phenomena are important lighting calculations.

The first is the interaction of light with the surface boundary, and the second is the effect
of light as it gets absorbed, transmitted, and scattered by interacting with the actual
material itself. Since we really only have tools for describing surfaces of objects and not
the internal material properties, light—surface boundary interactions are the most
common type of calculation we'll see used, though we can do some interesting
simulations of the interaction of light with material internals.
Materials are typically richer in their descriptions in an effort to mimic the effects seen in
real light—material surface interactions. Materials are typically described using two to
four separate colors in an effort to catch the nuances of real-world light—material surface
interactions. These colors are the ambient, diffuse, specular, and emissive colors, with
ambient and specular frequently grouped together, and emissive specified only for objects
that generate light themselves. The reason there are different colors is to give different
effects arising from different environmental causes. The most common lights are as
follows:

Ambient lighting:
It is the overall color of the object due to the global ambient light level. This is the color
of the object when there's no particular light, just the general environmental illumination.
That is, the ambient light is an approximation for the global illumination in the
environment, and relies upon no light in the scene. It's usually a global value that's added
to every object in a scene.

Diffuse lighting:
It is the color of the object due to the effect of a particular light. The diffuse light is the
light of the surface if the surface were perfectly matte. The diffuse light is reflected in all
directions from the surface and depends only on the angle of the light to the surface
normal.

Specular lighting:

It is the color of the highlights on the surface. The specular light mimics the shininess of a
surface, and its intensity is a function of the light's reflection angle off the surface.

25-Mathiematics of Lighting and Shading Part I VU

© Copyright Virtual University of Pakistan

237

Emissive lighting:

When we need an object to "glow" in a scene, we can do this with an emissive light. This
is just an additional color source added to the final light of the object. Because we're
simulating an object giving off its own light; we'd still have to add a real "light" to get an
effect on objects in a scene.

Before we get into exactly what these types of lighting are, let's put it in perspective for
our purpose of writing shader code. Shading is simply calculating the color reflected off a
surface (which is pretty much what shaders do). When a light reflects off a surface, the
light colors are modulated by the surface color (typically, the diffuse or ambient surface
color). Modulation means multiplication, and for colors, since we are using rgb values,
this means component-by-component multiplication. So for light source l with color
(r1,g1,b1 shining on surface s with color (rs,gs,bs, the resulting color r would be:

or, multiplying it out, we get

Where the resulting rgb values of the light and surface are multiplied out to get the final
color's rgb values

The final step after calculating all the lighting contributions is to add together all the
lights to get the final color. So a shader might typically do the following:

1. Calculate the overall ambient light on a surface.
2. For each light in a scene, calculate the diffuse and specular contribution for each

light.
3. Calculate any emissive light for a surface.
4. Add all these lights together to calculate the final color value.

In the real world, we get some sort of interaction (reflection, etc.) when a photon interacts
with a surface boundary. Thus we see the effects not only when we have a transparent—
opaque boundary (like airplastic), but also a transparent—transparent boundary (like air-
water). The key feature here is that we get some visual effect when a photon interacts
with some boundary between two different materials. The conductivity of the materials
directly affects how the photon is reflected. At the surface of a conductor (metals, etc.),
the light is mostly reflected. For dielectrics (nonconductors), there is usually more
penetration and transmittance of the light. For both kinds of materials, the dispersion of
the light is a function of the roughness of the surface (Figure 1 and 2).

25-Mathiematics of Lighting and Shading Part I VU

© Copyright Virtual University of Pakistan

238

Figure 1: Light reflecting from a rough and smooth surface of a conductor.

Figure 2: Light reflecting from a rough and smooth surface of a dielectric showing some
penetration.

The simplest model assumes that the roughness of the surface is so fine that light is
dispersed equally in all directions as shown in Figure 1, though later we'll look at fixing
this assumption. A generalization is that conductors are opaque and dielectrics are
transparent. This gets confusing since most of the dielectric surfaces that we are interested
in modeling are mixtures and don't fall into the simple models we've described so far.
Consider a thick colored lacquer surface. The lacquer itself is transparent, but suspended
in the lacquer are reflective pigment off of which light gets reflected, bounced, split,
shifted or altered before perhaps reemerging from the surface. This can be seen in Figure
3, where the light rays are not just reflected but bounced around a bit inside the medium
before getting retransmitted to the outside.

25-Mathiematics of Lighting and Shading Part I VU

© Copyright Virtual University of Pakistan

239

Figure 3: Subsurface scattering typical of pigment-saturated translucent coatings.

Metallic paint, brushed metal, velvet, etc. are all materials for which we need to examine
better models to try to represent these surfaces. But with a little creativity in the
modeling, it's possible to mimic the effect. Figure 4 shows what you get when you use
multiple broad specular terms for multiple base colors combined with a more traditional
shiny specular term. There's also a high-frequency normal perturbation that simulates the
sparkle from a metallic flake pigment. As we can see, we can get something that looks
particularly striking with a fairly simple model.

Figure 4: A simple shader to simulate metallic paint: (a) shows the two-tone paint
shading pass; (b) shows the specular sparkle shading pass; (c) shows the environment
mapping pass; (d) shows the final composite image

The traditional model gives us a specular term and a diffuse term. We have been able to
add in texture maps to give our scenes some uniqueness, but the lighting effects have
been very simple. Shaders allow us to be much more creative with lighting effects. As
Figure 4 shows, with just a few additional specular terms, we can bring forth a very
interesting look. But before we go off writing shaders, we'll need to take a look at how it
all fits together in the graphics pipeline. And a good place to start is by examining the
traditional lighting model.

26-Mathiematics of Lighting and Shading Part II Light Types and Shading Models VU

© Copyright Virtual University of Pakistan

240

Lecture No.26 Mathematics of Lighting and Shading Part II Light

Types and Shading Models
Light Types
Now that we have a way to find the light hitting a surface, we're going to need some
lights! There are three types of lights we are going to discuss.

I. Parallel Lights (or Directional Lights)

Parallel lights cheat a little bit. They represent light that comes from an infinitely far away
light source. Because of this, all of the light rays that reach the object are parallel (hence
the name). The standard use of parallel lights is to simulate the sun. While it's not
infinitely far away, 93 million miles is good enough!

The great thing about parallel lights is that a lot of the math goes away. The attenuation
factor is always 1 (for point/spotlights, it generally involves divisions if not square roots).
The incoming light vector for calculation of the diffuse reflection factor is the same for all
considered points, whereas point lights and spotlights involve vector subtractions and a
normalization per vertex.

Typically, lighting is the kind of effect that is sacrificed for processing speed. Parallel
light sources are the easiest and therefore fastest to process. If we can't afford to do the
nicer point lights or spotlights, falling back to parallel lights can keep our frame rates at
reasonable levels.

II. Point Lights

Point lights are one step better than directional lights. They represent infinitesimally small
points that emit light. Light scatters out equally in all directions. Depending on how much
effort we're willing to expend on the light, we can have the intensity falloff based on the
inverse squared distance from the light, which is how real lights work.

The light direction is different for each surface location (otherwise the point light would
look just like a directional light). The equation for it is:

26-Mathiematics of Lighting and Shading Part II Light Types and Shading Models VU

© Copyright Virtual University of Pakistan

241

Figure 1: Point light sources

III. Spotlights

Spotlights are the most expensive type of light we discuss in this course and should be
avoided if possible because it is not for real time environment. We model a spotlight not
unlike the type we would see in a theatrical production. They are point lights, but light
only leaves the point in a particular direction, spreading out based on the aperture of the
light.

Spotlights have two angles associated with them. One is the internal cone whose angle is
generally referred to as theta (θ). Points within the internal cone receive all of the light of
the spotlight; the attenuation is the same as it would be if point lights were used. There is
also an angle that defines the outer cone; the angle is referred to as phi. Points outside the
outer cone receive no light. Points outside the inner cone but inside the outer cone receive
light, usually a linear falloff based on how close it is to the inner cone.

Figure 2: A spotlight

If we think all of this sounds mathematically expensive, we're right. Some library
packages like OpenGL and Direct3D implements lighting for us, so we won't need to
worry about the implementation of the math behind spotlights, but rest assured that
they're extremely expensive and can slow down our graphics application a great deal.

26-Mathiematics of Lighting and Shading Part II Light Types and Shading Models VU

© Copyright Virtual University of Pakistan

242

Then again, they do provide an incredible amount of atmosphere when used correctly, so
we will have to figure out a line between performance and aesthetics.

Shading Models
Once we've found basic lighting information, we need to know how to draw the triangles
with the supplied information. There are currently three ways to do this; the third has just
become a hardware feature with DirectX 9.0 In our previous lectures we have already
studied flat and gouraud shading triangle algorithms.

I. Lambert

Triangles that use Lambertian shading are painted with one solid color instead of using a
gradient. Typically each triangle is lit using that triangle's normal. The resulting object
looks very angular and sharp. Lambertian shading was used mostly back when computers
weren't fast enough to do Gouraud shading in real time. To light a triangle, you compute
the lighting equations using the triangle's normal and any of the three vertices of the
triangle.

Figure 3: Flat shaded view of our polygon mesh

II. Gouraud

Gouraud (pronounced garrow) shading is the current de facto shading standard in
accelerated 3D hardware. Instead of specifying one color to use for the entire triangle,
each vertex has its own separate color. The color values are linearly interpolated across
the triangle, creating a smooth transition between the vertex color values. To calculate the
lighting for a vertex, we use the position of the vertex and a vertex normal.

Of course, it's a little hard to correctly define a normal for a vertex. What people do
instead is average the normals of all the polygons that share a certain vertex, using that as
the vertex normal. When the object is drawn, the lighting color is found for each vertex
(rather than each polygon), and then the colors are linearly interpolated across the object.
This creates a slick and smooth look, like the one in Figure 4.

26-Mathiematics of Lighting and Shading Part II Light Types and Shading Models VU

© Copyright Virtual University of Pakistan

243

Figure 4: Gouraud shaded view of our polygon mesh
One problem with Gouraud shading is that the triangles' intensities can never be greater
than the intensities at the edges. So if there is a spotlight shining directly into the center of
a large triangle, Gouraud shading will interpolate the intensities at the three dark corners,
resulting in an incorrectly dark triangle. The internal highlighting problem usually isn't
that bad. If there are enough triangles in the model, the interpolation done by Gouraud
shading is usually good enough. If we really want internal highlights but only have
Gouraud shading, we can subdivide the triangle into smaller pieces.

III. Phong

Phong shading is the most realistic shading model We are going to talk about, and also
the most computationally expensive. It tries to solve several problems that arise when we
use Gouraud shading. If we're looking for something more realistic, some authors have
also discussed nicer shading models like Tarrence-Sparrow, but they aren't real time (at
least not right now). First of all, Gouraud shading uses a linear gradient. Many objects in
real life have sharp highlights, such as the shiny spot on an apple. This is difficult to
handle with pure Gouraud shading. The way Phong does this is by interpolating the
normal across the triangle face, not the color value, and the lighting equation is solved
individually for each pixel.

Figure 5: Phong shaded view of a polygon mesh
Phong shading isn't technically supported in hardware. But we can now program our own
Phong rendering engine, and many other special effects, using shaders, a hot new
technology.

27-Review II VU

© Copyright Virtual University of Pakistan

244

Lecture No.27 Review II

27.1 CLIPPING - Concept

It is desirable to restrict the effect of graphics primitives to a sub-region of the canvas, to
protect other portions of the canvas. All primitives are clipped to the boundaries of this
clipping rectangle; that is, primitives lying outside the clip rectangle are not drawn.

The default clipping rectangle is the full canvas (the screen), and it is obvious that we
cannot see any graphics primitives outside the screen.
A simple example of line clipping can illustrate this idea:

This is a simple example of line clipping: the display window is the canvas and also the
default clipping rectangle, thus all line segments inside the canvas are drawn.

The red box is the clipping rectangle we will use later, and the dotted line is the extension
of the four edges of the clipping rectangle.

27-Review II VU

© Copyright Virtual University of Pakistan

245

27.2 Point Clipping
Assuming a rectangular clip window, point clipping is easy. we save the point if:

xmin <= x <=xmax
ymin <= y <= ymax

27.3 Line Clipping

This section treats clipping of lines against rectangles. Although there are specialized
algorithms for rectangle and polygon clipping, it is important to note that other graphic
primitives can be clipped by repeated application of the line clipper.

27.4 Cohen-Sutherland algorithm - Conclusion

In summary, the Cohen-Sutherland algorithm is efficient when out-code testing can be
done cheaply (for example, by doing bit-wise operations in assembly language) and
trivial acceptance or rejection is applicable to the majority of line segments. (For
example, large windows - everything is inside, or small windows - everything is outside).

27.5 Liang-Barsky Algorithm - Conclusion

In general, the Liang_Barsky algorithm is more efficient than the Cohen_Sutherland
algorithm, since intersection calculations are reduced. Each update of parameters u1 and
u2 requires only one division; and window intersections of the line are computed only
once, when the final values of u1 and u2 have computed. In contrast, the Cohen-
Sutherland algorithm can repeatedly calculate intersections along a line path, even though
the line may be completely outside the clip window, and, each intersection calculation
requires both a division and a multiplication. Both the Cohen_Sutherland and the
Liang_Barsky algorithms can be extended to three-dimensional clipping.

27.6 Polygon Clipping
A polygon is usually defined by a sequence of vertices and edges. If the polygons are un-
filled, line-clipping techniques are sufficient however, if the polygons are filled, the
process in more complicated. A polygon may be fragmented into several polygons in the
clipping process, and the original colour associated with each one. The Sutherland-
Hodgeman clipping algorithm clips any polygon against a convex clip polygon. The
Weiler-Atherton clipping algorithm will clip any polygon against any clip polygon. The
polygons may even have holes.
The following example illustrates a simple case of polygon clipping.

27-Review II VU

© Copyright Virtual University of Pakistan

246

27.7 Sutherland and Hodgman's polygon-clipping algorithm:-

Sutherland and Hodgman's polygon-clipping algorithm uses a divide-and-conquer
strategy: It solves a series of simple and identical problems that, when combined, solve
the overall problem. The simple problem is to clip a polygon against a single infinite clip
edge. Four clip edges, each defining one boundary of the clip rectangle, successively clip
a polygon against a clip rectangle.

Note the difference between this strategy for a polygon and the Cohen-Sutherland
algorithm for clipping a line: The polygon clipper clips against four edges in succession,
whereas the line clipper tests the outcode to see which edge is crossed, and clips only
when necessary.

27.8 Steps of Sutherland-Hodgman's polygon-clipping algorithm

 Polygons can be clipped against each edge of the window one at a time.
Windows/edge intersections, if any, are easy to find since the X or Y coordinates are
already known.

 Vertices which are kept after clipping against one window edge are saved for clipping
against the remaining edges.

 Note that the number of vertices usually changes and will often increase.

We are using the Divide and Conquer approach.

27.9 Shortcoming of Sutherlands -Hodgeman Algorithm
Convex polygons are correctly clipped by the Sutherland-Hodegeman algorithm, but
concave polygons may be displayed with extraneous lines. This occurs when the clipped
polygon should have two or more separate sections. But since there is only one output
vertex list, the last vertex in the list is always joined to the first vertex. There are several
things we could do to correct display concave polygons. For one, we could split the
concave polygon into two or more convex polygons and process each convex polygon
separately.

27-Review II VU

© Copyright Virtual University of Pakistan

247

Another approach to check the final vertex list for multiple vertex points along any clip
window boundary and correctly join pairs of vertices. Finally, we could use a more
general polygon clipper, such as wither the Weiler-Atherton algorithm or the Weiler
algorithm described in the next section.

27.10 Weiler-Atherton Polygon Clipping

In this technique, the vertex-processing procedures for window boundaries are modified
so that concave polygons are displayed correctly. This clipping procedure was developed
as a method for identifying visible surfaces, and so it can be applied with arbitrary
polygon-clipping regions.

The basic idea in this algorithm is that instead of always proceeding around the polygon
edges as vertices are processed, we sometimes want to follow the window boundaries.
Which path we follow depends on the polygon-processing direction(clockwise or
counterclockwise) and whether the pair of polygon vertices currently being processed
represents an outside-to-inside pair or an inside-to-outside pair. For clockwise processing
of polygon vertices, we use the following rules:

 For an outside-top inside pair of vertices, follow the polygon boundary
 For an inside-to-outside pair of vertices, follow the window boundary in a clockwise

direction

In following figure, the processing direction in the Wieler-Atherton algorithm and the
resulting clipped polygon is shown for a rectangular clipping window.

Inside

1

2

3

4

5

6

7

8

go up

go up

27-Review II VU

© Copyright Virtual University of Pakistan

248

27.11 3D Concepts

27.12 Coordinate Systems
Coordinate systems are the measured frames of reference within which geometry is
defined, manipulated and viewed. In this system, you have a well-known point that serves
as the origin (reference point), and three lines(axes) that pass through this point and are
orthogonal to each other (at right angles – 90 degrees).

With the Cartesian coordinate system, you can define any point in space by saying how
far along each of the three axes you need to travel in order to reach the point if you start at
the origin.
Following are three types of the coordinate systems.

27.13 1-D Coordinate Systems:

This system has the following characteristics:

• Direction and magnitude along a single axis, with reference to an origin

• Locations are defined by a single coordinate

• Can define points, segments, lines, rays

• Can have multiple origins (frames of reference) and transform coordinates among
them

27.14 2-D Coordinate Systems:

• Direction and magnitude along two axes, with reference to an origin

• Locations are defined by x, y coordinate pairs

• Can define points, segments, lines, rays, curves, polygons, (any planar geometry)

• Can have multiple origins (frames of reference and transform coordinates among
them

27-Review II VU

© Copyright Virtual University of Pakistan

249

27.15 3-D Coordinate Systems:

• 3D Cartesian coordinate systems

• Direction and magnitude along three axes, with reference to an origin

• Locations are defined by x, y, z triples

• Can define cubes, cones, spheres, etc., (volumes in space) in addition to all one-
and two-dimensional entities

• Can have multiple origins (frames of reference) and transform coordinates among
them

27.16 Left-handed versus Right-handed

• Determines orientation of axes and direction of rotations

• Thumb = pos x, Index up = pos y, Middle out = pos z

• Most world and object axes tend to be right handed

27-Review II VU

© Copyright Virtual University of Pakistan

250

• Left handed axes often are used for cameras

27.17 Right Handed Rule:

“Right Hand Rule” for rotations: grasp axis with right hand with thumb oriented in
positive direction, fingers will then curl in direction of positive rotation for that

axis.

Right handed Cartesian coordinate system describes the relationship of the X,Y, and Z
in the following manner:

• X is positive to the right of the origin, and negative to the left.

• Y is positive above the origin, and negative below it.

• Z is negative beyond the origin, and positive behind it.

-Z

+Z

+X

+Y

East

North

West

Sout

Origin

27-Review II VU

© Copyright Virtual University of Pakistan

251

27.18 Left Handed Rule:

Left handed Cartesian coordinate system describes the relationship of the X, Y and Z
in the following manner:

• X is positive to the right of the origin, and negative to the left.

• Y is positive above the origin, and negative below it.

• Z is positive beyond the origin, and negative behind it.

27.19 Defining 3D points in mathematical notations

3D points can be described using simple mathematical notations

P = (X, Y, Z)

Thus the origin of the Coordinate system is located at point (0,0,0), while five units to
the right of that position might be located at point (5,0,0).

+Z

-Z

+X

+Y

East

North

West

Sout

Origin

27-Review II VU

© Copyright Virtual University of Pakistan

252

27.20 Y-up versus Z-up:

• z-up typically used by designers

• y-up typically used by animators

• orientation by profession supposedly derives from past work habits

• often handled differently when moving from application to application

27.21 Global and Local Coordinate Systems:

• Local coordinate systems can be defined with respect to global coordinate system

• Locations can be relative to any of these coordinate systems

• Locations can be translated or "transformed" from one coordinate system to
another.

27-Review II VU

© Copyright Virtual University of Pakistan

253

27.22 Multiple Frames of Reference in a 3-D Scene:

• In fact, there usually are multiple coordinate systems within any 3-D screen

• Application data will be transformed among the various coordinate systems,
depending on what's to be accomplished during program execution

• Individual coordinate systems often are hierarchically linked within the scene

27.23 The Polar Coordinate System

Cartesian systems are not the only ones we can use. We could have also described the
object position in this way: “starting at the origin, looking east, rotate 38 degrees
northward, 65 degrees upward, and travel 7.47 feet along this line. “As you can see, this
is less intuitive in a real world setting. And if you try to work out the math, it is harder to
manipulate (when we get to the sections that move points around). Because such polar
coordinates are difficult to control, they are generally not used in 3D graphics.

27.24 Defining Geometry in 3-D

Here are some definitions of the technical names that will be used in 3D lectures.
Modeling: is the process of describing an object or scene so that we can construct an
image of it.

27-Review II VU

© Copyright Virtual University of Pakistan

254

27.25 Points & polygons:

• Points: three-dimensional locations (or coordinate triples)

• Vectors: - have direction and magnitude; can also be thought of as displacement

• Polygons: - sequences of “correctly” co-planar points; or an initial point and a
sequence of vectors

27.26 Primitives

Primitives are the fundamental geometric entities within a given data structure.

27-Review II VU

© Copyright Virtual University of Pakistan

255

• We have already touched on point, vector and polygon primitives

• Regular Polygon Primitives - square, triangle, circle, n-polygon, etc.

• Polygon strips or meshes

• Meshes provide a more economical description than multiple individual polygons

For example, 100 individual triangles, each requiring 3 vertices, would require
100 x 3 or 300 vertex definitions to be stored in the 3-D database.

By contrast, triangle strips require n + 2 vertex definitions for any n number or
triangles in the strip. Hence, a 100 triangle strip requires only 102 unique vertex
definitions.

• Meshes also provide continuity across surfaces which is important for shading
calculations

• 3D primitives in a polygonal database

27-Review II VU

© Copyright Virtual University of Pakistan

256

3D shapes are represented by polygonal meshes that define or approximate geometric
surfaces.

• With curved surfaces, the accuracy of the approximation is directly proportional to the
number of polygons used in the representation.

• More polygons (when well used) yield a better approximation.

• But more polygons also exact greater computational overhead, thereby degrading
interactive performance, increasing render times, etc.

27.27 Rendering

• The process of computing a two dimensional image using a combination of a three-
dimensional database, scene characteristics, and viewing transformations. Various
algorithms can be employed for rendering, depending on the needs of the application.

27.28 Tessellation

• The subdivision of an entity or surface into one or more non-overlapping primitives.
Typically, renderers decompose surfaces into triangles as part of the rendering
process.

27.29 Sampling

• The process of selecting a representative but finite number of values along a
continuous function sufficient to render a reasonable approximation of the function
for the task at hand.

27.30 Level of Detail (LOD)

• To improve rendering efficiency when dynamically viewing a scene, more or less
detailed versions of a model may be swapped in and out of the scene database
depending on the importance (usually determined by image size) of the object in the
current view.

27.31 Transformations
The process of moving points in space is called transformation.

27-Review II VU

© Copyright Virtual University of Pakistan

257

27.32 Types of Transformation
There are various types of transformations as we have seen in case of 2D transformations.
These include:

a. Translation
b. Rotation
c. Scaling
d. Reflection
e. Shearing

a) Translation
Translation is used to move a point, or a set of points, linearly in space. Since now we are
talking about 3D, therefore each point has 3 coordinates i.e. x, y and z. similarly, the
translation distances can also be specified in any of the 3 dimensions. These Translation
Distances are given by tx, ty and tz.
For any point P(x,y,z) after translation we have P′(x′,y′,z′) where

x′ = x + tx ,
y′ = y + ty ,
z′ = z + tz
and (tx, ty , tz) is Translation vector

Now this can be expressed as a single matrix equation:
 P′ = P + T

Where:

3D Translation Example
We may want to move a point “3 meters east, -2 meters up, and 4 meters north.” What
would be done in such event?
Steps for Translation
Given a point in 3D and a translation vector, it can be translated as follows:

Point3D point = (0, 0, 0)
Vector3D vector = (10, -3, 2.5)

Adding vector to point
point.x = point.x + vector.x;
point.y = point.y + vector.y;
point.z = point.z + vector.z;

And finally we have translated point.

Homogeneous Coordinates
Analogous to their 2D Counterpart, the homogeneous coordinates for 3D translation can
be expressed as :

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z
y
x

P
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

'
'
'

'
z
y
x

P
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

t
t
t

T

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

.

1000
100
010
001

1
'
'
'

z
y
x

t
t
t

z
y
x

z

y

x

27-Review II VU

© Copyright Virtual University of Pakistan

258

Abbreviated as:
 P’ = T (tx, ty , tz) . P
On solving the RHS of the matrix equation, we get:

Which shows that each of the 3 coordinates gets translated by the corresponding
translation distance.

Rotation
Rotation is the process of moving a point in space in a non-linear manner

We need to know three different angles:
How far to rotate around the X axis(YZ rotation, or “pitch”)
How far to rotate around the Y axis (XZ rotation, or “yaw”)
How far to rotate around the Z axis (XY rotation, or “roll”)

Column vector representation:
 P′ = R . P
Where

Rotation: Homogeneous Coordinates
The rotation can now be expressed using homogeneous coordinates as:

Abbreviated as:
 P’ = R (θ) . P

… Now in 3D

Rotation can be about any of the three axes:
About z-axis (i.e. in xy plane)
About x-axis (i.e. in yz plane)
About y-axis (i.e. in xz plane)

Roll : around z-axis
Pitch: around x-axis
Yaw: around y-axis

⎥
⎦

⎤
⎢
⎣

⎡ −
=

θθ
θθ

cossin
sincos

R ⎥
⎦

⎤
⎢
⎣

⎡
=

y
x

P⎥
⎦

⎤
⎢
⎣

⎡
=

'
'

'
y
x

P

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11
'
'
'

z

y

x

tz
ty
tx

z
y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
.

100
0cossin
0sincos

1
'
'

y
x

y
x

θθ
θθ

27-Review II VU

© Copyright Virtual University of Pakistan

259

Rotation about z-axis
(i.e. in xy plane):

x′ = x cosθ – y sinθ
y′ = x sinθ + y cosθ
z’ = z

by Cyclic permutation

Rotation about x-axis
(i.e. in yz plane):

x′ = x
 y′ = y cosθ – z sinθ

z′ = y sinθ + z cosθ
and
Rotation about y-axis
(i.e. in xz plane):

x′ = z sinθ + x cosθ
y ′ = y
z′ = z cosθ – x sinθ

b) SCALING:-

Coordinate transformations for scaling relative to the origin are
 X` = X . Sx
 Y` = Y . Sy
 Z` = Z . Sz

Uniform Scaling

We preserve the original shape of an object with a uniform scaling
(Sx = Sy = Sz)

Differential Scaling

We do not preserve the original shape of an object with a differential scaling
(Sx <> Sy <> Sz)

Scaling w.r.t. Origin

27.33 PROJECTION
 Projection can be defined as a mapping of point P(x,y,z) onto its image
P`(x`,y`,z`) in the projection plane or view plane, which constitutes the display surface

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

S
S

S

27-Review II VU

© Copyright Virtual University of Pakistan

260

Methods of Projection

•Parallel Projection

•Perspective Projection

Parallel Projection is divided into Orthographic and Oblique transformations.

•Orthographic

27-Review II VU

© Copyright Virtual University of Pakistan

261

•Oblique

Orthographic projection has two types

• Multiview
• Axonometric

Multiview:

There are three orthographic views of an object.

Axonometric projections:
There are three axonometric projections:

•Isometric

•Dimetric

•Trimetric

27-Review II VU

© Copyright Virtual University of Pakistan

262

1. Isometric
The projection plane intersects each coordinate axis in the model coordinate system at an
equal distance or the direction of projection makes equal angles with all of the three
principal axes
2. Dimetric
The direction of projection makes equal angles with exactly two of the principal axes
3. Trimetric
The direction of projection makes unequal angles with the three principal axes

Xp = x + z (L1 cos (Ф))
Yp = y + z (L1 sin (Ф))

Where L1 = L/z

28-Review III VU

© Copyright Virtual University of Pakistan

263

Lecture No.28 Review III

28.1 Perspective Projection

As opposed to parallel projection, perspective projection gives a more realistic view of
the objects in the scene. The objects away from the POV are projected smaller whereas
those nearby are projected to appear proportionately larger. The idea is that of looking at
the scene through the projection plane / screen.
The POV represents the viewer’s eye, and we presume that the viewer will be behind the
center of the screen.
Note: We will use Left hand rule to describe 3D coordinate system.
Two common approaches are used with this;

1. The first approach is where
the POV is at some point (0,
0, -z) and the screen lies on
the X-Y plane, graphically,
this looks like figure given
below:
2. The second approach is
where the POV lies at the
origin, and the screen lies on a
plane at some +z coordinate,
as shown in figure given
below:

As we will see later, this
second approach is much
more convenient when we add
features making it possible for
the POV to move around the 3D world or for objects to move around in the world.
Calculating the screen pixel that correlates to a 3D point is now a matter of simple
geometry. From a viewpoint above the screen and POV (looking at the X-Z plane), the
geometry appears like the one shown in figure below:
In geometric terms, we say that the triangle
from A to B to S is similar to the triangle
from A to C to P because the three angles
that make up the triangles are the same: the
angle from AB to AS is the same as the angle
from AC to AP, the two right angles are both
90 degrees, and therefore the remaining two
angles are the same (the sum of the angles in
a triangle is always 180 degrees). What also
holds true from similar triangles is that the
ratio of two sides holds between the similar
triangles; this means that the ratio of BS to
AB is the same as the ratio of CP to AC. But
we know what AB is-it is Screen.z ! and we

28-Review III VU

© Copyright Virtual University of Pakistan

264

know what AC is-it is point.z ! and we know what CP is-it is point.x ! therefore:
|BS| / |AB| = |CP| / |AC|
|BS| = |AB| * |CP| / |AC|
|BS| = Screen.z * point.x / point.z
Screen.z is the distance d from the point of view at origin or the scaling factor.

Notice that |BS| is the length of the line segment that goes from B to S in world units. But
we normally address the
screen with the point
(0,0) at the top left, with
+X pixels moving to the
right, and +Y pixels
moving down—and not
from the middle of the
screen. And we draw to
the screen in pixel units –
not our world units
(unless, of course, 1.0 in
your world represents
one pixel).

28.2 Triangles

Triangles are to 3D
graphics what pixels are to 2D graphics. Every PC hardware accelerator under the sun
uses triangles as the fundamental drawing primitive (well … scan line aligned trapezoids
actually, but that's a hardware implementation issue). When you draw a polygon,
hardware devices really draw a fan of triangles. Triangles "flesh out" a 3D object,
connecting them together to form a skin or mesh that defines the boundary surface of an
object. Triangles, like polygons, generally have an orientation associated with them, to
help in normal calculations. The ordering of the vertices goes clockwise around the
triangle. Figure below shows what a clockwise ordered triangle would look like.

Figure: Three points in space, and the triangle connecting them

When defining a mesh of triangles that define the boundary of a solid, you set it up so that
all of the triangles along the skin are ordered clockwise when viewed from the outside.

28-Review III VU

© Copyright Virtual University of Pakistan

265

It is impossible to see triangles that face away from you. (You can find this out by
computing the triangle's plane normal and performing a dot product with a vector from
the camera location to a location on the plane.)

Now let's move on to the code. To help facilitate using the multiple types, I'll implement
triangles structure. I only define constructors and keep the access public.
struct tri
 {

 type v[3]; // Array access useful for loops

 tri()
 {

 // nothing

 }

 tri(type v0, type v1, type v2)
 {

 v[0] = v0;

 v[1] = v1;

 v[2] = v2;

 }
 };

28.3 Strips and Fans

Lists of triangles are generally represented in one of three ways. The first is an explicit
list or array of triangles, where every three elements represent a new triangle. However,
there are two additional representations, designed to save bandwidth while sending
triangles to dedicated hardware to draw them. They are called triangle strips and triangle
fans.

Triangle fans, conceptually, look like the folding fans you see in Asian souvenir shops.
They are a list of triangles that all share a common point. The first three elements indicate
the first triangle. Then each new element is combined with the first element and the
current last element to form a new triangle. Note that an N-sided polygon can be
represented efficiently using a triangle fan, Figure below illustrates what I'm talking
about.

28-Review III VU

© Copyright Virtual University of Pakistan

266

Figure: A list of points composing a triangle fan

Triangles in a triangle strip, instead of sharing a common element with all other triangles
like a fan, only share elements with the triangle immediately preceding them. The first
three elements define the first triangle. Then each subsequent element is combined with
the two elements before it, in clockwise order, to create a new triangle. See Figure below
for an explanation of strips.

Figure: A list of points composing a triangle strip

28.4 Planes

The next primitive to discuss is the plane. Planes are to 3D what lines are in 2D; they're
n–1 dimensional hyper-planes that can help you accomplish various tasks. Planes are
defined as infinitely large, infinitely thin slices of space, like big pieces of paper.
Triangles that make up your model each exist in their own plane. When you have a plane
that represents a slice of 3D space, you can perform operations like classification of
points and polygons and clipping.

So how do you represent planes? Well it is best to build a structure from the equation that
defines a plane in 3D. The implicit equation for a plane is:

28-Review III VU

© Copyright Virtual University of Pakistan

267

What do these numbers represent? The triplet <a,b,c> represents what is called the
normal of the plane. A normal is a unit vector that, conceptually speaking, sticks directly
out of a plane. A stronger mathematical definition would be that the normal is a vector
that is perpendicular to all of the points that lie in the plane.

The d component in the equation represents the distance from the plane to the origin. The
distance is computed by tracing a line towards the plane until you hit it. Finally the triplet
<x,y,z> is any point that satisfies the equation. The set of all points <x,y,z> that solve the
equation is exactly all the points that lie in the plane.

All of the pictures I'm showing you will be of the top-down variety, and the 3D planes
will be on edge, appearing as 2D lines. This makes figure drawing much easier.

Following are two examples of planes. The first has the normal pointing away from the
origin, which causes d to be negative (try some sample values for yourself if this doesn't
make sense). The second has the normal pointing towards the origin, so d is positive. Of
course, if the plane goes through the origin, d is zero (the distance from the plane to the
origin is zero). Figures 1 and Figure 2 provide some insight into this relation.

Figure 1: d is negative when the normal faces away from the origin

Figure 2: d is positive when it faces towards the origin

28-Review III VU

© Copyright Virtual University of Pakistan

268

It's important to notice that technically the normal <a,b,c> does not have to be unit-length
for it to have a valid plane equation. But since things end up nicer if the normal is unit-
length.

Constructing a plane given three points that lie in the plane is a simple task. You just
perform a cross product between the two vectors made up by the three points

<point2 − point0>

<point1 − point0>

and find a normal for the plane. After generating the normal and making it unit length,
finding the d value for the plane is just a matter of storing the negative dot product of the
normal with any of the points. This holds because it essentially solves the plane equation
above for d. Of course plugging a point in the plane equation will make it equal 0, and
this constructor has three of them.

28.5 Back-face Culling

Now that you know how to define a point with respect to a plane, you can perform back-
face culling, one of the most fundamental optimization techniques of 3D graphics.

Let's suppose you have a triangle whose elements are ordered in such a fashion that when
viewing the triangle from the front, the elements appear in clockwise order. Back-face
culling allows you to take triangles defined with this method and use the plane equation
to discard triangles that are facing away. Conceptually, any closed mesh, a cube for
example, will have some triangles facing you and some facing away. You know for a fact
that you'll never be able to see a polygon that faces away from you; they are always
hidden by triangles facing towards you. This, of course, doesn't hold if you're allowed to
view the cube from its inside, but this shouldn't be allowed to happen if you want to really
optimize your engine.

Rather than perform the work necessary to draw all of the triangles on the screen, you can
use the plane equation to find out if a triangle is facing towards the camera, and discard it
if it is not. How is this achieved? Given the three points of the triangle, you can define a
plane that the triangle sits in. Since you know the elements of the triangle are listed in
clockwise order, you also know that if you pass the elements in order to the plane
constructor, the normal to the plane will be on the front side of the triangle. If you then
think of the location of the camera as a point, all you need to do is perform a point-plane
test. If the point of the camera is in front of the plane, then the triangle is visible and
should be drawn.

There's an optimization to be had. Since you know three points that lie in the plane (the
three points of the triangle) you only need to hold onto the normal of the plane, not the
entire plane equation. To perform the back-face cull, just subtract one of the triangle's
points from the camera location and perform a dot product with the resultant vector and
the normal. If the result of the dot product is greater than zero, then the view point was in
front of the triangle. Figure below can help explain the point.

28-Review III VU

© Copyright Virtual University of Pakistan

269

Figure: A visual example of back-face culling

In practice, 3D accelerators can actually perform back-face culling by themselves, so as
the triangle rates of cards increase, the amount of manual back-face culling that is
performed has steadily decreased. However, the information is useful for custom 3D
engines that don't plan on using the facilities of direct hardware acceleration.

28.6 Intersection between a Line and a Plane

This occurs at the point which satisfies both the line and the plane equations.
Line equation: p = org + u * dir (1)
Plane equation: p * normal - k = 0. (2)
Substituting (1) into (2) and rearranging we get:
(org + u * dir) * normal - k = 0
ie u * dir * normal = k - org * normal
ie u = (k - org * normal) / (dir * normal)
If (d * normal) = 0 then the line runs parrallel to the plane and no intersection occurs. The
exact point at which intersection does occur can be found by plugging u back into the line
equation in (1).

28.7 Triangle Rasterization
High performance triangle rasterization is a very important topic in Computer Graphics in
today’s world.
Triangles are the foundation of modern real time graphics, and are by far the most popular
rendering primitive. Most computer games released in the last few years are almost
completely dependent on triangle rasterization performance. Recently the focus of
graphics performance optimization is beginning to shift to bandwidth requirements as
well as transformation and lighting. Nevertheless, rasterization performance is still a
factor, and this lecture will provide most of the basics of high performance triangle
rasterization. Also, it will go into detail about two often neglected rendering quality
improvements, sub-pixel and sub-texel accuracy. Also, smooth shading and texture
mapping techniques will be described.

28-Review III VU

© Copyright Virtual University of Pakistan

270

28.8 Flat Filling Triangles

Drawing triangle (or in general convex polygon, but as we discussed we will use only
triangles) is very simple. The basic idea of the line triangle drawing algorithm is as
follows.

For each scan line (horizontal line on the screen), find the points of intersection with the
edges of the triangle. Then, draw a horizontal line between intersections and do this for
all scan lines.
But how can we find these points quickly?
Using linear interpolation!

We have 3 vertices and we want to find coordinates of all points belonging to segments
determined by these vertices.
Assume we have segment given by points:
(xa,ya) and (xb,yb).
Our task is to find points: (xc,ya+1), (xd,ya+2), ... , (xm,yb-1), (xn,yb).
Notice that xa changes to xb in (yb-ya) steps.

We also have:
xa=xa+0*(xb-xa)/(yb-ya),

Xb = xa + (yb-ya) * (xb-xa) / (yb-ya)
and, in general, xi = xa + (yi – ya) * delta ,

where delta=(xb-xa)/(yb-ya).

The general function for linear interpolation is:

f(X) = A + X * ((B-A) / steps) where we slide from A to B in steps steps

Here is pseudo code for a triangle filling algorithm.

• The coordinates of vertices are (A. x,A. y), (B. x,B. y), (C. x,C. y); we assume that
A. y <= B. y <= C. y (you should sort them first)

• dx1,dx2,dx3 are deltas used in interpolation

• Horizontal line draws horizontal segment with coordinates

(S. x, Y), (E. x, Y)

• S. x, E. x are left and right x-coordinates of the segment we have to draw

• S = A means that S. x = A. x; S. y = A. y;

28-Review III VU

© Copyright Virtual University of Pakistan

271

if (B.y - A.y > 0) dx1 = (B.x-A.x) / (B.y-A.y)
else dx1=0;

if (C.y - A.y > 0) dx2=(C.x-A.x)/(C.y-A.y)
else dx2=0;

if (C.y-B.y > 0) dx3=(C.x-B.x)/(C.y-B.y)
else dx3=0;

S = E = A

if(dx1 > dx2)
 {
 for(; S.y<=B.y; S.y++, E.y++, S.x+=dx2, E.x += dx1)
 horizontal line (S.x,E.x,S.y, E.x,color);

E=B;

for(;S.y<=C.y;S.y++,E.y++,S.x+=dx2,E.x+=dx3)
 horizontal line(S.x,E.x,S.y, E.x,color);
}
else
{
 for(;S.y<=B.y;S.y++,E.y++,S.x+=dx1,E.x+=dx2)
 horizontal line(S.x,E.x,S.y, E.x,color);

S=B;

for(;S.y<=C.y;S.y++,E.y++,S.x+=dx3,E.x+=dx2)
 horizontal line(S.x,E.x,S.y, E.x,color);
}

I ought to explain what is the comparison dx1 > dx2 for. It's optimization trick: in the
horizontal line routine, we don't need to compare the x's (S.x is always less than or equal
to E.x).

28-Review III VU

© Copyright Virtual University of Pakistan

272

28.9 Gouraud Shading

The idea of gouraud and flat triangle is nearly the same. Gouraud takes only three
parameters more (the color value of each of the vertices), and the routine just interpolates
among them drawing a beautiful, shaded triangle.
You can use 256-colors mode, in which vertices' colors are simply indices to palette or hi-
color mode (recommended).

Flat triangle interpolated only one value (x in connection with y), 256 colors gouraud
needs three (x related to y, color related to y, and color related to x), hi-color gouraud
needs seven (x related to y, red, green and blue components of color related to y, and
color related to x (also three components))

Drawing a gouraud triangle, we add only two parts to the flat triangle routine. The
horizline routine gets a bit more complicated due to the interpolation of the color value
related to x but the main routine itself remains nearly the same.

28.10 Textured Triangles

We can also apply any bitmap on triangle for filling it.

I'll show you the idea of linear (or 'classical') texture mapping (without perspective
correction). Linear mapping works pretty well (read: fast) in some scenes, but perspective
correction is in some way needed in most 3D systems.

Again we're using the idea of interpolation: now we'll code a texture triangle filler. And
again the idea is perfectly the same, only two more values to interpolate, that is five
values total. In texture mapping, we interpolate x, u, and v related to y, and u and v
related to x (u and v are coordinates in the 2D bitmap space). The situation is maybe
easier to understand by looking at the following picture:

28-Review III VU

© Copyright Virtual University of Pakistan

273

The left triangle is the triangle which is drawn onto the screen. There's a single scanline
(one call to the horizline routine) pointed out as an example. The triangle on the right is
the same triangle in the bitmap space, and there's the same scanline drawn from another
point of view into it, too. So we need just to interpolate, interpolate, and once more
interpolate in texture filler - an easy job if you've understood the idea of gouraud filler.

28.11 COLOR
It is important to understand how color is represented in computer graphics so that we can
manipulate it effectively. A color is usually represented in the graphics pipeline by a
three-element vector representing the intensities of the red, green, and blue components,
or for a more complex object, by a four-element vector containing an additional value
called the alpha component that represents the opacity of the color. Thus we can talk
about rgb or rgba colors and mean a color that's made up of either three or four elements.
There are many different ways of representing the intensity of a particular color element.
Colors can also be represented as floating point values in the range [0,1].
Nowadays every PC we can buy has hardware that can render images with thousands or
millions of individual colors. Rather than have an array with thousands of color entries,
the images instead contain explicit color values for each pixel. A 16-bit display is named
since each pixel in a 16-bit image is taken up by 16 bits (2 bytes): 5 bits of red
information, 6 bits of green information, and 5 bits of blue information. Incidentally, the
extra bit (and therefore twice as much color resolution) is given to green because our eyes
are more sensitive to green. A 24-bit display, of course, uses 24 bits, or 3 bytes per pixel,
for color information. This gives 1 byte, or 256 distinct values each, for red, green, and
blue. This is generally called true color, because 2563 (16.7 million) colors is about as
much as your eyes can discern, so more color resolution really isn't necessary, at least for
computer monitors.

Finally, there is 32-bit color, something seen on most new graphics cards. Many 3D
accelerators keep 8 extra bits per pixel around to store transparency information, which is
generally referred to as the alpha channel, and therefore take up 4 bytes, or 32 bits, of
storage per pixel. Rather than reimplement the display logic on 2D displays that don't
need alpha information, these 8 bits are usually just wasted.

WHY WE MIGHT WANT 128-BIT COLOR?

In one of the early magazines articles of Mike Abrash [ABRASH 1992], he tells a story
about going from a 256-color palette to hardware that supported 256 levels for each RGB
color–16 million colors! What would we do with all those colors? He goes on to tell of a
story by Sheldon Linker at the eighth Annual Computer Graphics Show on how the folks
at the Jet Propulsion Lab back in the 1970s had a printer that could print over 50 million
distinct colors. As a test, they printed out words on paper where the background color was
only one color index from the word's color. To their surprise, it was easy to discern the
words—the human eye is very sensitive to color graduations and edge detection. The JPL
team then did the same tests on color monitors and discovered that only about 16 million
colors could be distinguished. It seems that the eye is (not too surprisingly) better at
perceiving detail from reflected light (such as from a printed page) than from emissive
light (such as from a CRT). The moral is that the eye is a lot more perceptive than you
might think. Twenty four-bits of color really is not that much range, particularly if we are
performing multiple passes. Round-off error can and will show up if we aren't careful!

28-Review III VU

© Copyright Virtual University of Pakistan

274

An example of the various gamuts is shown in the figure below. The CIE diagrams are
the traditional way of displaying perceived color space, which, we should note, is very
different from the linear color space used by today's graphics hardware. The colored area
is the gamut of the human eye. The gamut of printers and monitors are subsets of this
gamut.

Figure 1: The 1931 CIE diagram shows the gamut of the eye and the lesser gamut of
output devices.

28.12 Multiplying Color Values

First we need to be aware of how to treat colors. The calculation of the color of a
particular pixel depends, for example, on the surface's material properties that we've
programmed in, the color of the ambient light (lighting model), the color of any light
shining on the surface (perhaps of the angle of the light to the surface), the angle of the
surface to the viewpoint, the color of any fog or other scattering material that's between
the surface and the viewpoint, etc. No matter how you are calculating the color of the
pixel, it all comes down to color calculations, at least on current hardware, on rgb or
rgba vectors where the individual color elements are limited to the [0,1] range.
Operations on colors are done piecewise–that is, even though we represent colors as rgb
vectors, they aren't really vectors in the mathematical sense. Vector multiplication is
different from the operation we perform to multiply color. We'll use the symbol to
indicate such piecewise multiplication.
Colors are multiplied to describe the interaction between a surface and a light source. The
colors of each are multiplied together to estimate the reflected light color–this is the color
of the light that this particular light reflects off this surface. The problem with the
standard rgb model is just that we're simulating the entire visible spectrum by three colors
with a limited range.

28-Review III VU

© Copyright Virtual University of Pakistan

275

Let's start with a simple example of using reflected colors. Later on we will discuss on
lighting, we'll discover how to calculate the intensity of a light source, but for now, just
assume that we've calculated the intensity of a light, and it's a value called id. This
intensity of our light is represented by, say, a nice lime green color.

Thus

Let's say we shine this light on a nice magenta surface given by cs.

So, to calculate the color contribution of this surface from this particular light, we
perform a piecewise multiplication of the color values.

Note: Piecewise multiplication is denoted by that is element-by-element
multiplication. Used in color operations, where the vector just represents a convenient
notation for an array of scalars that are operated on simultaneously but independently.

This gives us the dark plum color shown in figure below. We should note that since the
surface has no green component, that no matter what value we used for the light color,
there would never be any green component from the resulting calculation. Thus a pure
green light would provide no contribution to the intensity of a surface if that surface
contained a zero value for its green intensity. Thus it's possible to illuminate a surface
with a bright light and get little or no illumination from that light. We should also note
that using anything other than a full-bright white light [1,1,1] will involve multiplication
of values less than one, which means that using a single light source will only illuminate a
surface to a maximum intensity of its color value, never more. This same problem also
happens when a texture is modulated by a surface color. The color of the surface will be
multiplied by the colors in the texture. If the surface color is anything other than full
white, the texture will become darker. Multiple texture passes can make a surface very
dark very quickly.

Figure 2: Multiplying (modulating) color values results in a color equal to or less than
(darker) the original two.

28-Review III VU

© Copyright Virtual University of Pakistan

276

Given that using a colored light in a scene makes the scene darker, how do we make the
scene brighter? There are a few ways of doing this. Given that color multiplication will
never result in a brighter color, it's offset a bit since we end up summing all the light
contributions together, which, as we'll see in the next section, brings with it its own
problems. But if we are just interested in increasing the brightness on one particular light
or texture, one way is to use the API (Library routines e.g. OpenGL or DirectX) to
artificially brighten the source–this is typically done with texture preprocessing. Or, we
can artificially brighten the source, be it a light or a texture, by adjusting the values after
we modulate them.

28.13 Dealing with Saturated Colors

On the other hand, what if we have too much contribution to a color? While the colors of
lights are modulated by the color of the surface, each light source that illuminates the
surface is added to the final color. All these colors are summed up to calculate the final
color. Let's look at such a problem. We'll start with summing the reflected colors off a
surface from two lights. The first light is an orange color and has rgb values
[1.0,0.49,0.0], and the second light is a nice light green with rgb values [0.0,1.0,0.49].
Summing these two colors yields [1.0, 1.49, 0.49], which we can't display because of the
values larger than one figure below shows.

Figure 3: Adding colors can result in colors that are outside the displayable range.

So, what can be done when color values exceed the range that the hardware can display?
It turns out that there are three common approaches [HALL 1990].

Clamping the color values is implemented in hardware, so for shaders (technology used in
today computer graphics for lighting and shading), it's the default, and it just means that
we clamp any values outside the [0,1] range. Unfortunately, this results in a shift in the
color.

The second most common approach is to scale the colors by the largest component. This
maintains the color but reduces the overall intensity of the color.

The third is to try to maintain the intensity of the color by shifting (or clipping) the color
toward pure bright white by reducing the colors that are too bright while increasing the
other colors and maintaining the overall intensity. Since we can't see what the actual color
for (figure above) is, let's see what color each of these methods yields (figure below).

28-Review III VU

© Copyright Virtual University of Pakistan

277

Figure 4: The results of three strategies for dealing with the same oversaturated color.

As we can see, we get three very different results. In terms of perceived color, the scaled
is probably the closest though it's darker than the actual color values. If we weren't
interested in the color but more in terms of saturation, then the clipped color is closer.
Finally, the clamped value is what we get by default, and as you can see, the green
component is biased down so that we lose a good sense of the "greenness" of the color we
were trying to create.

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

278

Lecture No.29 Mathematics of Lighting and Shading Part III

Traditional 3D Hardware-Accelerated Lighting Models
We will now take a look at the traditional method of calculating lighting in hardware—a
method that we'll find is sufficient for most of our needs. The traditional approach in real-
time computer graphics has been to calculate lighting at a vertex as a sum of the ambient,
diffuse, and specular light. In the simplest form (used by OpenGL and Direct3D), the
function is simply the sum of these lighting components (clamped to a maximum color
value). Thus we have an ambient term and then a sum of all the light from the light
sources.

)(ssddaatotal ikikiki ++= ∑
Where itotal , is the intensity of light (as an rgb value) from the sum of the intensity of the
global ambient value and the diffuse and specular components of the light from the light
sources. This is called a local lighting model since the only light on a vertex is from a
light source, not from other objects. That is, lights are lights, not objects. Objects that are
brightly lit don't illuminate or shadow any other objects. We’ve included the reflection
coefficients for each term, k for completeness since we'll frequently see the lighting
equation. The reflection coefficients are in the [0, 1] range and are specified as part of the
material property. However, they are strictly empirical and since they simply adjust the
overall intensity of the material color, the material color values are usually adjusted so the
color intensity varies rather than using a reflection coefficient, so we'll ignore them in our
actual color calculations. This is a very simple lighting equation and gives fairly good
results. However, it does fail to take into account any gross roughness or anything other
than perfect isotropic reflection. That is, the surface is treated as being perfectly smooth
and equally reflective in all directions. Thus this equation is really only good at modeling
the illumination of objects that don't have any "interesting" surface properties. By this we
mean anything other than a smooth surface (like fur or sand) or a surface that doesn't
really reflect light uniformly in all directions (like brushed metal, hair, or skin). However,
with liberal use of texture maps to add detail, this model has served pretty well and can
still be used for a majority of the lighting processing to create a realistic environment in
real time. Let's take a look at the individual parts of the traditional lighting pipeline.

Ambient Light

Ambient light is the light that comes from all directions—thus all surfaces are illuminated
equally regardless of orientation. However, this is a big hack in traditional lighting
calculations since "real" ambient light really comes from the light reflected from the
"environment." This would take a long time to calculate and would require ray tracing or
the use of radiosity methods, so traditionally, we just say that there's x amount of global
ambient light and leave it at that. This makes ambient light a little different from the other
lighting components since it doesn't depend on a light source. However, we typically do
want ambient light in our scene because having a certain amount of ambient light makes
the scene look natural. One large problem with the simplified lighting model is that there
is no illumination of an object with reflected light—the calculations required are
enormous for a scene of any complexity (every object can potentially reflect some light
and provide some illumination for every other object in a scene) and are too time
consuming to be considered for real-time graphics. So, like most things in computer

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

279

graphics, we take a look at the real world, decide it's too complicated, and fudge up
something that kind a works. Thus the ambient light term is the "fudge factor" that
accounts for our simple lighting model's lack of an inter-object reflectance term. The
ambient light equation is given by

a a ai m s⊗=

Where ia is the ambient light intensity, ma is the ambient material color, and sa is the
light source ambient color. Typically, the ambient light is some amount of white (i.e.,
equal rgb values) light, but we can achieve some nice effects using colored ambient light.
Though it's very useful in a scene, ambient light doesn't help differentiate objects in a
scene since objects rendered with the same value of ambient tend to blend since the
resulting color is the same. Figure 1 shows a scene with just ambient illumination. We
can see that it's difficult to make out details or depth information with just ambient light.

Figure 1: Ambient light provides illumination, but no surface details.

Ambient lighting is our friend. With it we make our scene seem more realistic than it is.
A world without ambient light is one filled with sharp edges, of bright objects surrounded
by sharp, dark, harsh shadows. A world with too much ambient light looks washed out
and dull. Since the number of actual light sources supported by hardware FFP is limited
(typically to eight simultaneous), we'll be better off to apply the lights to add detail to the
area that our user is focused on and let ambient light fill in the rest. Before we point out
that talking about the hardware limitation of the number of lights has no meaning on
shaders, where we do the lighting calculations, we'll point out that eight lights were
typically the maximum that the hardware engineers created for their hardware. It was a
performance consideration. There's nothing stopping us (except buffer size) from writing
a shader that calculates the effects from a hundred simultaneous lights. But we think that
we'll find that it runs much too slowly to be used to render our entire scene. But the nice
thing about shaders is we can.

Diffuse Light

Diffuse light is the light that is absorbed by a surface and is reflected in all directions. In
the traditional model, this is ideal diffuse reflection—good for rough surfaces where the
reflected intensity is constant across the surface and is independent of viewpoint but

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

280

depends only upon the direction of the light source to the surface. This means that
regardless of the direction from which we view an object with a stationary diffuse light
source on it, the brightness of any point on the surface will remain the same. Thus, unlike
ambient light, the intensity of diffuse light is directional and is a function of the angle of
the incoming light and the surface. This type of shading is called Lambertian shading
after Lambert's cosine law, which states that the intensity of the light reflected from an
ideal diffuse surface is proportional to the cosine of the direction of the light to the vertex
normal. Since we're dealing with vertices here and not surfaces, each vertex has a normal
associated with it. We might hear talk of per-vertex normals vs. per-polygon normals. The
difference being that per polygon has one normal shared for all vertices in a polygon,
whereas per vertex has a normal for each vertex. OpenGL has the ability to specify per-
polygon normals, and Direct3D does not. Since vertex shaders can't share information
between vertices (unless we explicitly copy the data our self). We'll focus on per-vertex
lighting. Figure 2 shows the intensity of reflected light as a function of the angle between
the vertex normal and the light direction.

Figure 2: Diffuse light decreases as the angle between the light vector and the surface
normal increases.

The equation for calculating diffuse lighting is

Which is similar to the ambient light equation, except that the diffuse light term is now
multiplied by the dot product of the unit normal of the vertex and the unit direction vector
to the light from the vertex (not the direction from the light). Note that the md value is a
color vector, so there are rgb or rgba values that will get modulated.

Since , where theta is the angle between vectors, when the angle
between them is zero, cos(theta) is 1 and the diffuse light is at its maximum. When the
angle is 90°, cos (theta) is zero and the diffuse light is zero. One calculation advantage is
that when the cos(theta) value is negative, this means that the light isn't illuminating the
vertex at all. However, since we (probably!) don't want the light illuminating sides that it
physically can't shine on, we want to clamp the contribution of the diffuse light to
contribute only when cos(theta) is positive. Thus the equation in practice looks more like

Where we've clamped the diffuse value to only positive values, Figure 3 was rendered
with just diffuse lighting. Notice how we can tell a lot more detail about the objects and
pick up distance cues from the shading.

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

281

Figure 3: Diffuse shading brings out some surface details.

The problem with just diffuse lighting is that it's independent of the viewer's direction.
That is, it's strictly a function of the surface normal and the light direction. Thus as we
change the viewing angle to a vertex, the vertex's diffuse light value never changes. You
have to rotate the object (change the normal direction) or move the light (change the light
direction) to get a change in the diffuse lighting of the object. However, when we
combine the ambient and diffuse, as in Figure 4, we can see that the two types of light
give a much more realistic representation than either does alone. This combination of
ambient and diffuse is used for a surprisingly large number of items in rendered scenes
since when combined with texture maps to give detail to a surface we get a very
convincing shading effect.

Figure 4: When diffuse and ambient terms are combined, you get more detail and a more
natural-looking scene. The final color is the combination of the ambient and diffuse
colors.

Specular Light

Ambient light is the light that comes from the environment (i.e., it's directionless); diffuse
light is the light from a light source that is reflected by a surface evenly in all directions
(i.e., it's independent of the viewer's position). Specular light is the light from a light
source that is reflected by a surface and is reflected in such a manner that it's both a
function of the light's vector and the viewer's direction. While ambient light gives the

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

282

object an illuminated matte surface, specular light is what gives the highlights to an
object. These highlights are greatest when the viewer is looking directly along the
reflection angle from the surface. This is illustrated in Figure 5.

Figure 5: Specular light's intensity follows the reflection vector.

Most discussions of lighting (including this one) start with Phong's lighting equation
(which is not the same as Phong's shading equation). In order to start discussing specular
lighting, let's look at a diagram of the various vectors that are used in a lighting equation.
We have a light source, some point the light is shining on, and a viewpoint. The light
direction (from the point to the light) is vector l, the reflection vector of the light vector
(as if the surface were a mirror) is r, the direction to the viewpoint from the point is
vector v. The point's normal is n.

Phong's Specular Light Equation

Warnock [WARNOCK 1969] and Romney [ROMNEY 1969] were the first to try to
simulate highlights using a cos n (θ) term. But it wasn't until Phong Bui-Tong [BUI 1998]
reformulated this into a more general model that formalized the power value as a measure
of surface roughness that we approach the terms used today for specular highlights.
Phong's equation for specular lighting is

Figure 6: The relationship between the normal n, the light vector v, the view direction v,
and the reflection vector r.

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

283

It basically says that the more the view direction, v, is aligned with the reflection
direction, r, the brighter the specular light will be. The big difference is the introduction
of the ms term, which is a power term that attempts to approximate the distribution of
specular light reflection. The ms term is typically called the "shininess" value. The larger
the ms value, the "tighter" (but not brighter) the specular highlights will be. This can be

seen in the Figure 7, which shows values of for values of m ranging from 1 to
128. As we can see, the specular highlights get narrower for higher values, but they don't
get any brighter.

Figure 7: Phong's specular term for various values of the "shininess" term. Note that the
values never get above 1.

Now, as we can see, this requires some calculations since we can't know r before hand
since it's the v vector reflected around the point's normal. To calculate r we can use the
following equation:

If l and n are normalized, then the resulting r is normalized and the equation can be
simplified.

And just as we did for diffuse lighting, if the dot product is negative, then the term is
ignored.

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

284

Figure 8 shows the scene with just specular lighting. As we can see, we get an impression
of a very shiny surface.

Figure 8: A specular term just shows the highlights.

When we add the ambient, diffuse, and specular terms together, we get Figure 8A. The
three terms all act in concert to give us a fairly good imitation of a nice smooth surface
that can have a varying degree of shininess to it. We may have noticed that computing the
reflection vector took a fair amount of effort. In the early days of computer graphics,
there was a concerted effort to reduce anything that took a lot of computation, and the
reflection vector of Phong's equation was one such item.

Figure 8A: A combination of ambient, diffuse, and specular illumination.

Blinn's Simplification: OpenGL and DirectX Lighting

Now it's computationally expensive to calculate specular lighting using Phong's equation
since computing the reflection vector is expensive. Blinn [BLINN 1977] suggested,
instead of using the reflection and view vectors, that we create a "half" vector that lies
between the light and view vectors. This is shown as the h vector in Figure 9. Just as
Phong's equation maximizes when the reflection vector is coincident with the view vector
(thus the viewer is looking directly along the reflection vector), so does Blinn's. When the
half vector is coincident with the normal vector, then the angle between the view vector

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

285

and the normal vector is the same as between the light vector and the normal vector.
Blinn's version of Phong's equation is:

Figure 9: The half-angle vector is an averaging of the light and view vectors.
where the half vector is defined as

The advantage is that no reflection vector is needed; instead, we can use values that are
readily available, namely, the view and light vectors. Note that both OpenGL and the
DirectX FFP use Blinn's equation for specular light. Besides a speed advantage, there are
some other effects to note between Phong's specular equation and Blinn's. If we multiply
Blinn's exponent by 4, we approximate the results of Phong's equation. Thus if there's an
upper limit on the value of the exponent, Phong's equation can produce sharper
highlights. For l • v angles greater than 45° (i.e., when the light is behind an object and
we're looking at an edge), the highlights are longer along the edge direction for Phong's
equation. Blinn's equation produces results closer to those seen in nature.

For an in-depth discussion of the differences between the two equations, there's an
excellent discussion in [FISHER 1994]. Figure 10 shows the difference between Phong
lighting and Blinn—Phong lighting.

29-Mathematics of Lighting and Shading Part III VU

© Copyright Virtual University of Pakistan

286

Figure 10: Blinn-Phong specular on the left, Phong specular on the right.

Note: Some of the material, for the preparation of this lecture, is taken from a book Real
time shader Programming by Ron fosner

30-Mathematics of Lighting and Shading Part IV VU

© Copyright Virtual University of Pakistan

287

Lecture No.30 Mathematics of Lighting and Shading Part IV

The Lighting Equation
So now that we've computed the various light contributions to our final color value, we
can add them up to get the final color value. Note that the final color values will have to
be made to fit in the [0,1] range for the final rgb values.

Our final scene with ambient, diffuse, and (Blinn's) specular light contributions (with one
white light above and to the left of the viewer) looks like Figure 1.

Figure 1: A combination of ambient, diffuse, and specular illumination.

It may be surprising to discover that there's more than one way to calculate the shading of
an object, but that's because the model is empirical, and there's no correct way, just
different ways that all have tradeoffs. Until now though, the only lighting equation we've
been able to use has been the one we just formulated. Most of the interesting work in
computer graphics is tweaking that equation, or in some cases, throwing it out altogether
and coming up with something new.
The next sections will discuss some refinements and alternative ways of calculating the
various coefficients of the lighting equation.

Light Attenuation

Light in the real world loses its intensity as the inverse square of the distance from the
light source to the surface being illuminated. However, when put into practice, this
seemed to drop off the light intensity in too abrupt a manner and then not to vary too
much after the light was far away. An empirical model was developed that seems to give
satisfactory results. This is the attenuation model that's used in OpenGL and DirectX. The
fatten factor is the attenuation factor. The distance d between the light and the vertex is
always positive. The attenuation factor is calculated by the following equation:

30-Mathematics of Lighting and Shading Part IV VU

© Copyright Virtual University of Pakistan

288

Where the kc, k1, and kq parameters are the constant, linear, and quadratic attenuation
constants respectively, to get the "real" attenuation factor, we can set kq to one and the
others to zero. The attenuation factor is multiplied by the light diffuse and specular
values. Typically, each light will have a set of these parameters for itself. The lighting
equation with the attenuation factor looks like this.

Figure 2 shows a sample of what attenuation looks like. This image is the same as the one
shown in Figure 1, but with light attenuation added.

Figure 2: A scene with light attenuation. The white sphere is the light position.

Schlick's simplification for the Specular Exponential Term
Real-time graphics programmers are always looking for simplifications. We’ve probably
gathered that there's no such thing as the "correct" lighting equation, just a series of hacks
to make things look right with as little computational effort as possible. Schlick
[SCHLICK 1994] suggested a replacement for the exponential term since that's a fairly
expensive operation. If we define part of our specular light term as follows:

where S is either the Phong or Blinn-Phong flavor of the specular lighting equation, then
Schlick's simplification is to replace the preceding part of the specular equation with

Which eliminates the need for an exponential term, At first glance, a plot of Schlick's
function looks very similar to the exponential equation (Figure 3).

Figure 3: Schlick's term for specular looks very much like the more expensive Phong
term.

30-Mathematics of Lighting and Shading Part IV VU

© Copyright Virtual University of Pakistan

289

If we plot both equations in the same graph (Figure 4), we can see some differences and
evaluate just how well Schlick's simplification works. The blue values are Schlick's, and
the red are the exponential plot. As the view and light angles get closer (i.e., get closer to
zero on the x axis), we can see that the values of the curves are quite close. (For a value of
zero, they overlap.) As the angles approach a grazing angle, we can see that the
approximation gets worse. This would mean that when there is little influence from a
specular light, Schlick's equation would be slightly less sharp for the highlight.

Figure 4: Schlick's vs. Phong's specular terms.

We might notice the green line in Figure 4. Unlike the limit of a value of 128 for the
exponential imposed in both OpenGL and DirectX FFP, we can easily make our values in
the approximation any value we want. The green line is a value of 1024 in Schlick's
equation. We may be thinking that we can make a very sharp specular highlight using
Schlick's approximation with very large values—sharper than is possible using the
exponential term. Unfortunately, we can't since we really need impractically large values
(say, around 100 million) to boost it significantly over the exponential value for 128. But
that's just the kind of thinking that's going to get our creative juices flowing when writing
our own shaders! If the traditional way doesn't work, figure out something that will.

Oren—Nayar Diffuse Reflection
Though there's been a lot of research on specular reflection models, there's been less
research on diffuse reflection models. One of the problems of the standard Lambertian
model is that it considers the surface as a smooth diffuse surface. Surfaces that are really
rough, like sandpaper, exhibit much more of a backscattering effect, particularly when the
light source and the view direction are in the same direction.
The classic example of this is a full moon. If we look at the picture of the moon shown in
Figure 5, it's pretty obvious that this doesn't follow the Lambertian distribution—if it did,
the edges of the moon would be in near darkness. In fact, the edges look as bright as the
center of the moon. This is because the moon's surface is rough—the surface is made of a
jumble of dust and rock with diffuse reflecting surfaces at all angles—thus the quantity of
reflecting surfaces is uniform no matter the orientation of the surface; hence no matter the
orientation of the surface to the viewer, the amount of light reflecting off the surface is
nearly the same.

30-Mathematics of Lighting and Shading Part IV VU

© Copyright Virtual University of Pakistan

290

Figure 5: The full moon is a good example of something that doesn't show Lambertian
diffuse shading.

The effect we're looking at is called backscattering. Backscattering is when a rough
surface bounces around a light ray and then reflects the ray in the direction the light
originally came from. Note that there is a similar but different effect called retro
reflection. Retro reflection is the effect of reflecting light toward the direction from which
it came, no matter the orientation of the surface. This is the same effect that we see on
bicycle reflectors. However, this is due to the design of the surface features (made up of
vshaped or spherical reflectors) rather than a scattering effect.
In a similar manner, when the light direction is closer to the view direction, we get the
effect of forward scattering. Forward scattering is just backscattering from a different
direction. In this case, instead of near uniform illumination though, we get near uniform
loss of diffuse lighting. We can get the same effects here on Earth. Figures 6 and 7, shows
the same surfaces demonstrating backscattering and forward scattering. Both the dirt field
in Figure 6 and the soybean field in Figure 7 can be considered rough diffuse reflecting
surfaces.

Figure 6: The same dirt field showing wildly differing reflection properties.

30-Mathematics of Lighting and Shading Part IV VU

© Copyright Virtual University of Pakistan

291

Figure 7: A soybean field showing differing reflection properties.

Notice how the backscattering image shows a near uniform diffuse illumination, whereas
the forward scattering image shows a uniform dull diffuse illumination. Also note that we
can see specular highlights and more color variation because of the shadows due to the
rough surface whereas the backscattered image washes out the detail. In an effort to better
model rough surfaces, Oren and Nayar [OREN 1992] came up with a generalized version
of a Lambertian diffuse shading model that tries to account for the roughness of the
surface. They applied the Torrance—Sparrow model for rough surfaces with isotropic
roughness and provided parameters to account for the various surface structures found in
the Torrance—Sparrow model. By comparing their model with actual data, they
simplified their model to the terms that had the most significant impact. The Oren—
Nayar diffuse shading model looks like this.

Where

Now this may look daunting, but it can be simplified to something we can appreciate if
we replace the original notation with the notation we've already been using. ρ/π is a
surface reflectivity property, which we can replace with our surface diffuse color. E0 is a
light input energy term, which we can replace with our light diffuse color. And the θi
term is just our familiar angle between the vertex normal and the light direction. Making
these exchanges gives us

Which looks a lot more like the equations we've used, there are still some parameters to
explain.

30-Mathematics of Lighting and Shading Part IV VU

© Copyright Virtual University of Pakistan

292

σ is the surface roughness parameter. It's the standard deviation in radians of the angle of
distribution of the microfacets in the surface roughness model. The larger the value, the
rougher the surface.

θr is the angle between the vertex normal and the view direction.
φr - φi is the circular angle (about the vertex normal) between the light vector and the
view vector.

α is max(θi, θr).
β is min (θi, θr).

Note that if the roughness value is zero, the model is the same as the Lambertian diffuse
model. Oren and Nayar also note that we can replace the value 0.33 in coefficient A with
0.57 to better account for surface inter-reflection.

31-Mathematics of Lighting and Shading Part V VU

© Copyright Virtual University of Pakistan

293

Lecture No.31 Mathematics of Lighting and Shading Part V

Physically Based Illumination

In order to get a more realistic representation of lighting, we need to move away from the
simplistic models that are found hard coded in most graphics pipelines and move to
something that is based more in a physical representation of light as a wave with
properties of its own that can interact with its environment. To do this, we'll need to
understand how light passes through a medium and how hitting the boundary layer at the
intersection of two media can affect light's properties. In Figure 1, there's an incident light
hitting a surface. At the boundary of the two media (in this case, air and glass), there are
two resulting rays of light. The reflected ray is the one that we've already discussed to
some extent, and the other ray is the refracted or transmitted ray.

Figure 1: Light being reflected and refracted through a boundary.

In addition to examining the interaction of light with the surface boundary, we need a
better description of real surface geometries. Until now, we've been treating our surfaces
as perfectly smooth and uniform. Unfortunately, this prevents us from getting some
interesting effects. We'll go over trying to model a real surface later, but first let's look at
the physics of light interacting at a material boundary.

Reflection

Reflection of a light wave is the change in direction of the light ray when it bounces off
the boundary between two media. The reflected light wave turns out to be a simple case
since light is reflected at the same angle as the incident wave (when the surface is smooth
and uniform, as we'll assume for now). Thus for a light wave reflecting off a perfectly
smooth surface

Until now, we've treated all of our specular lighting calculations as essentially reflection
off a perfect surface, a surface that doesn't interact with the light in any manner other than
reflecting light in proportion to the color of the surface itself. Using a lighting model
based upon the Blinn—Phong model means that we'll always get a uniform specular
highlight based upon the color of the reflecting light and material, which means that all
reflections based on this model, will be reminiscent of plastic. In order to get a more

31-Mathematics of Lighting and Shading Part V VU

© Copyright Virtual University of Pakistan

294

interesting and realistic lighting model, we need to add in some nonlinear elements to our
calculations. First, let's examine what occurs when light is reflected off a surface. For a
perfect reflecting surface, the angle of the incoming light (the angle of incidence) is equal
to that of the reflected light. Phong's equation just blurs out the highlight a bit in a
symmetrical fashion. Until we start dealing with non uniform smooth surfaces in a
manner a bit more realistic than Phong's.

Refraction

Refraction happens when a light wave goes from one medium into another. Because of
the difference in the speed of light of the media, light bends when it crosses the boundary.
Snell's law gives the change in angles.

Where the n's are the material's index of refraction,

Snell's law states that when light refracts through a surface, the refracted angle is
shifted by a function of the ratio of the two material's indices of refraction. The index
of refraction of vacuum is 1, and all other material's indices of refraction are greater than
1. What this means is that in order to realistically model refraction, we need to know the
indices of refraction of the two materials that the light is traveling through. Let's look at
an example (Figure 2) to see what this really means. Let's take a simple case of a ray of
light traveling through the air (n air = 1) and intersecting a glass surface (n Glass = 1.5). If
the light ray hits the glass surface at 45°, at what angle does the refracted ray leave the
interface?

Figure 2: The refracted ray's angle is less than the incoming ray's.

The angle of incidence is the angle between the incoming vector and the surface.
Rearranging Snell's law, we can solve for the refracted angle.

Inserting the values give us

31-Mathematics of Lighting and Shading Part V VU

© Copyright Virtual University of Pakistan

295

This is a fairly significant change in the angle! If we change things around so that we are
following a light ray emerging from water into the air, we can run into another
phenomenon. Since the index of refraction is just a measure of the change in speed that
light travels in a material, we can observe from Snell's law (and the fact that the index of
refraction in a vacuum is 1) that light bends toward the normal when it slows down (i.e.,
when the material it's intersecting with has a higher index of refraction). Consequently,
when we intersect a medium that has a lower index of refraction (e.g., going from glass to
air), then the angle will increase. Ah, we must be thinking, we're approaching a
singularity here since we can then easily generate numbers that we can't take the inverse
sine of! If we use Snell's law for light going from water to air, and plug in 90° for the
refracted angle, we get 41.8° for the incident angle. This is called the critical angle at
which we observe the phenomenon of total internal reflection. At any angle greater than
this, light will not pass though a boundary but will be reflected internally. One place that
we get interesting visual properties is in the diamond—air interface. The refractive index
of a diamond is fairly high, 2.24, which means that it's got a very low critical angle, just
24.4°. This means that a good portion of the light entering a diamond will bounce around
the inside of the diamond hitting a number of air—diamond boundaries, and as long as
the angle is 24.4° or greater, it will keep reflecting internally. This is why diamonds are
cut to be relatively flatish on the top but with many faceted sides, so that light entering in
one spot will bounce around and exit at another, giving rise to the sparkle normally
associated with diamonds.

Another place where a small change in the indices of refraction occurs is on a road heated
by the sun when viewed from far away (hence a glancing incident angle). The hot air at
the road's surface has a slightly smaller index of refraction than the denser, cooler air
above it. This is why we get the effect of a road looking as though it were covered with
water and reflecting the image above it—the light waves are actually reflected off the
warm air—cold air interface.

Figure 3: The critical angle.

What makes this really challenging to model is that the index of refraction for most
materials is a function of the wavelength of the light. This means that not only is there a

31-Mathematics of Lighting and Shading Part V VU

© Copyright Virtual University of Pakistan

296

shift in the angle of refraction, but that the shift is different for differing wavelengths of
light. Figure 4 and 5 show the index of refraction for fused quartz and sapphire plotted
against the wavelength. We can see the general trend that shorter wavelength light
(bluish) tends to bend more than the longer (reddish) wavelengths.

Figure 4: Index of refraction as a function of wavelength for quartz.

Figure 5: Index of refraction as a function of wavelength for sapphire.

This is the phenomenon that's responsible for the spectrum that can be seen when white
light is passed through a prism (Figure 6). It's refraction that will break apart a light
source into its component colors, not reflection.

31-Mathematics of Lighting and Shading Part V VU

© Copyright Virtual University of Pakistan

297

Figure 6: The wavelength dependence of the index of refraction in action.

This is one area where our simplistic model of light breaks down since we're not
computing an entire spectrum of light waves, but we're limited to three primary colors.
For reference, the rgb values can be assigned to a range of wavelengths as follows:

There's a lot more to color science than just determining wavelengths, but that's beyond
our scope.
While the spectrum spreading effect of refraction is interesting in itself, the rgb nature of
computer color representation precludes performing this spreading directly—we can't
break up a color value into multiple color values. However, with some work, we can
compute the shade of the color for a particular angle of refraction and then use that as the
material color to influence the refracted color.

Temperature Correction for Refractive Index

Refractive index is a function of temperature, mostly due to density changes in materials
with changes in temperature. A simple correction can be applied in most circumstances to
allow us to use a value given at one temperature at another. For example, suppose the
index of refraction value we have is given at 25°C: η25. To convert the index to another
temperature, ηt, we can use the following equation:

Where the actual temperature we want is t, and the 25 is the temperature (both in °C) of
the actual index we have, η25.

32-Introduction to OpenGL VU

© Copyright Virtual University of Pakistan

298

Lecture No.32 Introduction to OpenGL

As a software interface for graphics hardware, OpenGL renders multidimensional objects
into a frame buffer. OpenGL is industry-standard graphics software with which
programmers can create high-quality still and animated three-dimensional color images.

Where Applicable:
OpenGL is built for compatibility across hardware and operating systems. This
architecture makes it easy to port OpenGL programs from one system to another. While
each operating system has unique requirements, the OpenGL code in many programs can
be used as is.

Developer Audience:
Designed for use by C/C++ programmers

Run-time Requirements:
OpenGL can run on Linux and all versions of 32 bit Microsoft Windows.

Most Widely Adopted Graphics Standard

OpenGL is the premier environment for developing portable, interactive 2D and 3D
graphics applications. Since its introduction in 1992, OpenGL has become the industry's
most widely used and supported 2D and 3D graphics application programming interface
(API), bringing thousands of applications to a wide variety of computer platforms.
OpenGL fosters innovation and speeds application development by incorporating a broad
set of rendering, texture mapping, special effects, and other powerful visualization
functions. Developers can leverage the power of OpenGL across all popular desktop and
workstation platforms, ensuring wide application deployment.

High Visual Quality and Performance

Any visual computing application requiring maximum performance-from 3D animation
to CAD to visual simulation-can exploit high-quality, high-performance OpenGL
capabilities. These capabilities allow developers in diverse markets such as broadcasting,
CAD/CAM/CAE, entertainment, medical imaging, and virtual reality to produce and
display incredibly compelling 2D and 3D graphics.

Developer-Driven Advantages

• Industry standard

An independent consortium, the OpenGL Architecture Review Board, guides the
OpenGL specification. With broad industry support, OpenGL is the only truly
open, vendor-neutral, multiplatform graphics standard.

• Stable

OpenGL implementations have been available for more than seven years on a
wide variety of platforms. Additions to the specification are well controlled, and
proposed updates are announced in time for developers to adopt changes.

32-Introduction to OpenGL VU

© Copyright Virtual University of Pakistan

299

Backward compatibility requirements ensure that existing applications do not
become obsolete.

• Reliable and portable

All OpenGL applications produce consistent visual display results on any
OpenGL API-compliant hardware, regardless of operating system or windowing
system.

• Evolving

Because of its thorough and forward-looking design, OpenGL allows new
hardware innovations to be accessible through the API via the OpenGL extension
mechanism. In this way, innovations appear in the API in a timely fashion, letting
application developers and hardware vendors incorporate new features into their
normal product release cycles.

• Scalable

OpenGL API-based applications can run on systems ranging from consumer
electronics to PCs, workstations, and supercomputers. As a result, applications can
scale to any class of machine that the developer chooses to target.

• Easy to use

OpenGL is well structured with an intuitive design and logical commands.
Efficient OpenGL routines typically result in applications with fewer lines of code
than those that make up programs generated using other graphics libraries or
packages. In addition, OpenGL drivers encapsulate information about the
underlying hardware, freeing the application developer from having to design for
specific hardware features.

• Well-documented

Numerous books have been published about OpenGL, and a great deal of sample
code is readily available, making information about OpenGL inexpensive and
easy to obtain.

Simplifies Software Development, Speeds Time-to-Market

OpenGL routines simplify the development of graphics software—from rendering a
simple geometric point, line, or filled polygon to the creation of the most complex lighted
and texture-mapped NURBS curved surface. OpenGL gives software developers access
to geometric and image primitives, display lists, modeling transformations, lighting and
texturing, anti-aliasing, blending, and many other features.

Every conforming OpenGL implementation includes the full complement of OpenGL
functions. The well-specified OpenGL standard has language bindings for C, C++,
Fortran, Ada, and Java. All licensed OpenGL implementations come from a single
specification and language binding document and are required to pass a set of
conformance tests. Applications utilizing OpenGL functions are easily portable across a
wide array of platforms for maximized programmer productivity and shorter time-to-
market.

32-Introduction to OpenGL VU

© Copyright Virtual University of Pakistan

300

All elements of the OpenGL state—even the contents of the texture memory and the
frame buffer—can be obtained by an OpenGL application. OpenGL also supports
visualization applications with 2D images treated as types of primitives that can be
manipulated just like 3D geometric objects. As shown in the OpenGL visualization
programming pipeline diagram above, images and vertices defining geometric primitives
are passed through the OpenGL pipeline to the frame buffer.

Available Everywhere

Supported on all UNIX® workstations, and shipped standard with every Windows
95/98/2000/NT and MacOS PC, no other graphics API operates on a wider range of
hardware platforms and software environments. OpenGL runs on every major operating
system including Mac OS, OS/2, UNIX, Windows 95/98, Windows 2000, Windows NT,
Linux, OPENStep, and BeOS; it also works with every major windowing system,
including Win32, MacOS, Presentation Manager, and X-Window System. OpenGL is
callable from Ada, C, C++, Fortran, Python, Perl and Java and offers complete
independence from network protocols and topologies.

Architected for Flexibility and Differentiation!

Although the OpenGL specification defines a particular graphics processing pipeline,
platform vendors have the freedom to tailor a particular OpenGL implementation to meet
unique system cost and performance objectives. Individual calls can be executed on
dedicated hardware, run as software routines on the standard system CPU, or
implemented as a combination of both dedicated hardware and software routines. This
implementation flexibility means that OpenGL hardware acceleration can range from
simple rendering to full geometry and is widely available on everything from low-cost
PCs to high-end workstations and supercomputers. Application developers are assured
consistent display results regardless of the platform implementation of the OpenGL
environment.

Using the OpenGL extension mechanism, hardware developers can differentiate their
products by developing extensions that allow software developers to access additional
performance and technological innovations.
Main purpose of OpenGL
As a software interface for graphics hardware, the main purpose of OpenGL is to render
two- and three-dimensional objects into a frame buffer. These objects are described as
sequences of vertices (that define geometric objects) or pixels (that define images).
OpenGL performs several processes on this data to convert it to pixels to form the final
desired image in the frame buffer.

The following topics present a global view of how OpenGL works:

 Primitives and Commands discusses points, line segments, and polygons as the
basic units of drawing; and the processing of commands.

 OpenGL Graphic Control describes which graphic operations OpenGL controls
and which it does not control.

 Execution Model discusses the client/server model for interpreting OpenGL
commands.

32-Introduction to OpenGL VU

© Copyright Virtual University of Pakistan

301

 Basic OpenGL Operation gives a high-level description of how OpenGL
processes data to produce a corresponding image in the frame buffer.

Primitives and Commands
OpenGL draws primitive points, line segments, or polygons subject to several selectable
modes. You can control modes independently of one another. That is, setting one mode
doesn't affect whether other modes are set (although many modes may interact to
determine what eventually ends up in the frame buffer). To specify primitives, set modes,
and perform other OpenGL operations, you issue commands in the form of function calls.

Primitives are defined by a group of one or more vertices. A vertex defines a point, an
endpoint of a line, or a corner of a polygon where two edges meet. Data (consisting of
vertex coordinates, colors, normals, texture coordinates, and edge flags) is associated with
a vertex, and each vertex and its associated data are processed independently, in order,
and in the same way. The only exceptions to this rule are cases in which the group of
vertices must be clipped so that a particular primitive fits within a specified region. In this
case, vertex data may be modified and new vertices created. The type of clipping depends
on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, although there
may be an indeterminate delay before a command takes effect. This means that each
primitive is drawn completely before any subsequent command takes effect. It also means
that state-querying commands return data that is consistent with complete execution of all
previously issued OpenGL commands.

OpenGL Graphic Control
OpenGL provides you with fairly direct control over the fundamental operations of two-
and three-dimensional graphics. This includes specification of such parameters as
transformation matrices, lighting equation coefficients, antialiasing methods, and pixel-
update operators. However, it doesn't provide you with a means for describing or
modeling complex geometric objects. Thus, the OpenGL commands you issue specify
how a certain result should be produced (what procedure should be followed) rather than
what exactly that result should look like. That is, OpenGL is fundamentally procedural
rather than descriptive. To fully understand how to use OpenGL, it helps to know the
order in which it carries out its operations.
Execution Model
The model for interpretation of OpenGL commands is client/server. Application code (the
client) issues commands, which are interpreted and processed by OpenGL (the server).
The server may or may not operate on the same computer as the client. In this sense,
OpenGL is network-transparent. A server can maintain several OpenGL contexts, each of
which is an encapsulated OpenGL state. A client can connect to any one of these
contexts. The required network protocol can be implemented by augmenting an already
existing protocol (such as that of the X Window System) or by using an independent
protocol. No OpenGL commands are provided for obtaining user input.

The window system that allocates frame buffer resources ultimately controls the effects of
OpenGL commands on the frame buffer. The window system:

32-Introduction to OpenGL VU

© Copyright Virtual University of Pakistan

302

 Determines which portions of the frame buffer OpenGL may access at any given
time.

 Communicates to OpenGL how those portions are structured.

Therefore, there are no OpenGL commands to configure the frame buffer or initialize
OpenGL. Frame buffer configuration is done outside of OpenGL in conjunction with the
window system; OpenGL initialization takes place when the window system allocates a
window for OpenGL rendering.
Basic OpenGL Operation
The following diagram illustrates how OpenGL processes data. As shown, commands
enter from the left and proceed through a processing pipeline. Some commands specify
geometric objects to be drawn, and others control how the objects are handled during
various processing stages.

The processing stages in basic OpenGL operation are as follows:

 Display list Rather than having all commands proceed immediately through the
pipeline, you can choose to accumulate some of them in a display list for
processing later.

 Evaluator The evaluator stage of processing provides an efficient way to
approximate curve and surface geometry by evaluating polynomial commands of
input values.

 Per-vertex operations and primitive assembly OpenGL processes geometric
primitives—points, line segments, and polygons—all of which are described by
vertices. Vertices are transformed and lit, and primitives are clipped to the view
port in preparation for rasterization.

 Rasterization The rasterization stage produces a series of frame-buffer addresses
and associated values using a two-dimensional description of a point, line
segment, or polygon. Each fragment so produced is fed into the last stage, per-
fragment operations.

 Per-fragment operations these are the final operations performed on the data
before it's stored as pixels in the frame buffer.

Per-fragment operations include conditional updates to the frame buffer based on
incoming and previously stored z values (for z buffering) and blending of

32-Introduction to OpenGL VU

© Copyright Virtual University of Pakistan

303

incoming pixel colors with stored colors, as well as masking and other logical
operations on pixel values.

Data can be input in the form of pixels rather than vertices. Data in the form of pixels,
such as might describe an image for use in texture mapping, skips the first stage of
processing described above and instead is processed as pixels, in the pixel operations
stage. Following pixel operations, the pixel data is either:

 Stored as texture memory, for use in the rasterization stage.

 Rasterized, with the resulting fragments merged into the frame buffer just as if
they were generated from geometric data.

OpenGL Processing Pipeline
Many OpenGL functions are used specifically for drawing objects such as points, lines,
polygons, and bitmaps. Some functions control the way that some of this drawing occurs
(such as those that enable antialiasing or texturing). Other functions are specifically
concerned with frame buffer manipulation. The topics in this section describe how all of
the OpenGL functions work together to create the OpenGL processing pipeline. This
section also takes a closer look at the stages in which data is actually processed, and ties
these stages to OpenGL functions.

The following diagram details the OpenGL processing pipeline. For most of the pipeline,
you can see three vertical arrows between the major stages. These arrows represent
vertices and the two primary types of data that can be associated with vertices: color
values and texture coordinates. Also note that vertices are assembled into primitives, then
into fragments, and finally into pixels in the framebuffer.
The OpenGL Visualization Programming Pipeline

OpenGL operates on image data as well as geometric primitives.

A detailed view on the next page.

32-Introduction to OpenGL VU

© Copyright Virtual University of Pakistan

304

33-OpenGL Programming – I VU

© Copyright Virtual University of Pakistan

305

Lecture No.33 OpenGL Programming - I

For writing a program, using OpenGL, for any of the operating systems we can use
OpenGL Utility Library named, “glut”. “glut” is used to initialize OpenGL on any
platform e.g. Microsoft Windows or Linux etc because it is platform independent. “glut”
can create window, get keyboard input and run an event handler or message loop in our
graphics application.

All those functions that start with the prefix “gl” are the core OpenGL functions and those
which start with “glu” or “glut” are the OpenGL utility library functions.

Let’s write a program that uses “glut” and then uses OpenGL function to create graphics.

#include <GL/glut.h>
int main()
{
 glutCreateWindow("first graphics window");
}

glutCreateWindow
glutCreateWindow creates a top-level window.

Usage
int glutCreateWindow(char *name);
name:

ASCII character string for use as window name.

Description: glutCreateWindow creates a top-level window. The name will be provided
to the window system as the window's name. The intent is that the window system will
label the window with the name.

Implicitly, the current window is set to the newly created window. Each created window
has a unique associated OpenGL context. State changes to a window's associated
OpenGL context can be done immediately after the window is created.
The display state of a window is initially for the window to be shown. But the window's
display state is not actually acted upon until glutMainLoop is entered. This means until
glutMainLoop is called, rendering to a created window is ineffective because the window
cannot yet be displayed.

The value returned is a unique small integer identifier for the window. The range of
allocated identifiers starts at one. This window identifier can be used when calling
glutSetWindow.

X Implementation Notes
The proper X Inter-Client Communication Conventions Manual (ICCCM) top-level
properties are established. The WM_COMMAND property that lists the command line
used to invoke the GLUT program is only established for the first window created.

33-OpenGL Programming – I VU

© Copyright Virtual University of Pakistan

306

This is the simple program that we have written so far. Now we will use more features of
“glut” library.

#include <GL/glut.h>
int main()
{
 //Set up the OpenGL rendering context.
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

 //Create a window and set its width and height.
 glutCreateWindow("Deform");
 glutReshapeWindow(640, 480);

 //The keyboard function gets called whenever we hit a key.
 glutKeyboardFunc(keyboard);

 //The display function gets called whenever the window
 //requires an update or when we explicitly call
 glutDisplayFunc(display);

 //The reshape function gets called whenever the window changes
 //shape.
 glutReshapeFunc(reshape);

 // The idle function gets called when there are no window-
 // events to process.
 glutIdleFunc(idle);

 //Get the ball rolling!
 glutMainLoop();
}

In the above program we have used “glut” functions. Let us discuss them in detail.

GlutInitDisplayMode

glutInitDisplayMode sets the initial display mode.

Usage
void glutInitDisplayMode(unsigned int mode);
mode

Display mode, normally the bitwise OR-ing of GLUT display mode bit masks. See
values below:

GLUT_RGBA
Bit mask to select an RGBA mode window. This is the default if neither
GLUT_RGBA nor GLUT_INDEX are specified.

GLUT_RGB
An alias for GLUT_RGBA.

GLUT_INDEX

33-OpenGL Programming – I VU

© Copyright Virtual University of Pakistan

307

Bit mask to select a color index mode window. This overrides GLUT_RGBA if it
is also specified.

GLUT_SINGLE
Bit mask to select a single buffered window. This is the default if neither
GLUT_DOUBLE or GLUT_SINGLE are specified.

GLUT_DOUBLE
Bit mask to select a double buffered window. This overrides GLUT_SINGLE if it
is also specified.

GLUT_ACCUM
Bit mask to select a window with an accumulation buffer.

GLUT_ALPHA
Bit mask to select a window with an alpha component to the color buffer(s).

GLUT_DEPTH
Bit mask to select a window with a depth buffer.

GLUT_STENCIL
Bit mask to select a window with a stencil buffer.

GLUT_MULTISAMPLE
Bit mask to select a window with multisampling support. If multisampling is not
available, a non-multisampling window will automatically be chosen. Note: both
the OpenGL client-side and server-side implementations must support the
GLX_SAMPLE_SGIS extension for multisampling to be available.

GLUT_STEREO
Bit mask to select a stereo window.

GLUT_LUMINANCE
Bit mask to select a window with a ``luminance'' color model. This model
provides the functionality of OpenGL's RGBA color model, but the green and
blue components are not maintained in the frame buffer. Instead each pixel's red
component is converted to an index between zero and
glutGet(GLUT_WINDOW_COLORMAP_SIZE)-1 and looked up in a per-
window color map to determine the color of pixels within the window. The initial
colormap of GLUT_LUMINANCE windows is initialized to be a linear gray
ramp, but can be modified with GLUT's colormap routines.

Description
The initial display mode is used when creating top-level windows, subwindows, and
overlays to determine the OpenGL display mode for the to-be-created window or overlay.

Note that GLUT_RGBA selects the RGBA color model, but it does not request any bits
of alpha (sometimes called an alpha buffer or destination alpha) be allocated. To request
alpha, specify GLUT_ALPHA. The same applies to GLUT_LUMINANCE.

GLUT_LUMINANCE Implementation Notes
GLUT_LUMINANCE is not supported on most OpenGL platforms.

glutReshapeWindow
glutReshapeWindow requests a change to the size of the current window.
Usage
void glutReshapeWindow(int width, int height);
width

New width of window in pixels.

33-OpenGL Programming – I VU

© Copyright Virtual University of Pakistan

308

height
New height of window in pixels.

Description
glutReshapeWindow requests a change in the size of the current window. The width and
height parameters are size extents in pixels. The width and height must be positive values.

The requests by glutReshapeWindow are not processed immediately. The request is
executed after returning to the main event loop. This allows multiple
glutReshapeWindow, glutPositionWindow, and glutFullScreen requests to the same
window to be coalesced.

In the case of top-level windows, a glutReshapeWindow call is considered only to be a
request for sizing the window. The window system is free to apply its own policies to top-
level window sizing. The intent is that top-level windows should be reshaped according to
glutReshapeWindow's parameters. Whether a reshape actually takes effect and, if so, the
reshaped dimensions are reported to the program by a reshape callback.

glutReshapeWindow disables the full screen status of a window if previously enabled.

glutKeyboardFunc
 glutKeyboardFunc sets the keyboard callback for the current window.
Usage
void glutKeyboardFunc(void (*func)(unsigned char key,
 int x, int y));
func

The new keyboard callback function.

Description
glutKeyboardFunc sets the keyboard callback for the current window. When a user types
into the window, each key press generating an ASCII character will generate a keyboard
callback. The key callback parameter is the generated ASCII character. The state of
modifier keys such as Shift cannot be determined directly; their only effect will be on the
returned ASCII data. The x and y callback parameters indicate the mouse location in
window relative coordinates when the key was pressed. When a new window is created,
no keyboard callback is initially registered, and ASCII key strokes in the window are
ignored. Passing NULL to glutKeyboardFunc disables the generation of keyboard
callbacks.
During a keyboard callback, glutGetModifiers may be called to determine the state of
modifier keys when the keystroke generating the callback occurred.
We can also see glutSpecialFunc for a means to detect non-ASCII key strokes.

glutDisplayFunc
 glutDisplayFunc sets the display callback for the current window.

Usage
void glutDisplayFunc(void (*func)(void));
func

The new display callback function.

33-OpenGL Programming – I VU

© Copyright Virtual University of Pakistan

309

Description
glutDisplayFunc sets the display callback for the current window. When GLUT
determines that the normal plane for the window needs to be redisplayed, the display
callback for the window is called. Before the callback, the current window is set to the
window needing to be redisplayed and (if no overlay display callback is registered) the
layer in use is set to the normal plane. The display callback is called with no parameters.
The entire normal plane region should be redisplayed in response to the callback (this
includes ancillary buffers if your program depends on their state).
GLUT determines when the display callback should be triggered based on the window's
redisplay state. The redisplay state for a window can be either set explicitly by calling
glutPostRedisplay or implicitly as the result of window damage reported by the window
system. Multiple posted redisplays for a window are coalesced by GLUT to minimize the
number of display callbacks called.
When an overlay is established for a window, but there is no overlay display callback
registered, the display callback is used for redisplaying both the overlay and normal plane
(that is, it will be called if either the redisplay state or overlay redisplay state is set). In
this case, the layer in use is not implicitly changed on entry to the display callback.

See glutOverlayDisplayFunc to understand how distinct callbacks for the overlay and
normal plane of a window may be established.

When a window is created, no display callback exists for the window. It is the
responsibility of the programmer to install a display callback for the window before the
window is shown. A display callback must be registered for any window that is shown. If
a window becomes displayed without a display callback being registered, a fatal error
occurs. Passing NULL to glutDisplayFunc is illegal as of GLUT 3.0; there is no way to
``deregister'' a display callback (though another callback routine can always be
registered).
Upon return from the display callback, the normal damaged state of the window (returned
by calling glutLayerGet(GLUT_NORMAL_DAMAGED) is cleared. If there is no
overlay display callback registered the overlay damaged state of the window (returned by
calling glutLayerGet(GLUT_OVERLAY_DAMAGED) is also cleared.

glutReshapeFunc
 glutReshapeFunc sets the reshape callback for the current window.
Usage
void glutReshapeFunc(void (*func)(int width, int height));
func

The new reshape callback function.
Description
glutReshapeFunc sets the reshape callback for the current window. The reshape callback
is triggered when a window is reshaped. A reshape callback is also triggered immediately
before a window's first display callback after a window is created or whenever an overlay
for the window is established. The width and height parameters of the callback specify
the new window size in pixels. Before the callback, the current window is set to the
window that has been reshaped.

If a reshape callback is not registered for a window or NULL is passed to
glutReshapeFunc (to deregister a previously registered callback), the default reshape

33-OpenGL Programming – I VU

© Copyright Virtual University of Pakistan

310

callback is used. This default callback will simply call glViewport(0,0,width,height) on
the normal plane (and on the overlay if one exists).
If an overlay is established for the window, a single reshape callback is generated. It is the
callback's responsibility to update both the normal plane and overlay for the window
(changing the layer in use as necessary).
When a top-level window is reshaped, subwindows are not reshaped. It is up to the GLUT
program to manage the size and positions of subwindows within a top-level window.
Still, reshape callbacks will be triggered for subwindows when their size is changed using
glutReshapeWindow.

glutIdleFunc
 glutIdleFunc sets the global idle callback.
Usage
void glutIdleFunc(void (*func)(void));
Description
glutIdleFunc sets the global idle callback to be ‘func’ so a GLUT program can perform
background processing tasks or continuous animation when window system events are
not being received. If enabled, the idle callback is continuously called when events are
not being received. The callback routine has no parameters. The current window and
current menu will not be changed before the idle callback. Programs with multiple
windows and/or menus should explicitly set the current window and/or current menu and
not rely on its current setting.
The amount of computation and rendering done in an idle callback should be minimized
to avoid affecting the program's interactive response. In general, not more than a single
frame of rendering should be done in an idle callback.
Passing NULL to glutIdleFunc disables the generation of the idle callback.

glutMainLoop
glutMainLoop enters the GLUT event processing loop.
Usage
void glutMainLoop(void);
Description
glutMainLoop enters the GLUT event processing loop. This routine should be called at
most once in a GLUT program. Once called, this routine will never return. It will call as
necessary any callbacks that have been registered.

glutSwapBuffers
glutSwapBuffers swaps the buffers of the current window if double buffered.
Usage
void glutSwapBuffers(void);
Description
Performs a buffer swap on the layer in use for the current window. Specifically,
glutSwapBuffers promotes the contents of the back buffer of the layer in use of the
current window to become the contents of the front buffer. The contents of the back
buffer then become undefined. The update typically takes place during the vertical retrace
of the monitor, rather than immediately after glutSwapBuffers is called.
An implicit glFlush is done by glutSwapBuffers before it returns. Subsequent OpenGL
commands can be issued immediately after calling glutSwapBuffers, but are not executed
until the buffer exchange is completed.
If the layer in use is not double buffered, glutSwapBuffers has no effect.

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

311

Lecture No.34 OpenGL Programming - II

#include "GL/glut.h"
#include <stdlib.h>

static void reshape(int w, int h)
{
 glViewport(0, 0, w, h);
}

static void keyboard(unsigned char key, int x, int y)
{
 switch(key)
 {
 case 27: //Escape
 exit(0);
 break;
 }
}

static void display()
{
}

static void idle()
{
 glClearColor(0.0f,0.0f,0.0f,0.0f);
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
///
// glRotatef(0.5f,0.0f,1.0f,0.0);

 glBegin(GL_TRIANGLES);

 glVertex3f(0.5f,0.2f,0.0f);
 glVertex3f(0.5f,0.0f,0.0f);
 glVertex3f(0.0f,0.0f,0.0f);

 glEnd();

 glutSwapBuffers();
}

static void initGL()
{
 float ratio= (float)640 /480 ;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

312

 gluPerspective(45.0,(float) 640 /480 , 1.0, 100.0);
 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity();
 glTranslated(0.0, 0.0, -5.0);

}
int main(int argc, char* argv[])
{

 //Initialize the GLUT library.
 glutInit(&argc, argv);

 //Set up the OpenGL rendering context.
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

 //Create a window and set its width and height.
 glutCreateWindow("Deform");
 glutReshapeWindow(640, 480);

 //Initialize our data structures.
 initGL();

 //The keyboard function gets called whenever we hit a key.
 glutKeyboardFunc(keyboard);

 //The display function gets called whenever the window
 //requires an update or when we explicitly call
 //glutPostRedisplay()
 glutDisplayFunc(display);

 //The reshape function gets called whenever the window changes
 //shape.
 glutReshapeFunc(reshape);

 //The idle function gets called when there are no window
 //events to process.
 glutIdleFunc(idle);

 //Get the ball rolling!
 glutMainLoop();

 return 0;
}

//eof

In the above program we have first set perspective projection matrix and then rendered a
triangle in idle function.

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

313

glMatrixMode
The glMatrixMode function specifies which matrix is the current matrix.
void glMatrixMode(
 GLenum mode
);

Parameters
mode

The matrix stack that is the target for subsequent matrix operations. The mode
parameter can assume one of three values:

Value Meaning

GL_MODELVIEW Applies subsequent matrix operations to
the modelview matrix stack.

GL_PROJECTION Applies subsequent matrix operations to
the projection matrix stack.

GL_TEXTURE Applies subsequent matrix operations to
the texture matrix stack.

Remarks
The glMatrixMode function sets the current matrix mode.

The following function retrieves information related to glMatrixMode:
Error Codes
The following are the error codes generated and their conditions.

Error code Condition

GL_INVALID_ENUM mode was not an accepted value.

GL_INVALID_OPERATION glMatrixMode was called between a call to
glBegin and the corresponding call to glEnd.

glLoadIdentity
The glLoadIdentity function replaces the current matrix with the identity matrix.
void glLoadIdentity(
 void
);

Remarks
The glLoadIdentity function replaces the current matrix with the identity matrix. It is
semantically equivalent to calling glLoadMatrix with the identity matrix

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

314

but in some cases it is more efficient.

The following functions retrieve information related to glLoadIdentity:
Error Codes

The following is the error code and its condition.

Error code Condition

GL_INVALID_OPERATION glLoadIdentity was called between a call to
glBegin and the corresponding call to glEnd.

glTranslated, glTranslatef

The glTranslated and glTranslatef functions multiply the current matrix by a translation
matrix.
void glTranslated(
 GLdouble x,
 GLdouble y,
 GLdouble z
);

void glTranslatef(
 GLfloat x,
 GLfloat y,
 GLfloat z
);

Parameters x, y, z
The x, y, and z coordinates of a translation vector.

Remarks
The glTranslate function produces the translation specified by (x, y, z). The translation
vector is used to compute a 4x4 translation matrix:

The current matrix (see glMatrixMode) is multiplied by this translation matrix, with the
product replacing the current matrix. That is, if M is the current matrix and T is the
translation matrix, then M is replaced with M•T.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn
after glTranslate is called are translated. Use glPushMatrix and glPopMatrix to save
and restore the untranslated coordinate system.

The following functions retrieve information related to glTranslated and glTranslatef:
Error Codes

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

315

The following is the error code and its condition.

Error code Condition

GL_INVALID_OPERATION glTranslate was called between a call to glBegin
and the corresponding call to glEnd.

gluPerspective

The gluPerspective is the function of gl utility library. This function sets up a perspective
projection matrix.
void gluPerspective(
 GLdouble fovy,
 GLdouble aspect,
 GLdouble zNear,
 GLdouble zFar
);

Parameters
fovy

The field of view angle, in degrees, in the y-direction.
aspect

The aspect ratio that determines the field of view in the x-direction. The aspect
ratio is the ratio of x (width) to y (height).

zNear
The distance from the viewer to the near clipping plane (always positive).

zFar
The distance from the viewer to the far clipping plane (always positive).

Remarks
The gluPerspective function specifies a viewing frustum into the world coordinate
system. In general, the aspect ratio in gluPerspective should match the aspect ratio of the
associated viewport. For example, aspect = 2.0 means the viewer's angle of view is twice
as wide in x as it is in y. If the viewport is twice as wide as it is tall, it displays the image
without distortion.

The matrix generated by gluPerspective is multiplied by the current matrix, just as if
glMultMatrix were called with the generated matrix. To load the perspective matrix onto
the current matrix stack instead, precede the call to gluPerspective with a call to
glLoadIdentity.

glRotated, glRotatef

The glRotated and glRotatef functions multiply the current matrix by a rotation matrix.
void glRotated(
 GLdouble angle,
 GLdouble x,
 GLdouble y,
 GLdouble z);
void glRotatef(
 GLfloat angle,

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

316

 GLfloat x,
 GLfloat y,
 GLfloat z);

Parameters
angle

The angle of rotation, in degrees.
x, y, z

The x, y, and z coordinates of a vector, respectively.
Remarks

The glRotate function computes a matrix that performs a counterclockwise rotation of
angle degrees about the vector from the origin through the point (x, y, z).

The current matrix (see glMatrixMode) is multiplied by this rotation matrix, with the
product replacing the current matrix. That is, if M is the current matrix and R is the
translation matrix, then M is replaced with M•R.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn
after glRotate is called are rotated. Use glPushMatrix and glPopMatrix to save and
restore the unrotated coordinate system.

Error Codes
The following is the error code and its condition.

Error code Condition

GL_INVALID_OPERATION glRotate was called between a call to glBegin and
the corresponding call to glEnd.

glClearColor

The glClearColor function specifies clear values for the color buffers.
void glClearColor(
 GLclampf red,
 GLclampf green,
 GLclampf blue,
 GLclampf alpha
);

Parameters
red, green, blue, alpha

The red, green, blue, and alpha values that glClear uses to clear the color buffers.
The default values are all zero.

Remarks
The glClearColor function specifies the red, green, blue, and alpha values used by
glClear to clear the color buffers. Values specified by glClearColor are clamped to the
range [0,1].

Error Codes
The following is the error code generated and its condition.

Error code Condition

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

317

GL_INVALID_OPERATION glClearColor was called between a call to
glBegin and the corresponding call to glEnd.

glColor
These functions set the current color.

glColor3b, glColor3d, glColor3f, glColor3i, glColor3s,
glColor3ub, glColor3ui, glColor3us, glColor4b, glColor4d,
glColor4f, glColor4i, glColor4s, glColor4ub, glColor4ui,
glColor4us, glColor3bv, glColor3dv, glColor3fv, glColor3iv,
glColor3sv, glColor3ubv, glColor3uiv, glColor3usv,
glColor4bv, glColor4dv, glColor4fv, glColor4iv, glColor4sv,
glColor4ubv, glColor4uiv, glColor4usv.
void glColor3b(
 GLbyte red,
 GLbyte green,
 GLbyte blue);
void glColor3f(
 GLfloat red,
 GLfloat green,
 GLfloat blue);
 Consult yourself for the documentation of rest of the functions of this type.

Parameters
red, green, blue

New red, green, and blue values for the current color.
alpha

A new alpha value for the current color. Included only in the four-argument
glColor4 function.

Remarks
OpenGL stores both a current single-valued color index and a current four-valued RGBA
color. The glColor function sets a new four-valued RGBA color.

There are two major variants to glColor:

• The glColor3 variants specify new red, green, and blue values explicitly, and set
the current alpha value to 1.0 implicitly.

• The glColor4 variants specify all four color components explicitly.

The glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, and glColor4i functions
take three or four signed byte, short, or long integers as arguments. When you append v to
the name, the color functions can take a pointer to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa and
exponent sizes. Unsigned integer color components, when specified, are linearly mapped
to floating-point values such that the largest representable value maps to 1.0 (full
intensity), and zero maps to 0.0 (zero intensity). Signed integer color components, when
specified, are linearly mapped to floating-point values such that the most positive
representable value maps to 1.0, and the most negative representable value maps to 1.0.
Floating-point values are mapped directly.

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

318

Neither floating-point nor signed integer values are clamped to the range [0,1] before
updating the current color. However, color components are clamped to this range before
they are interpolated or written into a color buffer.

You can update the current color at any time. In particular, you can call glColor between
a call to glBegin and the corresponding call to glEnd.

glClear
The glClear function clears buffers to preset values.
void glClear(
 GLbitfield mask
);

Parameters
mask

Bitwise OR operators of masks that indicate the buffers to be cleared. The four
masks are as follows.

Mask Buffer to be Cleared

GL_COLOR_BUFFER_BIT The buffers currently enabled for color
writing.

GL_DEPTH_BUFFER_BIT The depth buffer.

GL_ACCUM_BUFFER_BIT The accumulation buffer.

GL_STENCIL_BUFFER_BIT The stencil buffer.

Remarks

The glClear function sets the bitplane area of the window to values previously selected
by glClearColor, glClearIndex, glClearDepth, glClearStencil, and glClearAccum.
You can clear multiple color buffers simultaneously by selecting more than one buffer at
a time using glDrawBuffer.

The pixel-ownership test, the scissor test, dithering, and the buffer writemasks affect the
operation of glClear. The scissor box bounds the cleared region. The glClear function
ignores the alpha function, blend function, logical operation, stenciling, texture mapping,
and z-buffering.

The glClear function takes a single argument (mask) that is the bitwise OR of several
values indicating which buffer is to be cleared.

The value to which each buffer is cleared depends on the setting of the clear value for that
buffer.

If a buffer is not present, a glClear call directed at that buffer has no effect.
Error Codes

The following are the error codes generated and their conditions.

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

319

Error code Condition

GL_INVALID_VALUE Any bit other than the four defined bits was
set in mask.

GL_INVALID_OPERATION glClear was called between a call to glBegin
and the corresponding call to glEnd.

glBegin, glEnd

The glBegin and glEnd functions delimit the vertices of a primitive or a group of like
primitives.
void glBegin(
 GLenum mode
);
 void glEnd(
 void
);

Parameters
mode

The primitive or primitives that will be created from vertices presented between
glBegin and the subsequent glEnd. The following are accepted symbolic
constants and their meanings:
GL_POINTS
Treats each vertex as a single point. Vertex n defines point n. N points are drawn.
GL_LINES
Treats each pair of vertices as an independent line segment. Vertices 2n 1 and 2n
define line n. N/2 lines are drawn.
GL_LINE_STRIP
Draws a connected group of line segments from the first vertex to the last.
Vertices n and n+1 define line n. N 1 lines are drawn.
GL_LINE_LOOP
Draws a connected group of line segments from the first vertex to the last, then
back to the first. Vertices n and n+1 define line n. The last line, however, is
defined by vertices N and 1. N lines are drawn.
GL_TRIANGLES
Treats each triplet of vertices as an independent triangle. Vertices 3n 2, 3n 1, and
3n define triangle n. N/3 triangles are drawn.
GL_TRIANGLE_STRIP
Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. For odd n, vertices n, n + 1, and n + 2 define
triangle n. For even n, vertices n + 1, n, and n + 2 define triangle n. N 2 triangles
are drawn.
GL_TRIANGLE_FAN
Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. Vertices 1, n + 1, and n + 2 define triangle n.
N 2 triangles are drawn.
GL_QUADS
Treats each group of four vertices as an independent quadrilateral. Vertices 4n 3,
4n 2, 4n 1, and 4n define quadrilateral n. N/4 quadrilaterals are drawn.

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

320

GL_QUAD_STRIP
Draws a connected group of quadrilaterals. One quadrilateral is defined for each
pair of vertices presented after the first pair. Vertices 2n 1, 2n, 2n + 2, and 2n + 1
define quadrilateral n. N quadrilaterals are drawn. Note that the order in which
vertices are used to construct a quadrilateral from strip data is different from that
used with independent data.
GL_POLYGON
Draws a single, convex polygon. Vertices 1 through N define this polygon.

Remarks
The glBegin and glEnd functions delimit the vertices that define a primitive or a group of
like primitives. The glBegin function accepts a single argument that specifies which of
ten primitives the vertices compose. Taking n as an integer count starting at one, and N as
the total number of vertices specified, the interpretations are as follows:

• You can use only a subset of OpenGL functions between glBegin and glEnd. The
functions you can use are:

glVertex
glColor
glIndex
glNormal
glMaterial

 You can also use glCallList or glCallLists to execute display lists that include only
the preceding functions. If any other OpenGL function is called between glBegin and
glEnd, the error flag is set and the function is ignored.

• Regardless of the value chosen for mode in glBegin, there is no limit to the
number of vertices you can define between glBegin and glEnd. Lines, triangles,
quadrilaterals, and polygons that are incompletely specified are not drawn.
Incomplete specification results when either too few vertices are provided to specify
even a single primitive or when an incorrect multiple of vertices is specified. The
incomplete primitive is ignored; the complete primitives are drawn.

• The minimum specification of vertices for each primitive is:

Minimum number
of vertices

Type of primitive

1 Point

2 Line

3 Triangle

4 Quadrilateral

3 Polygon

34-OpenGL Programming – II VU

© Copyright Virtual University of Pakistan

321

Modes that require a certain multiple of vertices are GL_LINES (2), GL_TRIANGLES
(3), GL_QUADS (4), and GL_QUAD_STRIP (2).

Error Codes
The following are the error codes generated and their conditions.

Error code Condition

GL_INVALID_ENUM mode was set to an unaccepted value.

GL_INVALID_OPERATION A function other than glVertex, glColor,
glIndex, glNormal, glTexCoord,
glEvalCoord, glEvalPoint, glMaterial,
glEdgeFlag, glCallList, or glCallLists was
called between glBegin and the
corresponding glEnd. The function glEnd
was called before the corresponding glBegin
was called, or glBegin was called within a
glBegin/glEnd sequence.

glVertex

These functions specify a vertex.

glVertex2d, glVertex2f, glVertex2i, glVertex2s, glVertex3d,
glVertex3f, glVertex3i, glVertex3s, glVertex4d, glVertex4f,
glVertex4i, glVertex4s, glVertex2dv, glVertex2fv, glVertex2iv,
glVertex2sv, glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv,
glVertex4dv, glVertex4fv, glVertex4iv, glVertex4sv
void glVertex3f(
 GLfloat x,
 GLfloat y,
 GLfloat z
);
Consult the documentation to yourself for the functions of the same nature.

Parameters
x, y, z, w

The x, y, z, and w coordinates of a vertex. Not all parameters are present in all
forms of the command.

Remarks
The glVertex function commands are used within glBegin/glEnd pairs to specify point,
line, and polygon vertices. The current color, normal, and texture coordinates are
associated with the vertex when glVertex is called.

When only x and y are specified, z defaults to 0.0 and w defaults to 1.0. When x, y, and z
are specified, w defaults to 1.0.

Invoking glVertex outside of a glBegin/glEnd pair results in undefined behavior.

35-Curves VU

© Copyright Virtual University of Pakistan

322

Lecture No.35 Curves

We all know what a curve is. In this lecture we will explore the mathematical definition
of a curve in a form that is very useful to geometric modeling and other computer
graphics applications: that definition consists of a set of parametric equations. The
mathematics of parametric equations is the basis for Bezier, NURBS (Non Uniform
Rational Beta Splines), and Hermite curves. We will discuss both plane curves and space
curves here and also discussion of the tangent vector, blending functions, conic curves,
re-parameterization, and continuity and composite curves.

Parametric Equations of a Curve

A parametric curve is one whose defining equations are given in terms of a single,
common, independent variable called the parametric variable. We have already
encountered parametric variables in earlier discussions of vectors, lines, and planes.
Imagine a curve in three-dimensional space, each point on the curve has a unique set of
coordinates: a specific x value, y value, and z value. Each coordinate is controlled by a
separate parametric equation, whose general form looks like

)1()(),(),(LLLuzzuyyuxx ===

where x(u) stands for some as yet unspecified function in which u is the independent

variable; for example, x(u) = au2 + bu + c, and similarly
for y(u) and z(u). It is important to understand that each
of these is an independent expression. This will become
clear as we discuss specific examples later.
The dependent variables are the x,y, and z coordinates
themselves, because their values depend on the value of
the parametric variable u. Engineers and programmers
who do geometric modeling usually prefer these kinds of
expressions because the coordinates x, y, and z are
independent of each other, and each is defined by its own
parametric equation.

Figure 1: point of a curve defined by a vector.

Each point on a curve is defined by a vector p (figure 1). The components of this vector
are x(u), y(u), and z(u). We express this as

)2()(LLLupp =

Which says that the vector p is a function of the parametric variable u.

35-Curves VU

© Copyright Virtual University of Pakistan

323

There is a lot of information in equation 2. When we expand it into component form, it
becomes

)3()]()()([)(LLLuzuyuxup =

The specific functions that define the vector components of p determine the shape of the
curve. In fact, this is one way to define a curve – by simple choosing or designing these
mathematical functions. There re only a few simple rules that we must follow: 1) define
each component by a single, common parametric variable, and 2) make sure that each
point on the curve corresponds to a unique value of the parametric variable. The last rule
can be put another way: each value of the parametric variable must correspond to a
unique point on the curve.

Plane Curves

To define plane curves, we use parametric functions that are second-degree polynomials:

zzz

yyy

xxx

cubuauz

cubuauy

cubuaux

++=

++=

++=

2

2

2

)(

)4()(

)(

LLL

Where the a, b, and c terms are constant coefficients.
We can combine x(u), y(u), z(u), and their respective coefficients into and equivalent,
more concise, vector equation:

)5()(2 LLLcbuauuP ++=

We allow the parametric variable to take on values only in the interval 0 ≤ u ≤ 1. This
ensures that the equation produces a bounded line segment. The coefficients a, b, c, in this
equation are vectors, and each has three components; for example, a = [ax ay az].

This curve has serious limitations. Although it can generate all the conic curves, or a
close approximation to them, it cannot generate curve with an inflection point, like an S-
shaped curve, no matter what values we select for the coefficients a, b, c. to do this
requires a cubic polynomial.

How do we define a specific plane curve, one that we can display, with define end points,
and a precise orientation in space? first, note in equation 4 or 5 that there are nine
coefficients that we must determine: ax, bx, …, cz. if we know the two end points and the
intermediate point.

End points and an intermediate point on the curve, then we now nine quantities that we
can express in terms of these coefficients (3 points x 3 coordinates each = 9 known
quantities), and we can use these three points to define a unique curve (Figure 2). By
applying some simple algebra to these relationships, we can rewrite Equation 5 in terms

35-Curves VU

© Copyright Virtual University of Pakistan

324

of the three points. To one of the end points we assign u = 0, and to the other u = 1. To
the intermediate point, we arbitrarily assign u = 0.5. We can write this points as

P0 = [x0 y0 z0]
P0.5 = [x0.5 y0.5 z0.5] (6)
P1 = [x1 y1 z1]

Where the subscripts indicate the value of the parametric variable at each point.

Now we solve equations 4 for the ax, bx, …, cz coefficients in terms of these points. Thus,
for x at u = 0, u =0.5, and u =1, we have

x0 = cx
x0.5 = 0.25ax + 0.5bx + cx (7)
x1 = ax + bx + cx

with similar equations for y, and z.

Figure 2: A plane curve defined by three points

Next we solve these three equations in three unknowns for ax, bx, and cx, finding

ax = 2x0 - 4x0.5 + 2x1
bx = -3x0 + 4x0.5 + x1 (8)
cx = x0

Substituting this result in to equation 4 yields

x(u) = (2x0 - 4x0.5 + 2x1) u2 + (-3x0 + 4x0.5 - x1) u + x0 (9)

Again, there are equivalent expressions for y(u) and z(u).
We rewrite equation 9 as follows:

x(u) = (2u2 – 3u + 1) x0 + (-4u2 + 4u)x0.5 + (2u2 – u) x1 (10)

35-Curves VU

© Copyright Virtual University of Pakistan

325

Using this result and equivalent expressions for y(u) and z(u), we combine them into a
single vector equation:

P(u) = (2u2 – 3u + 1) P0 + (-4u2 + 4u)P0.5 + (2u2 – u) P1 (11)

Equation 11 produces the same curve as Equation 5. The curve will always lie in a plane
no matter what three points we choose, Furthermore, it is interesting to note that the point
P0.5 which is on the curve a t u= 0.5, is not necessarily half way along the length of the
curve between p0 and p1. We can show this quite convincingly by choosing three points
to define a curve such that two of them are relatively close together (figure 3). In fact, if
we assign a different value to the parametric variable for the intermediate point, then we
obtain different values for the coefficients in equations 8. This, in turn, means that a
different curve is produced, although it passes through the same three points.

Equation 5 is the algebraic form and equation 11 is the geometric form. Each of these
equations can be written more compactly with matrices. Compactness is not the only
advantage to matrix notation. Once a curve is defined in matrix form, we can use the full
power of matrix algebra to solve many geometry problems.

Figure 3: Curve defined by three non-uniformly spaced points.

So now we rewrite equation 5 using the following substitutions:

)12(]1[22 LLLcbuau
c
b
a

uu ++=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)13(]1[2 LLLuuU =

)14(][LLLTcbaA =

35-Curves VU

© Copyright Virtual University of Pakistan

326

And finally we obtain

)15()(LLLUAup =

Remember that A is really a matrix of vectors, so that

)16(LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

zyx

zyx

zyx

ccc
bbb
aaa

c
b
a

A

The nine terms on the right are called the algebraic coefficients.
Next, we convert equation 11 into matrix form. The right-hand side looks like the product
of two matrices:)]2()44()132[(222 uuuuuu −+−+− and][15.00 ppp . This
means that

)17()]2()44()132[()(

1

5.0

0
222 LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+−+−=

p
p
p

uuuuuuup

Using the following substitutions:

)18()]2()44()132[(222 LLLuuuuuuF −+−+−=
and

)19(

111

5.05.05.0

000

1

5.0

0

LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

zyx
zyx
zyx

p
p
p

p

where P is the control point matrix and the nine terms on the right are its elements or the
geometric coefficients, we can now write

)20()(LLLFPup =

This is the matrix version of the geometric form.
Because it is the same curve in algebraic form, p(u)=UA, or geometric form, p(u)=FP, we
can write

)21(LLLUAFP =
The F matrix is itself the product of two other matrices:

35-Curves VU

© Copyright Virtual University of Pakistan

327

)22(
001
143

242
]1[2 LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−
= uuF

The matrix on the left we recognize as U, and we can denote the other matrix as

)23(
001
143

242
LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−
=M

This means that

)24(LLLUMF =

Using this we substitute appropriately to find

)25(LLLUAUMP =

Pre-multiplying each side of this equation by 1−U yields

)26(LLLAMP =
This expresses a simple relationship between the algebraic and geometric coefficients

)27(LLLMPA =
Or

)28(1 LLLAMP −=

The matrix M is called a basis transformation matrix, and F is called a blending function
matrix.

36-Space Curves VU

© Copyright Virtual University of Pakistan

328

Lecture No.36 Space Curves

A space curve is not confined to a plane. It is free to twist through space. To define a
space curve we must use parametric functions that are cubic polynomials. For x (u) we
write

() xxxx ducubuaux +++= 23 (1)

With similar expressions for y(u) and z(u). Again the a, b, c and d terms are constant
coefficients. As we did with Equation for a plane curve, we combine the x(u), y(u) , and
z(u) expressions into a single vector equation :

() dcubuauup +++= 23 (2)

If a = 0, then this equation is identical to Equation discussed in plane curves

To define a specific curve in space, we use the same approach as we did for a plane curve.
This time, though, there are 12 coefficients to be determined. We specify four points
through which we want the curve to pass, which provides all the information we need to
determine a, b, c, and d. but which four points? Two are obvious: ()0p and ()1p , the end
points at 0=u and 1=u . For various reasons beyond our scope, it turns out to be

advantageous to use two intermediate points that we assign parametric values of
3
1

=u

and
3
2

=u , or ⎟
⎠
⎞

⎜
⎝
⎛

3
1p and ⎟

⎠
⎞

⎜
⎝
⎛

3
2p . So we now have the four points we need:

Figure 1 Four points define a cubic space curve

()0p , ⎟
⎠
⎞

⎜
⎝
⎛

3
1p and ⎟

⎠
⎞

⎜
⎝
⎛

3
2p and ()1p , which we can rewrite as the more convenient p1, p2,

p3, and p4 (Figure 1).

Substituting each of the values of the parametric variable ()1, 32, 31, 0=u into
Equation 1, we obtain the following four equations in four unknowns:

xdx =1

xxxx dcbax +++=
3
1

9
1

27
1

2

xxxx dcbax +++=
3
2

9
4

27
8

3 (3)

x

y
z

P1

P1/3

P0

P2/3

36-Space Curves VU

© Copyright Virtual University of Pakistan

329

xxxx dcbax +++=4

Now we can express ax, bx, cx and dx in terms of x1, x2, x3, and x4. After doing the necessary
algebra, we obtain

4321 2
9

2
27

2
27

2
9 xxxxax +−+−=

4321 2
918

2
459 xxxxbx −+−=

4321 2
99

2
11 xxxxcx +−+−= (4)

1xd x =

We substitute these results into Equation 1, producing

()

14321

2
321

3
4321

2
99

2
11

2
918

2
459

2
9

2
27

2
27

2
9

xuxxxx

uxxxxuxxxxux

+⎟
⎠
⎞

⎜
⎝
⎛ +−+−+

⎟
⎠
⎞

⎜
⎝
⎛ −+−+⎟

⎠
⎞

⎜
⎝
⎛ +−+−=

 (5)

All this looks a bit messy right now, but we can put it into a neat, much more compact
form. We begin by rewriting Equation 5 as follows:

()

4
23

3
23

2
23

1
23

2
9

2
9918

2
27

9
2
45

2
271

2
119

2
9

xuuuxuuu

xuuuxuuuux

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −+−+

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ +−+−=

 (6)

Using equivalent expressions for y(u) and z(u), we can summarize them as a single vector
equation:

()

4
23

3
23

2
23

1
23

2
9

2
9918

2
27

9
2
45

2
271

2
119

2
9

puuupuuu

puuupuuuup

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −+−+

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ +−+−=

 (7)

This means that, given four point assigned successive values of u (in this case at u=0, 1/3,
2/3, 1), equation 7 produces a curve that starts at p1, passes through p2 and p3, and ends
at p4.

Now let’s take one more step toward a more compact notation. Using the four parametric
functions appearing in Equation 7, we define a new matrix, []4321 GGGGG = ,
where

⎟
⎠
⎞

⎜
⎝
⎛ +−+−= 1

2
119

2
9 23

1 uuuG ⎟
⎠
⎞

⎜
⎝
⎛ +−= uuuG 9

2
45

2
27 23

2

⎟
⎠
⎞

⎜
⎝
⎛ −+−= uuuG 918

2
27 23

3 ⎟
⎠
⎞

⎜
⎝
⎛ +−= uuuG 23

4 2
9

2
9 (8)

And then define a matrix P containing the control points, []TPPPPP 4321= , so that

36-Space Curves VU

© Copyright Virtual University of Pakistan

330

() GPuP = (9)

The matrix G is the product of two other matrices, U and N:
UNG = (10)

Where []TuuuU 123= and

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−−

=

0001

1
2
99

2
11

1
2
9

2
459

2
9

2
27

2
27

2
9

N (11)

(Note that N is another example of a basis transformation matrix.)
Now we let

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

zyx

zyx

zyx

zyx

ddd
ccc
bbb
aaa

d
c
b
a

A (12)

Using matrices, Equation 2 becomes
() UAuP = (13)

Which looks a lot like Equation for a plane curve, except that we have defined new U and
A matrices? In fact, Equation is a special case of the formulation for a space curve.

To convert the information in the A matrix into that required for the P matrix, we do
some simple matrix algebra, using Equations 9, 10 and 13. First we have

UNPGP = (14)
And then

UNPUA = (15)
Or more simply

NPA = (16)

37-The Tangent Vector VU

© Copyright Virtual University of Pakistan

331

Lecture No.37 The Tangent Vector

Another way to define a space curve does not use intermediate points. It uses the tangents
at each end of the curve, instead. Every point on a curve has a straight line associated
with it called the tangent line, which is related to the first derivation of the Parametric
functions x(u), y(u), and z(u), such as those given by Equation 2 of previous lecture. Thus

() () ()uz
du
danduy

du
dux

du
d , , (1)

From elementary calculus, we can compute, for example,
()
() duudx

duudy
du
dy

/
/ = (2)

We can treat () () () duudzandduudyduudx ,, as components of a vector along the
tangent line to the curve. We call this the tangent vector, and define it as

() () () () ⎥⎦
⎤

⎢⎣
⎡= kuz

du
djuy

du
diux

du
duPu (3)

Or more simply as

[]uuuu zyxP = (4)

(Here the superscript u indicates the first derivative operation with respect to the
independent variable u). This is a very powerful idea, and we will now see how to use it
to define a curve.

In the last section, we discussed how to define a curve by specifying four points. Now we
have another way to define a curve. We will still use the two end points, but instead of
two intermediate points, we will use the tangent vectors at each end to supply the
information we need to define a curve. By manipulating these tangent vectors, we can
control the slope at each end. The set of vectors 0p , 1p , up

0
, and up1 are called the

boundary conditions. This method itself is called the cubic Hermite interpolation, after C.
Hermite (1822-1901) the French mathematician who made significant contributions to
our understanding of cubic and quadratic polynomials.

We differentiate to obtain the x component of the tangent vector:

() xxx
u cubuaxudx

du
d

++== 23 2 (5)

Figure 1 Defining a curve using end points and tangent vectors.

() xxxx ducubuaux +++= 23 (1A)

P1

P0

Pu
1

Pu
0

37-The Tangent Vector VU

© Copyright Virtual University of Pakistan

332

Evaluating (1A) and Equation 5 at u = 0, u = 1, yields

xxx
u

x
u

xxxx

x

cbax

cx

dcbax
dx

++=

=

+++=
=

231

0

1

0

 (6)

Using these four equations in four unknowns, we solve for ax , bx , cx and dx in terms of the
boundary conditions

()
()

0

0

1010

1010

23

2

xd
xc

xxxxb

xxxxa

x

u
x

uu
x

uu
x

=
=

−−+−=

++−=

 (7)

Substituting the result into Equation (1A), yields

() () () 00
2

01010
3

1010 23322 xxuxxxxxuxxxxux uuuuuu ++−−+−+++−= (8)

Rearranging terms we can rewrite this as

() () () () () uu xuuxuuuxuuxuuux 1
23

0
23

1
23

0
23 232132 −++−++−++−= (9)

Because y(u) and z(u) have equivalent forms, we can include them by rewriting Equation
9 in vector form:

() () () () () uu puupuuupuupuuup 1
23

0
23

1
23

0
23 232132 −++−++−++−= (10)

To express Equation 10 in matrix notation, we first define a blending function matrix
[]4321 FFFFF = , where

23
4

23
3

23
2

23
1

2

32

132

uuF

uuuF

uuF

uuF

−=

+−=

+−=

+−=

 (11)

These matrix elements are the polynomial coefficients of the vectors which we rewrite as

() uu pFpFpFpFup 14031201 +++= (12)

If we assemble the vectors representing the boundary conditions into a matrix B,

[]Tuu ppppB 1010= (13)

Then

 () FBup = (14)

Here again we write the matrix F as the product of two matrices, U and M, so that
 UMF = (15)
where

37-The Tangent Vector VU

© Copyright Virtual University of Pakistan

333

 []123 uuuU = (16)

and

 M =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−

−

0001
0100
1233

1122

 (17)

Rewriting Equation 14 using these substitutions, we obtain

() UMBuP = (18)

It is easy to show that the relationship between the algebraic and geometric coefficients
for a space curve. Since

() UAuP = (19)

the relationship between A and B is, again,

 MBA = (20)
Consider the four vectors that make up the boundary condition matrix. There is nothing
extraordinary about the vectors defining the end points, but what about the two tangent
vector? A tangent vector certainly defines the slope at one end of the curve, but a vector
has characteristics of both direction and magnitude. All we need to specify ht slope is a
unit tangent vector at each end, say t0 and t1. But p0, p1, t0, and t1 supply only 10 of the 12
pieces of information needed to completely determine the curve. So the magnitude of the
tangent vector is also necessary and contributes to the shape of the curve. In fact, we can
write up0 and up1 as:

000 tmpu = (21)

And

 111 tmpu = (22)

Clearly, m0, and m1 are the magnitudes of up0 and up1 .

Using these relationships, we modify Equation 10 as follows:

() () () () () 11
23

00
23

1
23

0
23 232132 tmuutmuuupuupuuup −++−++−++−= (23)

Now we can experiment with a curve (Figure 2). Let’s hold p0, p1, t0, and t1 constants
and see what happens to the shape of the curve as we vary m0 and m1. For simplicity we
will consider a curve in the x, y plane. This means that z0, z1, uz0 and uz1 are all equal to
zero.

The B matrix for the curve drawn with the bold line (and with m0 = m1 = 1) is

37-The Tangent Vector VU

© Copyright Virtual University of Pakistan

334

 B =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11

00

1

0

tm
tm

P
P

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 0707.0707.0
0707.0707.0
001
000

 (24)

Carefully consider this array of 12 elements; they uniquely define the curve. By changing
either m0 or m1, or both, we can change the shape of the curve. But it is a restricted kind
of change because not only do the end points remain fixed, but the end slopes are also
unchanged!

The three curves drawn with light lines in Figure 3 show the effects of varying m0 and
m1. This is a very powerful tool for designing curves, making it possible to join up end-
to-end many curves in a smooth way and still exert some control over the interior shape
of each individual curve. For example, as we increase the value of m0 while holding m1
fixed, the curve seems to be pushed toward p1. Keeping m0 and m1 equal but increasing
their value increases the maximum deflection of the curve from the x-axis and increases
the curvature at the maximum. (Under some conditions, not necessarily desirable, we can
force a loop to form).

38-Bezier Curves VU

© Copyright Virtual University of Pakistan

335

Lecture No.38 Bezier Curves

The Bezier curve is an important part of almost every computer-graphics illustration
program and computer-aided design system in use today. It is used in many ways, from
designing the curves and surfaces of automobiles to defining the shape of letters in type
fonts. And because it is numerically the most stable of all the polynomial-based curves
used in these applications, the Bezier curve is the ideal standard for representing the more
complex piecewise polynomial curves.

In the early 1960s, Peter Bezier began looking for a better way to define curves and
surfaces one that would be useful to a design engineer. He was familiar with the work of
Ferguson and Coons and their parametric cubic curves and bicubic surfaces. However,
these did not offer an intuitive way to alter and control shape. The results of Bezier’s
research led to the curves and surfaces that bear his name and became part of the
UNISURF system. The French automobile manufacturer, Renault used UNISURF to
design the sculptured surfaces of many of its products.

A Geometric Construction

We can draw a Bezier curve using a simple recursive geometric construction. Let’s begin
by constructing a second-degree curve. We select three points A, B, C so that line AB is a
tangent to the curve at A, and BC is tangent at C. The curve begins at A and ends at C.
For any ratio, ui, we construct points D and E so that

Figure 1: Geometric Construction of a second-degree Bezier curve.

iu
BC
BE

AB
AD

== (1)

On DE we construct F so that DF/DE = uj . Point F is on the curve. Repeating this process
for other values of ui, we produce a series of points on a Bezier curve. Note that we must
be consistent in the order in which we sub-divide AB and BC.

To define this curve in a coordinate system, let point A = (xA, yA), B= (xB, yB). Then
coordinates of points D and E for some value of ui are

()
()ABiAD

ABiAD

yyuyy
xxuxx

−+=
−+=

 (2)

And

38-Bezier Curves VU

© Copyright Virtual University of Pakistan

336

()
()BCiBE

BCiBE

yyuyy
xxuxx

−+=
−+=

 (3)

The coordinates of point F for some value of ui are

()
()DEiDF

DEiDF

yyuyy
xxuxx

−+=
−+=

 (4)

To obtain xF and yF in terms of the coordinates of points A, B and C, for any value of ui in
the unit interval, we substitute appropriately from Equation 2 and 3 into equations 4 of
plane curve. After rearranging terms to simplify, we find

() ()
() () CiBiiAiF

CiBiiAiF

yuyuuyuy

xuxuuxux
22

22

121

121

+−+−=

+−+−=
 (5)

We generalize this set of equations for any point on the curve using the following
substitutions:

()
() F

F

yuy
xux

=
=

 (6)

And we let

CBA

CBA

yyyyyy
xxxxxx
===
===

210

210

 (7)

Now we can rewrite Equation 5 as

() () ()
() () () 2

2
10

2

2
2

10
2

121

121

yuyuuyuuy

xuxuuxuux

+−+−=

+−+−= (8)

This is the set of second-degree equations for the coordinates of points on Bezier curve
based on our construction.

We express this construction process and Equations 8 in terms of vectors with the
following substitutions. Let the vector po represent point A, p1 point B, and p2 point C.
Form vector geometry we have D >>>> and E == >>> if we let F = >>> we see that

() () () ()[]010121010 ppupppupuppupup −+−−++−+= (9)
We rearrange terms to obtain a more compact vector equation of a second degree Bezier
curve:

() () () 2
2

10
2 121 pupuupuup +−+−= (10)

The ratio u is the parametric variable. Later we will see that this equation is an example of
a Bernstein polynomial. Note that the curve will always lie in the plane containing the
three control points, but the points do not necessarily lie in the xy plane.

Similar constructions apply to Bezier curves of any degree. In fact the degree of a Bezier
curve is equal to n-1, where n is the number of control points.
Figure 2 shows the construction of point on a cubic Bezier curve, which requires four
control points A, B, C, and D to define it. The curve begins at point A tangent to the, AB,
and ends at D and tangent to CD. We construct points E, F, and G so that

38-Bezier Curves VU

© Copyright Virtual University of Pakistan

337

iu
CD
CG

BC
BF

AB
AE

=== (11)

Figure 2: Geometric construction of a cubic Bezier curve

On EF and FG we locate H and I, respectively, so that

iu
FG
FI

EF
EH

== (12)

Finally on HI we locate J so that

iu
HI
HJ

= (13)

We can make no more subdivisions, which means that point J is on the curve. If we
continue this process for a sequence of points, then their locus defines the curve. If points
A, B, C, and D are represented by the vectors >>>>> respectively, then expressing the
construction of the intermediate points E, F, G, H, and I in terms of these vectors to
produce point J, or P(u), yields
() () () ()[]

() () ()[]
() () ()[]}
{

01012101

0021232121

010121010

ppupppupuppu
pppupppupuppupu

ppupppupuppupup

−−−−++−−
−−+−−++−++

−+−−++−+=
 (14)

This awkward expression simplifies nicely to
() () () () 0

3
2

2
1

2
0

3 13131 pupuupuupuup +−+−+−= (15)
Of course this construction, of a cubic curve with its four control points is done in the
plane of the paper. However, the cubic polynomial allows a curve that is nonplanar; that
is, it can represent a curve that twists in space.

The geometric construction of a Bezier curve shows how the control points influence its
shape. The curve begins on the first point and ends on the last point. It is tangent to the
lines connecting the first two points and the last two points. The curve is always
contained within the convex hull of the control points.
No one spends time constructing and plotting the points of a Bezier curve by hand, of
course. A computer does a much faster and more accurate job. However, it is worth doing
several curves this way for insight into the characteristics of Bezier curves.

An Algebraic Definition
Bezier began with the idea that any point p(u) on a curve segment should be given by an
equation such as the following:

38-Bezier Curves VU

© Copyright Virtual University of Pakistan

338

() ()∑
=

=
n

i
ii ufpup

0

 (16)

Figure 3: Bezier curves and their control points

Equation 16 is a compact way to express the sum of several similar terms because what it
says is this:

() () () ()ufpufpufpup nn+++=1100 (17)
Of which Equation 10 and 15 are specific examples, for n=2 and n=3, respectively.
The n+1 functions, that is the fi(u) must produce a cure that has certain well-defined
characteristics. Here are some of the most important ones:

1. The curve must start on the first control point, p0, and end on the last, pn.
Mathematically, we say that the functions must interpolate these two points.

2. The curve must be tangent to the line given by p1 – p0 at pn - pn-1 at pn .
3. The functions fi(u) must be symmetric with respect to u and (1-u). This lets us

reverse the sequence of control points without changing the shape of the curve.

Other characteristics can be found in more advanced works on the subject.

 Figure

Figure 4: Three different sequences of four control points

38-Bezier Curves VU

© Copyright Virtual University of Pakistan

339

Figure 5: Modifying the shape of a Bezier curve.

A family of functions called Bernstein polynomials satisfies these requirements. They are
the basis functions of the Bezier curve (Other curves, such as the NURBS curves, use
different, but related, basis functions). We rewrite Equation 16 using them so that

() ()∑
=

=
n

i
nii uBpup

0
, (18)

Were the basis functions are
() () () inin

ini uuuB −−= 1, (19)

() ()!1!
!
−

=
ni
nn

i (20)

The symbol ! is the factorial operator. For example, 3! = 3 x 2 x 1, 5! = 5 x 4 x 3 x 2 x 1,
so forth. We use the following conventions when evaluating Equation20; If i and u equal
zero, then ui = 1 and 0! = 1. We see that for n+1 control points, the basis functions
produce an nth-degree polynomial.

Expanding Equation 18 for a second degree Bezier curve (When n=2 and there are three
control points) produces

() () () ()uBpuBpuBpup 2,222,112,00 ++= (21)

From Equation 20, we find

 () ()22,0 1 uuB −= (22)

() ()uuuB −= 122,1 (23)

() 2
2,2 uuB = (24)

38-Bezier Curves VU

© Copyright Virtual University of Pakistan

340

These are the basis functions for a second-degree Bezier curve.

Figure 6: Bezier curve basis functions

Substituting them into Equation 21 and rearranging terms, we find

() () () 2
2

10
2 121 pupuupuup +−+−= (25)

This is the same expression we found from the geometric construction, Equation 10. The
variable u is now called the parametric variable.

Now, let’s expand Equation 18 for a cubic Bezier curve, where n=3:

() () () () ()uBpuBpuBpuBpup 3,333,223,113,00 +++= (26)
And from Equation 20 we find

() ()33,0 1 uuB −= (27)

() ()23,1 13 uuuB −= (28)

() ()uuuB −= 13 2
3,2 (29)

() 3

3,3 uuB = (30)

Substituting these into Equation 26 and rearranging terms produces

() () () () 3
3

2
2

1
2

0
3 13131 pupuupuupuup +−+−+−= (31)

Bezier curve equations are well suited for expression in matrix form. We can expand the
cubic parametric functions and rewrite Equation 31 as

38-Bezier Curves VU

© Copyright Virtual University of Pakistan

341

()

()
()
()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+−
−+−

=

3

2

1

0

3

32

32

32

33
363

331

p
p
p
p

u
uu

uuu
uuu

up

T

 (32)

or as

() []
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

3

2

1

0

23

0001
0033
0363
1331

1

p
p
p
p

uuuup (33)

If we let

[]123 uuuU = (34)
[]TppppP 3210 = (35)

and

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

0001
0033
0363
1331

M (36)

Then we can write Equation 33 even more compactly as

() UMPup = (37)

Note that the composition of the matrices U, M, and P varies according to the number of
control points (that is, the degree of the Bernstein polynomial basis functions).

39-Building Polygonal Models of Surfaces VU

© Copyright Virtual University of Pakistan

342

Lecture No.39 Building Polygonal Models of Surfaces

Constructing polygonal approximations to surfaces is an art, and there is no substitute for
experience. This section, however, lists a few pointers that might make it a bit easier to
get started.

• Keep polygon orientations consistent. Make sure that when viewed from the
outside, all the polygons on the surface are oriented in the same direction (all
clockwise or all counterclockwise). Consistent orientation is important for
polygon culling and two-sided lighting. Try to get this right the first time, since it's
excruciatingly painful to fix the problem later. (If you use glScale*() to reflect
geometry around some axis of symmetry, you might change the orientation with
glFrontFace() to keep the orientations consistent.)

• When you subdivide a surface, watch out for any nontriangular polygons. The
three vertices of a triangle are guaranteed to lie on a plane; any polygon with four
or more vertices might not. Nonplanar polygons can be viewed from some
orientation such that the edges cross each other, and OpenGL might not render
such polygons correctly.

• There's always a trade-off between the display speed and the quality of the image.
If you subdivide a surface into a small number of polygons, it renders quickly but
might have a jagged appearance; if you subdivide it into millions of tiny polygons,
it probably looks good but might take a long time to render. Ideally, you can
provide a parameter to the subdivision routines that indicates how fine a
subdivision you want, and if the object is farther from the eye, you can use a
coarser subdivision. Also, when you subdivide, use large polygons where the
surface is relatively flat, and small polygons in regions of high curvature.

• For high-quality images, it's a good idea to subdivide more on the silhouette edges
than in the interior. If the surface is to be rotated relative to the eye, this is tougher
to do, since the silhouette edges keep moving. Silhouette edges occur where the
normal vectors are perpendicular to the vector from the surface to the viewpoint -
that is, when their vector dot product is zero. Your subdivision algorithm might
choose to subdivide more if this dot product is near zero.

• Try to avoid T-intersections in your models (see Figure 1). As shown, there's no
guarantee that the line segments AB and BC lie on exactly the same pixels as the
segment AC. Sometimes they do, and sometimes they don't, depending on the
transformations and orientation. This can cause cracks to appear intermittently in
the surface.

Figure 1 : Modifying an Undesirable T-intersection

• If you're constructing a closed surface, make sure to use exactly the same numbers

for coordinates at the beginning and end of a closed loop, or you can get gaps and
cracks due to numerical round-off. Here's a two-dimensional example of bad code:

39-Building Polygonal Models of Surfaces VU

© Copyright Virtual University of Pakistan

343

#define PI 3.14159265
#define EDGES 30
/* draw a circle */
glBegin(GL_LINE_STRIP);

for (i = 0; i <= EDGES; i++)

glVertex2f(cos((2*PI*i)/EDGES), sin((2*PI*i)/EDGES));
glEnd();

The edges meet exactly only if your machine manages to calculate the sine and cosine of
0 and of (2*PI*EDGES/EDGES) and gets exactly the same values. If you trust the
floating-point unit on your machine to do this right, the authors have a bridge they'd like
to sell you.... To correct the code, make sure that when i == EDGES, you use 0 for the
sine and cosine, not 2*PI*EDGES/EDGES. (Or simpler still, use GL_LINE_LOOP
instead of GL_LINE_STRIP, and change the loop termination condition to i < EDGES.)

An Example: Building an Icosahedron

To illustrate some of the considerations that arise in approximating a surface, let's look at
some example code sequences. This code concerns the vertices of a regular icosahedron
(which is a Platonic solid composed of twenty faces that span twelve vertices, each face
of which is an equilateral triangle). An icosahedron can be considered a rough
approximation for a sphere. Example 1 defines the vertices and triangles making up an
icosahedron and then draws the icosahedron.

Example 1 : Drawing an Icosahedron
#define X .525731112119133606
#define Z .850650808352039932
static GLfloat vdata[12][3] = {

{-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z},
{0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},
{Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0}

};
static GLuint tindices[20][3] = {

{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
{8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6},
{6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11}

};

int i;
glBegin(GL_TRIANGLES);

for (i = 0; i < 20; i++) {
/* color information here */
glVertex3fv(&vdata[tindices[i][0]][0]);
glVertex3fv(&vdata[tindices[i][1]][0]);
glVertex3fv(&vdata[tindices[i][2]][0]);

}
glEnd();

39-Building Polygonal Models of Surfaces VU

© Copyright Virtual University of Pakistan

344

The strange numbers X and Z are chosen so that the distance from the origin to any of the
vertices of the icosahedron is 1.0. The coordinates of the twelve vertices are given in the
array vdata[][], where the zeroth vertex is {- &Xgr; , 0.0, &Zgr; }, the first is {X, 0.0,
Z}, and so on. The array tindices[][] tells how to link the vertices to make triangles. For
example, the first triangle is made from the zeroth, fourth, and first vertex. If you take the
vertices for triangles in the order given, all the triangles have the same orientation.

The line that mentions color information should be replaced by a command that sets the
color of the ith face. If no code appears here, all faces are drawn in the same color, and
it'll be impossible to discern the three-dimensional quality of the object. An alternative to
explicitly specifying colors is to define surface normals and use lighting, as described in
the next subsection.

Note: In all the examples described in this section, unless the surface is to be drawn only
once, you should probably save the calculated vertex and normal
coordinates so that the calculations don't need to be repeated each time that the surface is
drawn. This can be done using your own data structures or by
constructing display lists.

Calculating Normal Vectors for a Surface
If a surface is to be lit, you need to supply the vector normal to the surface. Calculating
the normalized cross product of two vectors on that surface provides normal vector. With
the flat surfaces of an icosahedron, all three vertices defining a surface have the same
normal vector. In this case, the normal needs to be specified only once for each set of
three vertices. icosahedron.

Example 2 : Generating Normal Vectors for a Surface

GLfloat d1[3], d2[3], norm[3];
for (j = 0; j < 3; j++) {

d1[j] = vdata[tindices[i][0]][j] - vdata[tindices[i][1]][j];
d2[j] = vdata[tindices[i][1]][j] - vdata[tindices[i][2]][j];

}
normcrossprod(d1, d2, norm);
glNormal3fv(norm);

The function normcrossprod() produces the normalized cross product of two vectors, as
shown in Example 3.

Example 3 : Calculating the Normalized Cross Product of Two Vectors

void normalize(float v[3]) {

GLfloat d = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
if (d == 0.0) {

error("zero length vector");
return;

}
v[0] /= d; v[1] /= d; v[2] /= d;

}

39-Building Polygonal Models of Surfaces VU

© Copyright Virtual University of Pakistan

345

void normcrossprod(float v1[3], float v2[3], float out[3])
{

GLint i, j;
GLfloat length;
out[0] = v1[1]*v2[2] - v1[2]*v2[1];
out[1] = v1[2]*v2[0] - v1[0]*v2[2];
out[2] = v1[0]*v2[1] - v1[1]*v2[0];
normalize(out);

}

If you're using an icosahedron as an approximation for a shaded sphere, you'll want to use
normal vectors that are perpendicular to the true surface of the sphere, rather than being
perpendicular to the faces. For a sphere, the normal vectors are simple; each points in the
same direction as the vector from the origin to the corresponding vertex. Since the
icosahedron vertex data is for an icosahedron of radius 1, the normal and vertex data is
identical. Here is the code that would draw an icosahedral approximation of a smoothly
shaded sphere

glBegin(GL_TRIANGLES);

for (i = 0; i < 20; i++) {
glNormal3fv(&vdata[tindices[i][0]][0]);
glVertex3fv(&vdata[tindices[i][0]][0]);
glNormal3fv(&vdata[tindices[i][1]][0]);
glVertex3fv(&vdata[tindices[i][1]][0]);
glNormal3fv(&vdata[tindices[i][2]][0]);
glVertex3fv(&vdata[tindices[i][2]][0]);

}
glEnd();

Improving the Model
A twenty-sided approximation to a sphere doesn't look good unless the image of the
sphere on the screen is quite small, but there's an easy way to increase the accuracy of the
approximation. Imagine the icosahedron inscribed in a sphere, and subdivide the triangles
as shown in Figure 2. The newly introduced vertices lie slightly inside the sphere, so push
them to the surface by normalizing them (dividing them by a factor to make them have
length 1). This subdivision process can be repeated for arbitrary accuracy. The three
objects shown in Figure 2 use 20, 80, and 320 approximating triangles, respectively.

Figure 2: Subdividing to Improve a Polygonal Approximation to a Surface

39-Building Polygonal Models of Surfaces VU

© Copyright Virtual University of Pakistan

346

Example 4 performs a single subdivision, creating an 80-sided spherical approximation.

Example 4 : Single Subdivision

void drawtriangle(float *v1, float *v2, float *v3)
{

glBegin(GL_TRIANGLES);
glNormal3fv(v1); glVertex3fv(v1);
glNormal3fv(v2); glVertex3fv(v2);
glNormal3fv(v3); glVertex3fv(v3);

glEnd();
}
void subdivide(float *v1, float *v2, float *v3)
{

GLfloat v12[3], v23[3], v31[3];
GLint i;
for (i = 0; i < 3; i++) {

v12[i] = v1[i]+v2[i];
v23[i] = v2[i]+v3[i];
v31[i] = v3[i]+v1[i];

}
normalize(v12);
normalize(v23);
normalize(v31);
drawtriangle(v1, v12, v31);
drawtriangle(v2, v23, v12);
drawtriangle(v3, v31, v23);
drawtriangle(v12, v23, v31);

}
for (i = 0; i < 20; i++) {

subdivide(&vdata[tindices[i][0]][0],
&vdata[tindices[i][1]][0],
&vdata[tindices[i][2]][0]);

}

Example 5 is a slight modification of Example 4 which recursively subdivides the
triangles to the proper depth. If the depth value is 0, no subdivisions are performed, and
the triangle is drawn as is. If the depth is 1, a single subdivision is performed, and so on.

Example 5 : Recursive Subdivision

void subdivide(float *v1, float *v2, float *v3, long depth)
{

GLfloat v12[3], v23[3], v31[3];
GLint i;
if (depth == 0) {

drawtriangle(v1, v2, v3);
return;

}

39-Building Polygonal Models of Surfaces VU

© Copyright Virtual University of Pakistan

347

for (i = 0; i < 3; i++) {
v12[i] = v1[i]+v2[i];
v23[i] = v2[i]+v3[i];
v31[i] = v3[i]+v1[i];

}
normalize(v12);
normalize(v23);
normalize(v31);
subdivide(v1, v12, v31, depth-1);
subdivide(v2, v23, v12, depth-1);
subdivide(v3, v31, v23, depth-1);
subdivide(v12, v23, v31, depth-1);

}

Generalized Subdivision
A recursive subdivision technique such as the one described in Example 5 can be used for
other types of surfaces. Typically, the recursion ends either if a certain depth is reached or
if some condition on the curvature is satisfied (highly curved parts of surfaces look better
with more subdivision).
To look at a more general solution to the problem of subdivision, consider an arbitrary
surface parameterized by two variables u[0] and u[1]. Suppose that two routines are
provided:

void surf(GLfloat u[2], GLfloat vertex[3], GLfloat normal[3]);
float curv(GLfloat u[2]);

If surf() is passed u[], the corresponding three-dimensional vertex and normal vectors (of
length 1) are returned. If u[] is passed to curv(), the curvature of the surface at that point
is calculated and returned. (See an introductory textbook on differential geometry for
more information about measuring surface curvature.)

Example 6 shows the recursive routine that subdivides a triangle either until the
maximum depth is reached or until the maximum curvature at the three
vertices is less than some cutoff.

Example 6 : Generalized Subdivision

void subdivide(float u1[2], float u2[2], float u3[2], float cutoff, long depth)
{

GLfloat v1[3], v2[3], v3[3], n1[3], n2[3], n3[3];
GLfloat u12[2], u23[2], u32[2];
GLint i;
if (depth == maxdepth || (curv(u1) < cutoff && curv(u2) < cutoff && curv(u3) <
cutoff)) {

surf(u1, v1, n1); surf(u2, v2, n2); surf(u3, v3, n3);
glBegin(GL_POLYGON);

glNormal3fv(n1); glVertex3fv(v1);
glNormal3fv(n2); glVertex3fv(v2);
glNormal3fv(n3); glVertex3fv(v3);

glEnd();

39-Building Polygonal Models of Surfaces VU

© Copyright Virtual University of Pakistan

348

return;
}
for (i = 0; i < 2; i++) {

u12[i] = (u1[i] + u2[i])/2.0;
u23[i] = (u2[i] + u3[i])/2.0;
u31[i] = (u3[i] + u1[i])/2.0;

}
subdivide(u1, u12, u31, cutoff, depth+1);
subdivide(u2, u23, u12, cutoff, depth+1);
subdivide(u3, u31, u23, cutoff, depth+1);
subdivide(u12, u23, u31, cutoff, depth+1);

}

40-Fractals VU

© Copyright Virtual University of Pakistan

349

Lecture No.40 Fractals

Fractal are geometric patterns that is repeated at ever smaller scales to produce irregular
shapes and surfaces that can not be represented by classical geometry. Fractals are used in
computer modeling of irregular patterns and structure in nature.
According to Webster's Dictionary a fractal is defined as being "derived from the Latin
word fractus meaning broken, uneven: any of various extremely irregular curves or
shapes that repeat themselves at any scale on which they are examined."

Mandelbrot, the discoverer of fractals gives two definitions:

• "I coined fractal from the Latin adjective fractus. The corresponding Latin verb
frangere means 'to break:' to create irregular fragments. It is therefore sensible -
and how appropriate for our needs! - that, in addition to 'fragmented' (as in
fraction or refraction), fractus should also mean 'irregular,' both meanings being
preserved in fragment"[3]

• Every set with a non-integer (Hausdorff-Besicovitch) dimension (D) is a fractal.
However not every fractal has an integer D. A fractal is by definition a set for
which D strictly exceeds the topological dimension (D^).[3]

Hausdorff-Besicovitch(Fractal Dimension)
To understand the second definition we need to be able to understand the fractal
dimension. So first we have to develop an understanding of “how to calculate the
dimension of an object”. Below we have three different objects.

1. As you can see the line is broken into 4 smaller lines. Each of these lines is similar
to the original line, but they are all 1/4 the scale. This is the idea of self similarity.

2. The square below is also broken into smaller pieces. Each of which is 1/4th the
size of the original. In this case it takes 16 of the smaller pieces to create the
original.

3. As with the others the cube is also broken down into smaller cubes of 1/4 the size
of the original. It takes 64 of these smaller cubes to create the original cube.

40-Fractals VU

© Copyright Virtual University of Pakistan

350

By looking at this we begin to see a pattern:
4 = 4^1
16 = 4^2
64 = 4^3

This gives us the equation:

N = S^D

Where N is the number of small pieces that go into the larger one, S is the scale to which
the smaller pieces compare to the larger one and D is the dimension.
We now have the tools to be able to calculate the dimension. Just solve for D in the
previous equation. When we do this we find that the Dimension is:

D = log N / log S
This dimension is the Hausdorff-Besicovitch dimension.

Koch Curve
Euclidean Geometry is the stuff we all learn in school. It is the geometry of lines, planes,
circles etc. It's simple and it works, and for a long time, mathematicians thought it was a
reasonable representation of nature. However, people soon discovered that they could
draw (or at least begin to draw) certain curves and surfaces that could not be described by
the classical geometry.

How hard can it be to draw a curve? Let us attempt to describe. This is the Koch curve:

Draw a triangle.
If we say that each line is of length 1, then the total length of the curve is 3.

40-Fractals VU

© Copyright Virtual University of Pakistan

351

Now take each edge in turn and add another triangle, a third of the size. So now there are
12 edges and 12 points. The length of the curve is now 4. Repeat the process again, and
again, forever.
Length = 5.3333

Length = 7.1111

40-Fractals VU

© Copyright Virtual University of Pakistan

352

Length = 12.6420

As we continue adding edges, the length of the curve increases. If we add edges forever,
then length of the curve reaches infinity, but the whole curve nevertheless covers a finite
area. The curve is infinitely detailed. No matter how closely we zoom into the image, it
always shows up more detail.

Self Similarity
So what do these mathematical curiosities have to do with the real world? Well,
everything as it turns out. Such objects turn up all the time in the natural world. Animals,
plants, rocks, crystals and liquids all exhibit fractal properties and self similarity.
Let’s take a look at a common plant, the fern. The fern is typical of many plants in that it
exhibits self similarity. A fern consists of a leaf, which is made up from many similar, but
smaller leaves, each of which, in turn, is made from even smaller leaves. The closer we
look the more detail we see.

The following figure is a standard fern, which we may well find while being dragged on
long walks in the country by your parents long before we are able to fully appreciate the
beauty of nature. We will see the overall theme of repeating leaves. Each smaller leaf
looks similar to the larger leaf.

40-Fractals VU

© Copyright Virtual University of Pakistan

353

Looking a little closer, we can see that those small leaves are made up from even smaller
leaves.

Of course, in reality, a fern does have a smallest leaf, though we’re sure every fern aspires
to be like that one. What is interesting it that the program to generate this image is only a
few lines long. The same tends to be true for all fractals. A very simple algorithm can
explain an infinitely complex object.

Fractal Geometry
Almost all geometric forms used for building man made objects belong to Euclidean
geometry, they are comprised of lines, planes, rectangular volumes, arcs, cylinders,
spheres, etc. These elements can be classified as belonging to an integer dimension, 1, 2,
or 3. This concept of dimension can be described both intuitively and mathematically.
Intuitively we say that a line is one dimensional because it only takes 1 number to
uniquely define any point on it. That one number could be the distance from the start of
the line. This applies equally well to the circumference of a circle, a curve, or the
boundary of any object.

A plane is two dimensional since in order to uniquely define any point on its surface we
require two numbers. There are many ways to arrange the definition of these two numbers
but we normally create an orthogonal coordinate system. Other examples of two
dimensional objects are the surface of a sphere or an arbitrary twisted plane.

The volume of some solid object is 3 dimensional on the same basis as above, it takes
three numbers to uniquely define any point within the object.

40-Fractals VU

© Copyright Virtual University of Pakistan

354

A more mathematical description of dimension is based on how the "size" of an object
behaves as the linear dimension increases. In one dimension consider a line segment. If
the linear dimension of the line segment is doubled then obviously the length
(characteristic size) of the line has doubled. In two dimensions, ff the linear dimensions of
a rectangle for example is doubled then the characteristic size, the area, increases by a
factor of 4. In three dimensions if the linear dimension of a box are doubled then the
volume increases by a factor of 8. This relationship between dimension D, linear scaling
L and the resulting increase in size S can be generalized and written as

This is just telling us mathematically what we know from everyday experience. If we
scale a two dimensional object for example then the area increases by the square of the
scaling. If we scale a three dimensional object the volume increases by the cube of the
scale factor. Rearranging the above gives an expression for dimension depending on how
the size changes as a function of linear scaling, namely

In the examples above the value of D is an integer, 1, 2, or 3, depending on the dimension
of the geometry. This relationship holds for all Euclidean shapes. There are however
many shapes which do not conform to the integer based idea of dimension given above in
both the intuitive and mathematical descriptions. That is, there are objects which appear
to be curves for example but which a point on the curve cannot be uniquely described
with just one number. If the earlier scaling formulation for dimension is applied the
formula does not yield an integer. There are shapes that lie in a plane but if they are
linearly scaled by a factor L, the area does not increase by L squared but by some non
integer amount. These geometries are called fractals! One of the simpler fractal shapes is
the von Koch snowflake. The method of creating this shape is to repeatedly replace each
line segment with the following 4 line segments.

The process starts with a single line segment and continues for ever. The first few
iterations of this procedure are shown below.

40-Fractals VU

© Copyright Virtual University of Pakistan

355

This demonstrates how a very simple generation rule for this shape can generate some
unusual (fractal) properties. Unlike Euclidean shapes this object has detail at all levels. If
one magnifies a Euclidean shape such as the circumference of a circle it becomes a
different shape, namely a straight line. If we magnify this fractal more and more detail is
uncovered, the detail is self similar or rather it is exactly self similar. Put another way,
any magnified portion is identical to any other magnified portion.

Note also that the "curve" on the right is not a fractal but only an approximation of one.
This is no different from when one draws a circle, it is only an approximation to a perfect
circle. At each iteration the length of the curve increases by a factor of 4/3. Thus the
limiting curve is of infinite length and indeed the length between any two points of the
curve is infinite. This curve manages to compress an infinite length into a finite area of
the plane without intersecting itself! Considering the intuitive notion of 1 dimensional
shapes, although this object appears to be a curve with one starting point and one end
point, it is not possible to uniquely specify any position along the curve with one number
as we expect to be able to do with Euclidean curves which are 1 dimensional. Although
the method of creating this curve is straightforward, there is no algebraic formula the
describes the points on the curve. Some of the major differences between fractal and
Euclidean geometry are outlined in the following table.

Firstly the recognition of fractal is very modern, they have only formally been studied in
the last 10 years compared to Euclidean geometry which goes back over 2000 years.

40-Fractals VU

© Copyright Virtual University of Pakistan

356

Secondly whereas Euclidean shapes normally have a few characteristic sizes or length
scales (e.g. the radius of a circle or the length of of a side of a cube) fractals have so
characteristic sizes. Fractal shapes are self similar and independent of size or scaling.
Third, Euclidean geometry provides a good description of man made objects whereas
fractals are required for a representation of naturally occurring geometries. It is likely that
this limitation of our traditional language of shape is responsible for the striking
difference between mass produced objects and natural shapes. Finally, Euclidean
geometries are defined by algebraic formulae, for example

defines a sphere. Fractals are normally the result of a iterative or recursive construction or
algorithm.
L-Systems
The following is based on L-Systems as described in "Lecture Notes in Biomathematics"
by Przemyslaw Prusinkiewcz and James Hanan. A brief description of an 0L system will
be presented here but for a more complete description the user should consult the
literature.

Simpleminded example of 0L system
A string of characters (symbols) is rewritten on each iteration according to some
replacement rules. Consider an initial string (axiom)
F+F+F+F
and a rewriting rule
F --> F+F-F-FF+F+F-F
After one iteration the following string would result
F+F-F-FF+F+F-F + F+F-F-FF+F+F-F + F+F-F-FF+F+F-F + F+F-F-FF+F+F-F
For the next iteration the same rule is applied but now to the string resulting from the last
iteration

F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-FF+ F-
F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F+ F+ F-F-
FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-FF+ F-F-FF+ F+
F-F+ F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-
F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-FF+ F-F-FF+ F+ F-F+ F+
F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F+ F+ F-F-
FF+ F+ F-F-F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-FF+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+
F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F

Some symbols are now given a graphical meaning, for example, F means move forward
drawing a line, + means turn right by some predefined angle (90 degrees in this case), -
means turn left. Using these symbols the initial string F+F+F+F is just a rectangle (ø =
90). The replacement rule F --> F+F-F-FF+F+F-F replaces each forward movement by
the following figure

40-Fractals VU

© Copyright Virtual University of Pakistan

357

The first iteration interpreted graphically is

The next iteration interpreted graphically is:

The following characters have a geometric interpretation.

40-Fractals VU

© Copyright Virtual University of Pakistan

358

Recent usage of L-Systems is for the creation of realistic looking objects that occur in
nature and in particular the branching structure of plants. One of the important
characteristics of L systems is that only a small amount of information is required to
represent very complex objects. So while the bushes in figure 9 contain many thousands
of lines they can be described in a database by only a few bytes of data, the actual bushes
are only "grown" when required for visual presentation. Using suitably designed L-
System algorithms it is possible to design the L-System production rules that will create a
particular class of plant.
Further examples:

40-Fractals VU

© Copyright Virtual University of Pakistan

359

40-Fractals VU

© Copyright Virtual University of Pakistan

360

40-Fractals VU

© Copyright Virtual University of Pakistan

361

40-Fractals VU

© Copyright Virtual University of Pakistan

362

Featured on the cover of the HPC (High Performance Computing) magazine, 3 August

2001.

40-Fractals VU

© Copyright Virtual University of Pakistan

363

IFS - Iterated Function Systems
Instead of working with lines as in L systems, IFS replaces polygons by other polygons as
described by a generator. On every iteration each polygon is replaced by a suitably scaled,
rotated, and translated version of the polygons in the generator. Figure 10 shows two such
generators made of rectangles and the result after one and six iterations. From this
geometric description it is also possible to derive a hop-along description which gives the
image that would be created after iterating the geometric model to infinity. The
description of this is a set of contractive transformations on a plane of the form

each with an assigned probability. To run the system an initial point is chosen and on
each iteration one of the transformation is chosen randomly according to the assigned
probabilities, the resulting points (xn, yn) are drawn on the page. As in the case of L
systems, if the IFS code for a desired image can be determined (by something called the
Collage theorem) then large data compression ratios can be achieved. Instead of storing
the geometry of the very complex object just the IFS generator needs to be stored and the
image can be generated when required. The fundamental iterative process involves
replacing rectangles with a series of rectangles called the generator. The rectangles are
replaced by a suitably scaled, translated, and rotated version of the generator.
For example consider the generator on
the right
It consists of three rectangles, each
with its own center, dimensions and
rotation angle. The initial conditions
usually consist of a single square, the
first iteration then consists of replacing
this square by a suitably positioned,
scaled and rotated version of the
generator.

The next iteration involves replacing
each of the rectangles in the current
system by suitably positioned, scaled,
and rotated versions of the generator
resulting in the following

40-Fractals VU

© Copyright Virtual University of Pakistan

364

The next iteration replaces each
rectangle above again by the initial
generator as shown

and so on, three more iterations later

Hop-along or "The Chaos Game"

A technique exists by which the
resulting form after an infinite
number of iterations can be
derived. This is a function of the
form

This gives a series of (x,y) points
all which lie on the result of an
infinite IFS. Although it still takes
an infinite number of terms in this
series to form the result the
appearance can be readily
appreciated after a modest number
of terms (10000 say).

Note that with both methods it is possible to create the image at any scale. In many but
not all cases zoomed in examples will be exhibit self similarity at all scales. Applications
generally iinvolve data reduction for model files. If a generator can be found for a
complex image then storing the generator and the rules of production results in a great
deal of data reduction. For example the weed in the examples above might eventually

40-Fractals VU

© Copyright Virtual University of Pakistan

365

contain over 2000 rectangles but is completely specified by the characteristics of 3
rectangles, only 5 numbers, center (cx,cy), scale (sx,sy), and angle (ø) Note: it is not
necessarily trivial to derive a rectangular generator for an arbitrary form, although it is
possible to create a polygonal generator for any form.
Further examples

40-Fractals VU

© Copyright Virtual University of Pakistan

366

40-Fractals VU

© Copyright Virtual University of Pakistan

367

IFS Fern

Random IFS

Wada basins

41-Viewing VU

© Copyright Virtual University of Pakistan

368

Lecture No.41 Viewing

In this lecture we will practically implement viewing a geometric model in any
orientation by transforming it in three-dimensional space and control the location in three-
dimensional space from which the model is viewed and to Clip undesired portions of the
model out of the scene that's to be viewed, manipulate the appropriate matrix stacks that
control model transformation for viewing and project the model onto the screen, combine
multiple transformations to mimic sophisticated systems in motion, such as a solar system
or an articulated robot arm, Reverse or mimic the operations of the geometric processing
pipeline l and we will also discuss on how to instruct OpenGL to draw the geometric
models we want displayed in our scene. Now we must decide how we want to position
the models in the scene, and we must choose a vantage point from which to view the
scene. We can use the default positioning and vantage point, but most likely we want to
specify them. Look at the image on the cover of this book. The program that produced
that image contained a single geometric description of a building block. Each block was
carefully positioned in the scene: Some blocks were scattered on the floor, some were
stacked on top of each other on the table, and some were assembled to make the globe.
Also, a particular viewpoint had to be chosen. Obviously, we wanted to look at the corner
of the room containing the globe. But how far away from the scene - and where exactly -
should the viewer be? We wanted to make sure that the final image of the scene contained
a good view out the window, that a portion of the floor was visible, and that all the
objects in the scene were not only visible but presented in an interesting arrangement. and
how to use OpenGL to accomplish these tasks: how to position and orient models in
three-dimensional space and how to establish the location - also in three-dimensional
space - of the viewpoint. All of these factors help determine exactly what image appears
on the screen. We want to remember that the point of computer graphics is to create a
two-dimensional image of three-dimensional objects (it has to be two-dimensional
because it's drawn on a flat screen), but we need to think in three-dimensional coordinates
while making many of the decisions that determine what gets drawn on the screen. A
common mistake people make when creating three-dimensional graphics is to start
thinking too soon that the final image appears on a flat, two-dimensional screen. Avoid
thinking about which pixels need to be drawn, and instead try to visualize three-
dimensional space. Create your models in some three-dimensional universe that lies deep
inside your computer, and let the computer do its job of calculating which pixels to color.

A series of three computer operations convert an object's three-dimensional coordinates to
pixel positions on the screen. Transformations, which are represented by matrix
multiplication, include modeling, viewing, and projection operations. Such operations
include rotation, translation, scaling, reflecting, orthographic projection, and perspective
projection. Generally, we use a combination of several transformations to draw a scene.
Since the scene is rendered on a rectangular window, objects (or parts of objects) that lie
outside the window must be clipped. In three-dimensional Computer graphics, clipping
occurs by throwing out objects on one side of a clipping plane.

Finally, a correspondence must be established between the transformed coordinates and
screen pixels. This is known as a viewport transformation.

41-Viewing VU

© Copyright Virtual University of Pakistan

369

Overview: The Camera Analogy
The transformation process to produce the desired scene for viewing is analogous to
taking a photograph with a camera. As shown in Figure 1, the steps with a camera (or a
computer) might be the following. Set up your tripod and pointing the camera at the scene
(viewing transformation).
Arrange the scene to be photographed into the desired composition (modeling
transformation).
Choose a camera lens or adjust the zoom (projection transformation).
Determine how large we want the final photograph to be - for example, we might want it
enlarged (viewport transformation).
After these steps are performed, the picture can be snapped or the scene can be drawn.

41-Viewing VU

© Copyright Virtual University of Pakistan

370

Figure 1: The Camera Analogy

Note that these steps correspond to the order in which we specify the desired
transformations in our program, not necessarily the order in which the relevant
mathematical operations are performed on an object's vertices. The viewing
transformations must precede the modeling transformations in our code, but we can
specify the projection and viewport transformations at any point before drawing occurs.
Figure 2 shows the order in which these operations occur on our computer.

Figure 2: Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, we construct a 4 × 4
matrix M, which is then multiplied by the coordinates of each vertex v in the scene to
accomplish the transformation

v'=Mv

(Remember that vertices always have four coordinates (x, y, z, w), though in most cases
w is 1 and for two-dimensional data z is 0.) Note that viewing and modeling
transformations are automatically applied to surface normal vectors, in addition to
vertices. (Normal vectors are used only in eye coordinates.) This ensures that the normal
vector's relationship to the vertex data is properly preserved.

The viewing and modeling transformations we specify are combined to form the
modelview matrix, which is applied to the incoming object coordinates to yield eye
coordinates. Next, if we've specified additional clipping planes to remove certain objects
from the scene or to provide cutaway views of objects, these clipping planes are applied.
After that, OpenGL applies the projection matrix to yield clip coordinates. This
transformation defines a viewing volume; objects outside this volume are clipped so that
they're not drawn in the final scene. After this point, the perspective division is performed
by dividing coordinate values by w, to produce normalized device coordinates. Finally,
the transformed coordinates are converted to window coordinates by applying the
viewport transformation. We can manipulate the dimensions of the viewport to cause the
final image to be enlarged, shrunk, or stretched. We might correctly suppose that the x
and y coordinates are sufficient to determine which pixels need to be drawn on the screen.
However, all the transformations are performed on the z coordinates as well. This way, at
the end of this transformation process, the z values correctly reflect the depth of a given

41-Viewing VU

© Copyright Virtual University of Pakistan

371

vertex (measured in distance away from the screen). One use for this depth value is to
eliminate unnecessary drawing. For example, suppose two vertices have the same x and y
values but different z values. OpenGL can use this information to determine which
surfaces are obscured by other surfaces and can then avoid drawing the hidden surfaces.
As we've probably guessed by now, we need to know a few things about matrix
mathematics to get the most out of this lecture as we have learnt from previous lectures.

A Simple Example: Drawing a Cube
Example 1 draws a cube that's scaled by a modeling transformation (see Figure 3). The
viewing transformation, gluLookAt(), positions and aims the camera towards where the
cube is drawn. A projection transformation and a viewport transformation are also
specified. The rest of this section walks us through Example 1 and briefly explains the
transformation commands it uses. The succeeding sections contain the complete, detailed
discussion of all OpenGL's transformation commands.

Figure 3: Transformed Cube

Example 1 : Transformed Cube
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
void init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);
}

void display(void)
{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glLoadIdentity (); /* clear the matrix */
/* viewing transformation */
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glScalef (1.0, 2.0, 1.0); /* modeling transformation */
glutWireCube (1.0);
glFlush ();
}
void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);

41-Viewing VU

© Copyright Virtual University of Pakistan

372

glLoadIdentity ();
glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
glMatrixMode (GL_MODELVIEW);
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return 0;
}

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera.
In this code example, before the viewing transformation can be specified, the current
matrix is set to the identity matrix with glLoadIdentity(). This step is necessary since
most of the transformation commands multiply the current matrix by the specified matrix
and then set the result to be the current matrix. If we don't clear the current matrix by
loading it with the identity matrix, we continue to combine previous transformation
matrices with the new one we supply. In some cases, we do want to perform such
combinations, but we also need to clear the matrix sometimes. In Example 1, after the
matrix is initialized, the viewing transformation is specified with gluLookAt(). The
arguments for this command indicate where the camera (or eye position) is placed, where
it is aimed, and which way is up. The arguments used here place the camera at (0, 0, 5),
aim the camera lens towards (0, 0, 0), and specify the up-vector as (0, 1, 0). The up-vector
defines a unique orientation for the camera.
If gluLookAt() was not called, the camera has a default position and orientation. By
default, the camera is situated at the origin, points down the negative z-axis, and has an
up-vector of (0, 1, 0). So in Example 1, the overall effect is that gluLookAt() moves the
camera 5 units along the z-axis.

The Modeling Transformation

We use the modeling transformation to position and orient the model. For example, we
can rotate, translate, or scale the model - or perform some combination of these
operations. In Example 1, glScalef() is the modeling transformation that is used. The
arguments for this command specify how scaling should occur along the three axes. If all
the arguments are 1.0, this command has no effect. In Example 1, the cube is drawn twice
as large in the y direction. Thus, if one corner of the cube had originally been at (3.0, 3.0,
3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effect of this modeling
transformation is to transform the cube so that it isn't a cube but a rectangular box.

41-Viewing VU

© Copyright Virtual University of Pakistan

373

Try This
Change the gluLookAt() call in Example 1 to the modeling transformation
glTranslatef() with parameters (0.0, 0.0, -5.0). The result should look exactly the same as
when we used gluLookAt(). Why are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube
could be viewed, we could have moved the cube away from the camera (with a modeling
transformation). This duality in the nature of viewing and modeling transformations is
why we need to think about the effect of both types of transformations simultaneously. It
doesn't make sense to try to separate the effects, but sometimes it's easier to think about
them one way rather than the other. This is also why modeling and viewing
transformations are combined into the modelview matrix before the transformations are
applied.

Also note that the modeling and viewing transformations are included in the display()
routine, along with the call that's used to draw the cube, glutWireCube(). This way,
display() can be used repeatedly to draw the contents of the window if, for example, the
window is moved or uncovered, and we've ensured that each time, the cube is drawn in
the desired way, with the appropriate transformations. The potential repeated use of
display() underscores the need to load the identity matrix before performing the viewing
and modeling transformations, especially when other transformations might be performed
between calls to display().

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. We can
think of this transformation as determining what the field of view or viewing volume is
and therefore what objects are inside it and to some extent how they look. This is
equivalent to choosing among wide-angle, normal, and telephoto lenses, for example.
With a wide-angle lens, we can include a wider scene in the final photograph than with a
telephoto lens, but a telephoto lens allows us to photograph objects as though they're
closer to us than they actually are. In computer graphics, we don't have to pay $10,000 for
a 2000-millimeter telephoto lens; once we've bought our graphics workstation, all we
need to do is use a smaller number for our field of view. In addition to the field-of-view
considerations, the projection transformation determines how objects are projected onto
the screen, as its name suggests. Two basic types of projections are provided for us by
OpenGL, along with several corresponding commands for describing the relevant
parameters in different ways. One type is the perspective projection, which matches how
we see things in daily life. Perspective makes objects that are farther away appear
smaller; for example, it makes railroad tracks appear to converge in the distance. If we're
trying to make realistic pictures, we'll want to choose perspective projection, which is
specified with the glFrustum() command in this code example. The other type of
projection is orthographic, which maps objects directly onto the screen without affecting
their relative size. Orthographic projection is used in architectural and computer-aided
design applications where the final image needs to reflect the measurements of objects
rather than how they might look. Architects create perspective drawings to show how
particular buildings or interior spaces look when viewed from various vantage points; the
need for orthographic projection arises when blueprint plans or elevations are generated,
which are used in the construction of buildings. Before glFrustum() can be called to set

41-Viewing VU

© Copyright Virtual University of Pakistan

374

the projection transformation, some preparation needs to happen. As shown in the
reshape() routine in Example 1, the command called glMatrixMode() is used first, with
the argument GL_PROJECTION. This indicates that the current matrix specifies the
projection transformation; the following transformation calls then affect the projection
matrix. As we can see, a few lines later glMatrixMode() is called again, this time with
GL_MODELVIEW as the argument. This indicates that succeeding transformations now
affect the modelview matrix instead of the projection matrix. Note that glLoadIdentity()
is used to initialize the current projection matrix so that only the specified projection
transformation has an effect. Now glFrustum() can be called, with arguments that define
the parameters of the projection transformation. In this example, both the projection
transformation and the viewport transformation are contained in the reshape() routine,
which is called when the window is first created and whenever the window is moved or
reshaped. This makes sense, since both projecting (the width to height aspect ratio of the
projection viewing volume) and applying the viewport relate directly to the screen, and
specifically to the size or aspect ratio of the window on the screen.

Try This
Change the glFrustum() call in Example 1 to the more commonly used Utility Library
routine gluPerspective() with parameters (60.0, 1.0, 1.5, 20.0). Then experiment with
different values, especially for fov(field of view), near and far plane.

Viewing and Modeling Transformations

Viewing and modeling transformations are inextricably related in OpenGL and are in fact
combined into a single modelview matrix. (See "A Simple Example: Drawing a Cube.")
One of the toughest problems newcomers to computer graphics face is understanding the
effects of combined three-dimensional transformations. As we've already seen, there are
alternative ways to think about transformations - do we want to move the camera in one
direction, or move the object in the opposite direction? Each way of thinking about
transformations has advantages and disadvantages, but in some cases one way more
naturally matches the effect of the intended transformation. If we can find a natural
approach for wer particular application, it's easier to visualize the necessary
transformations and then write the corresponding code to specify the matrix
manipulations. The first part of this section discusses how to think about transformations;
later, specific commands are presented. For now, we use only the matrix-manipulation
commands we've already seen. Finally, keep in mind that we must call glMatrixMode()
with GL_MODELVIEW as its argument prior to performing modeling or viewing
transformations.

Thinking about Transformations

Let's start with a simple case of two transformations: a 45-degree counterclockwise
rotation about the origin around the z-axis, and a translation down the x-axis. Suppose
that the object we're drawing is small compared to the translation (so that we can see the
effect of the translation), and that it's originally located at the origin. If we rotate the
object first and then translate it, the rotated object appears on the x-axis. If we translate it
down the x-axis first, however, and then rotate about the origin, the object is on the line
y=x, as shown in Figure 4. In general, the order of transformations is critical. If we do
transformation A and then transformation B, we almost always get something different
than if we do them in the opposite order.

41-Viewing VU

© Copyright Virtual University of Pakistan

375

Figure 4 : Rotating First or Translating First

Now let's talk about the order in which we specify a series of transformations. All
viewing and modeling transformations are represented as 4 × 4 matrices. Each successive
glMultMatrix*() or transformation command multiplies a new 4 × 4 matrix M by the
current modelview matrix C to yield CM. Finally, vertices v are multiplied by the current
modelview matrix. This process means that the last transformation command called in our
program is actually the first one applied to the vertices: CMv. Thus, one way of looking
at it is to say that we have to specify the matrices in the reverse order. Like many other
things, however, once we've gotten used to thinking about this correctly, backward will
seem like forward. Consider the following code sequence, which draws a single point
using three transformations:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(N); /* apply transformation N */
glMultMatrixf(M); /* apply transformation M */
glMultMatrixf(L); /* apply transformation L */
glBegin(GL_POINTS);
glVertex3f(v); /* draw transformed vertex v */
glEnd();

With this code, the modelview matrix successively contains I, N, NM, and finally NML,
where I represents the identity matrix. The transformed vertex is NMLv. Thus, the vertex
transformation is N(M(Lv)) - that is, v is multiplied first by L, the resulting Lv is
multiplied by M, and the resulting MLv is multiplied by N. Notice that the
transformations to vertex v effectively occur in the opposite order than they were
specified. (Actually, only a single multiplication of a vertex by the modelview matrix
occurs; in this example, the N, M, and L matrices are already multiplied into a single
matrix before it's applied to v.)

41-Viewing VU

© Copyright Virtual University of Pakistan

376

Grand, Fixed Coordinate System

Thus, if we like to think in terms of a grand, fixed coordinate system - in which matrix
multiplications affect the position, orientation, and scaling of our model - we have to
think of the multiplications as occurring in the opposite order from how they appear in the
code. Using the simple example shown on the left side of Figure 4 (a rotation about the
origin and a translation along the x-axis), if we want the object to appear on the axis after
the operations, the rotation must occur first, followed by the translation. To do this, we'll
need to reverse the order of operations, so the code looks something like this (where R is
the rotation matrix and T is the translation matrix):

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(T); /* translation */
glMultMatrixf(R); /* rotation */
draw_the_object();

Moving a Local Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed coordinate
system in which our model is transformed and instead imagine that a local coordinate
system is tied to the object we’re drawing. All operations occur relative to this changing
coordinate system. With this approach, the matrix multiplications now appear in the
natural order in the code. (Regardless of which analogy we're using, the code is the same,
but how we think about it differs.) To see this in the translation-rotation example, begin
by visualizing the object with a coordinate system tied to it. The translation operation
moves the object and its coordinate system down the x-axis. Then, the rotation occurs
about the (now-translated) origin, so the object rotates in place in its position on the axis.
This approach is what we should use for applications such as articulated robot arms,
where there are joints at the shoulder, elbow, and wrist, and on each of the fingers. To
figure out where the tips of the fingers go relative to the body, we'd like to start at the
shoulder, go down to the wrist, and so on, applying the appropriate rotations and
translations at each joint. Thinking about it in reverse would be far more confusing. This
second approach can be problematic, however, in cases where scaling occurs, and
especially so when the scaling is non-uniform (scaling different amounts along the
different axes). After uniform scaling, translations move a vertex by a multiple of what
they did before, since the coordinate system is stretched. Non-uniform scaling mixed with
rotations may make the axes of the local coordinate system non-perpendicular.

As mentioned earlier, we normally issue viewing transformation commands in our
program before any modeling transformations. This way, a vertex in a model is first
transformed into the desired orientation and then transformed by the viewing operation.
Since the matrix multiplications must be specified in reverse order, the viewing
commands need to come first. Note, however, that we don't need to specify either viewing
or modeling transformations if we're satisfied with the default conditions. If there's no
viewing transformation, the "camera" is left in the default position at the origin, pointed
toward the negative z-axis; if there's no modeling transformation, the model isn't moved,
and it retains its specified position, orientation, and size. Since the commands for
performing modeling transformations can be used to perform viewing transformations,

41-Viewing VU

© Copyright Virtual University of Pakistan

377

modeling transformations are discussed first, even if viewing transformations are actually
issued first. This order for discussion also matches the way many programmers think
when planning their code: Often, they write all the code necessary to compose the scene,
which involves transformations to position and orient objects correctly relative to each
other. Next, they decide where they want the viewpoint to be relative to the scene they've
composed, and then they write the viewing transformations accordingly.

Modeling Transformations

The three OpenGL routines for modeling transformations are glTranslate*(),
glRotate*(), and glScale*(). As we might suspect, these routines transform an object (or
coordinate system, if we're thinking of it that way) by moving, rotating, stretching,
shrinking, or reflecting it. All three commands are equivalent to producing an appropriate
translation, rotation, or scaling matrix, and then calling glMultMatrix*() with that matrix
as the argument. However, these three routines might be faster than using
glMultMatrix*(). OpenGL automatically computes the matrices for we. In the command
summaries that follow, each matrix multiplication is described in terms of what it does to
the vertices of a geometric object using the fixed coordinate system approach, and in
terms of what it does to the local coordinate system that's attached to an object. Translate
void glTranslate{fd}(TYPEx, TYPE y, TYPEz);

Multiplies the current matrix by a matrix that moves (translates) an object by the given x,
y, and z values (or moves the local coordinate system by the
same amounts).

Figure 5 shows the effect of glTranslate*().

Figure 5 : Translating an Object

Note that using (0.0, 0.0, 0.0) as the argument for glTranslate*() is the identity operation
- that is, it has no effect on an object or its local coordinate system.

Rotate
void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z);

41-Viewing VU

© Copyright Virtual University of Pakistan

378

Multiplies the current matrix by a matrix that rotates an object (or the local coordinate
system) in a counterclockwise direction about the ray from the origin through the point
(x, y, z). The angle parameter specifies the angle of rotation in degrees.

The effect of glRotatef(45.0, 0.0, 0.0, 1.0), which is a rotation of 45 degrees about the z-
axis, is shown in Figure 6.

Figure 6 : Rotating an Object

Note that an object that lies farther from the axis of rotation is more dramatically rotated
(has a larger orbit) than an object drawn near the axis. Also, if the angle argument is zero,
the glRotate*() command has no effect.

Scale
void glScale{fd}(TYPEx, TYPE y, TYPEz);

Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object
along the axes. Each x, y, and z coordinate of every point in the object is multiplied by the
corresponding argument x, y, or z. With the local coordinate system approach, the local
coordinate axes are stretched, shrunk, or reflected by the x, y, and z factors, and the
associated object is transformed with them.
Figure 7 shows the effect of glScalef(2.0, -0.5, 1.0).

41-Viewing VU

© Copyright Virtual University of Pakistan

379

Figure 7 : Scaling and Reflecting an Object

glScale*() is the only one of the three modeling transformations that changes the apparent
size of an object: Scaling with values greater than 1.0 stretches an object, and using
values less than 1.0 shrinks it. Scaling with a -1.0 value reflects an object across an axis.
The identity values for scaling are (1.0, 1.0, 1.0). In general, we should limit our use of
glScale*() to those cases where it is necessary. Using glScale*() decreases the
performance of lighting calculations, because the normal vectors have to be renormalized
after transformation.

Note: A scale value of zero collapses all object coordinates along that axis to zero. It's
usually not a good idea to do this, because such an operation cannot be undone.
Mathematically speaking, the matrix cannot be inverted, and inverse matrices are required
for certain lighting operations. Sometimes collapsing coordinates does make sense,
however; the calculation of shadows on a planar surface is a typical application. In
general, if a coordinate system is to be collapsed, the projection matrix should be used
rather than the modelview matrix.

A Modeling Transformation Code Example

Example 2 is a portion of a program that renders a triangle four times, as shown in Figure
8. These are the four transformed triangles.

A solid wireframe triangle is drawn with no modeling transformation.
The same triangle is drawn again, but with a dashed line stipple and translated (to the left
- along the negative x-axis).
A triangle is drawn with a long dashed line stipple, with its height (y-axis) halved and its
width (x-axis) increased by 50%.
A rotated triangle, made of dotted lines, is drawn.

Figure 8 : Modeling Transformation Example

Example 2 : Using Modeling Transformations:
glLoadIdentity();
glColor3f(1.0, 1.0, 1.0);
draw_triangle(); /* solid lines */
glEnable(GL_LINE_STIPPLE); /* dashed lines */
glLineStipple(1, 0xF0F0);
glLoadIdentity();
glTranslatef(-20.0, 0.0, 0.0);
draw_triangle();
glLineStipple(1, 0xF00F); /*long dashed lines */

41-Viewing VU

© Copyright Virtual University of Pakistan

380

glLoadIdentity();
glScalef(1.5, 0.5, 1.0);
draw_triangle();
glLineStipple(1, 0x8888); /* dotted lines */
glLoadIdentity();
glRotatef (90.0, 0.0, 0.0, 1.0);
draw_triangle ();
glDisable (GL_LINE_STIPPLE);

Note the use of glLoadIdentity() to isolate the effects of modeling transformations;
initializing the matrix values prevents successive transformations from having a
cumulative effect. Even though using glLoadIdentity() repeatedly has the desired effect,
it may be inefficient, because we may have to re specify viewing or modeling
transformations.

Note: Sometimes, programmers who want a continuously rotating object attempt to
achieve this by repeatedly applying a rotation matrix that has small values. The problem
with this technique is that because of round-off errors, the product of thousands of tiny
rotations gradually drifts away from the value we really want (it might even become
something that isn't a rotation). Instead of using this technique, increment the angle and
issue a new rotation command with the new angle at each update step.

Viewing Transformations

A viewing transformation changes the position and orientation of the viewpoint. If we
recall the camera analogy, the viewing transformation positions the camera tripod,
pointing the camera toward the model. Just as we move the camera to some position and
rotate it until it points in the desired direction, viewing transformations are generally
composed of translations and rotations. Also remember that to achieve a certain scene
composition in the final image or photograph, we can either move the camera or move all
the objects in the opposite direction. Thus, a modeling transformation that rotates an
object counterclockwise is equivalent to a viewing transformation that rotates the camera
clockwise, for example. Finally, keep in mind that the viewing transformation commands
must be called before any modeling transformations are performed, so that the modeling
transformations take effect on the objects first.

We can manufacture a viewing transformation in any of several ways, as described next.
we can also choose to use the default location and orientation of the viewpoint, which is
at the origin, looking down the negative z-axis.

Use one or more modeling transformation commands (that is, glTranslate*() and
glRotate*()). We can think of the effect of these transformations as moving the camera
position or as moving all the objects in the world, relative to a stationary camera.

Use the Utility Library routine gluLookAt() to define a line of sight. This routine
encapsulates a series of rotation and translation commands.

Create our own utility routine that encapsulates rotations and translations. Some
applications might require custom routines that allow we to specify the viewing
transformation in a convenient way. For example, we might want to specify the roll,

41-Viewing VU

© Copyright Virtual University of Pakistan

381

pitch, and heading rotation angles of a plane in flight, or we might want to specify a
transformation in terms of polar coordinates for a camera that's orbiting around an object.

Using glTranslate*() and glRotate*()
When we use modeling transformation commands to emulate viewing transformations,
we're trying to move the viewpoint in a desired way while keeping the objects in the
world stationary. Since the viewpoint is initially located at the origin and since objects are
often most easily constructed there as well (see Figure 9), in general we have to perform
some transformation so that the objects can be viewed. Note that, as shown in the figure,
the camera initially points down the negative z-axis. (we're seeing the back of the
camera.)

Figure 9 : Object and Viewpoint at the Origin

In the simplest case, we can move the viewpoint backward, away from the objects; this
has the same effect as moving the objects forward, or away from the viewpoint.
Remember that by default forward is down the negative z-axis; if we rotate the viewpoint,
forward has a different meaning. So, to put 5 units of distance between the viewpoint and
the objects by moving the viewpoint, as shown in Figure 10, use glTranslatef(0.0, 0.0, -
5.0);

This routine moves the objects in the scene -5 units along the z axis. This is also
equivalent to moving the camera +5 units along the z axis.

41-Viewing VU

© Copyright Virtual University of Pakistan

382

Figure 10 : Separating the Viewpoint and the Object

Now suppose we want to view the objects from the side. Should we issue a rotate
command before or after the translate command? If we're thinking in terms of a grand,
fixed coordinate system, first imagine both the object and the camera at the origin. We
could rotate the object first and then move it away from the camera so that the desired
side is visible. Since we know that with the fixed coordinate system approach, commands
have to be issued in the opposite order in which they should take effect, we know that we
need to write the translate command first in our code and follow it with the rotate
command. Now let's use the local coordinate system approach. In this case, think about
moving the object and its local coordinate system away from the origin; then, the rotate
command is carried out using the now-translated coordinate system. With this approach,
commands are issued in the order in which they're applied, so once again the translate
command comes first. Thus, the sequence of transformation commands to produce the
desired result is

glTranslatef(0.0, 0.0, -5.0);
glRotatef(90.0, 0.0, 1.0, 0.0);

If we're having trouble keeping track of the effect of successive matrix multiplications, try
using both the fixed and local coordinate system approaches and see whether one makes
more sense to us. Note that with the fixed coordinate system, rotations always occur about
the grand origin, whereas with the local coordinate system, rotations occur about the
origin of the local system. We might also try using the gluLookAt() utility routine
described in the next section.

Using the gluLookAt() Utility Routine

Often, programmers construct a scene around the origin or some other convenient
location, then they want to look at it from an arbitrary point to get a good view of it. As
its name suggests, the gluLookAt() utility routine is designed for just this purpose. It
takes three sets of arguments, which specify the location of the viewpoint, define a
reference point toward which the camera is aimed, and indicate which direction is up.

41-Viewing VU

© Copyright Virtual University of Pakistan

383

Choose the viewpoint to yield the desired view of the scene. The reference point is
typically somewhere in the middle of the scene. (If we've built our scene at the origin, the
reference point is probably the origin.) It might be a little trickier to specify the correct
up-vector. Again, if we've built some real-world scene at or around the origin and if we've
been taking the positive y-axis to point upward, then that's our up-vector for
gluLookAt(). However, if we're designing a flight simulator, up is the direction
perpendicular to the plane's wings, from the plane toward the sky when the plane is right-
side up on the ground.

The gluLookAt() routine is particularly useful when we want to pan across a landscape,
for instance. With a viewing volume that's symmetric in both x and y, the (eyex, eyey,
eyez) point specified is always in the center of the image on the screen, so we can use a
series of commands to move this point slightly, thereby panning across the scene.

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx,
GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);

Defines a viewing matrix and multiplies it to the right of the current matrix. The desired
viewpoint is specified by eyex, eyey, and eyez. The centerx, centery, and centerz
arguments specify any point along the desired line of sight, but typically they're some
point in the center of the scene being looked at. The upx, upy, and upz arguments indicate
which direction is up (that is, the direction from the bottom to the top of the viewing
volume)

In the default position, the camera is at the origin, is looking down the negative z-axis,
and has the positive y-axis as straight up. This is the same as calling

gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

The z value of the reference point is -100.0, but could be any negative z, because the line
of sight will remain the same. In this case, we don't actually want to call gluLookAt(),
because this is the default and we are already there! (The lines extending from the camera
represent the viewing volume, which indicates its field of view.)

Figure 11 : Default Camera Position

41-Viewing VU

© Copyright Virtual University of Pakistan

384

Figure 12 shows the effect of a typical gluLookAt() routine. The camera position (eyex,
eyey, eyez) is at (4, 2, 1). In this case, the camera is looking right at the model, so the
reference point is at (2, 4, -3). An orientation vector of (2, 2, -1) is chosen to rotate the
viewpoint to this 45-degree angle.

Figure 12 : Using gluLookAt()

So, to achieve this effect, call

gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);

Note that gluLookAt() is part of the Utility Library rather than the basic OpenGL library.
This isn't because it's not useful, but because it encapsulates several basic OpenGL
commands - specifically, glTranslate*() and glRotate*(). To see this, imagine a camera
located at an arbitrary viewpoint and oriented according to a line of sight, both as
specified with gluLookAt() and a scene located at the origin. To "undo" what
gluLookAt() does, we need to transform the camera so that it sits at the origin and points
down the negative z-axis, the default position. A simple translate moves the camera to the
origin. We can easily imagine a series of rotations about each of the three axes of a fixed
coordinate system that would orient the camera so that it pointed toward negative z
values. Since OpenGL allows rotation about an arbitrary axis, we can accomplish any
desired rotation of the camera with a single glRotate*() command.

Note: we can have only one active viewing transformation. we cannot try to combine the
effects of two viewing transformations, any more than a camera can have two tripods. If
we want to change the position of the camera, make sure we call glLoadIdentity() to
wipe away the effects of any current viewing transformation.

Advanced

To transform any arbitrary vector so that it's coincident with another arbitrary vector (for
instance, the negative z-axis), we need to do a little mathematics. The axis about which
we want to rotate is given by the cross product of the two normalized vectors. To find the
angle of rotation, normalize the initial two vectors. The cosine of the desired angle
between the vectors is equal to the dot product of the normalized vectors. The angle of
rotation around the axis given by the cross product is always between 0 and 180 degrees.
Note that computing the angle between two normalized vectors by taking the inverse

41-Viewing VU

© Copyright Virtual University of Pakistan

385

cosine of their dot product is not very accurate, especially for small angles. But it should
work well enough to get us started.

Creating a Custom Utility Routine

For some specialized applications, we might want to define our own transformation
routine. Since this is rarely done and in any case is a fairly advanced topic, it's left mostly
as an exercise for the reader. The following exercises suggest two custom viewing
transformations that might be useful.

Try This

Suppose we're writing a flight simulator and we'd like to display the world from the point
of view of the pilot of a plane. The world is described in a coordinate system with the
origin on the runway and the plane at coordinates (x, y, z). Suppose further that the plane
has some roll, pitch, and heading (these are rotation angles of the plane relative to its
center of gravity).

Show that the following routine could serve as the viewing transformation:

void pilotView{GLdouble planex, GLdouble planey,
GLdouble planez, GLdouble roll,
GLdouble pitch, GLdouble heading)
{
glRotated(roll, 0.0, 0.0, 1.0);
glRotated(pitch, 0.0, 1.0, 0.0);
glRotated(heading, 1.0, 0.0, 0.0);
glTranslated(-planex, -planey, -planez);
}

l Suppose our application involves orbiting the camera around an object that's centered at
the origin. In this case, we'd like to specify the viewing transformation by using polar
coordinates. Let the distance variable define the radius of the orbit, or how far the camera
is from the origin. (Initially, the camera is moved distance units along the positive z-axis.)
The azimuth describes the angle of rotation of the camera about the object in the x-y
plane, measured from the positive y-axis. Similarly, elevation is the angle of rotation of
the camera in the y-z plane, measured from the positive z-axis. Finally, twist represents
the rotation of the viewing volume around its line of sight. Show that the following
routine could serve as the viewing transformation:

void polarView{GLdouble distance, GLdouble twist,
GLdouble elevation, GLdouble azimuth)
{
glTranslated(0.0, 0.0, -distance);
glRotated(-twist, 0.0, 0.0, 1.0);
glRotated(-elevation, 1.0, 0.0, 0.0);
glRotated(azimuth, 0.0, 0.0, 1.0);
}

41-Viewing VU

© Copyright Virtual University of Pakistan

386

Manipulating the Matrix Stacks

The modelview and projection matrices we've been creating, loading, and multiplying
have only been the visible tips of their respective icebergs. Each of these matrices is
actually the topmost member of a stack of matrices (see Figure 20).

Figure 20 : Modelview and Projection Matrix Stacks

A stack of matrices is useful for constructing hierarchical models, in which complicated
objects are constructed from simpler ones. For example, suppose we're drawing an
automobile that has four wheels, each of which is attached to the car with five bolts. We
have a single routine to draw a wheel and another to draw a bolt, since all the wheels and
all the bolts look the same. These routines draw a wheel or a bolt in some convenient
position and orientation, say centered at the origin with its axis coincident with the z axis.
When we draw the car, including the wheels and bolts, we want to call the wheel-drawing
routine four times with different transformations in effect each time to position the wheels
correctly. As we draw each wheel, we want to draw the bolts five times, each time
translated appropriately relative to the wheel. Suppose for a minute that all we have to do
is draw the car body and the wheels. The English description of what we want to do might
be something like this:

Draw the car body. Remember where we are, and translate to the right front wheel. Draw
the wheel and throw away the last translation so our current position is back at the origin
of the car body. Remember where we are, and translate to the left front wheel...

Similarly, for each wheel, we want to draw the wheel, remember where we are, and
successively translate to each of the positions that bolts are drawn, throwing away the
transformations after each bolt is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal
mechanism for doing this sort of successive remembering, translating, and throwing
away. All the matrix operations that have been described so far (glLoadMatrix(),
glMultMatrix(), glLoadIdentity() and the commands that create specific transformation
matrices) deal with the current matrix, or the top matrix on the stack. We can control
which matrix is on top with the commands that perform stack operations:
glPushMatrix(), which copies the current matrix and adds the copy to the top of the

41-Viewing VU

© Copyright Virtual University of Pakistan

387

stack, and glPopMatrix(), which discards the top matrix on the stack, as shown in Figure
21. In effect, glPushMatrix() means "remember where we are" and glPopMatrix()
means "go back to where we were."

Figure 21 : Pushing and Popping the Matrix Stack

void glPushMatrix(void);
Pushes all matrices in the current stack down one level. The current stack is determined
by glMatrixMode(). The topmost matrix is copied, so its contents are duplicated in both
the top and second-from-the-top matrix. If too many matrices are pushed, an error is
generated.

void glPopMatrix(void);
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was
the second-from-the-top matrix becomes the top matrix. The current stack is determined
by glMatrixMode(). If the stack contains a single matrix, calling glPopMatrix()
generates an error.

Example 4 draws an automobile, assuming the existence of routines that draw the car
body, a wheel, and a bolt.

Example 4 : Pushing and Popping the Matrix

draw_wheel_and_bolts()
{
long i;
draw_wheel();
for(i=0;i<5;i++){
glPushMatrix();
glRotatef(72.0*i,0.0,0.0,1.0);
glTranslatef(3.0,0.0,0.0);
draw_bolt();
glPopMatrix();
}
}
draw_body_and_wheel_and_bolts()
{
draw_car_body();
glPushMatrix();

41-Viewing VU

© Copyright Virtual University of Pakistan

388

glTranslatef(40,0,30); /*move to first wheel position*/
draw_wheel_and_bolts();
glPopMatrix();
glPushMatrix();
glTranslatef(40,0,-30); /*move to 2nd wheel position*/
draw_wheel_and_bolts();
glPopMatrix();
... /*draw last two wheels similarly*/
}

This code assumes the wheel and bolt axes are coincident with the z-axis, that the bolts
are evenly spaced every 72 degrees, 3 units (maybe inches) from the center of the wheel,
and that the front wheels are 40 units in front of and 30 units to the right and left of the
car's origin.

A stack is more efficient than an individual matrix, especially if the stack is implemented
in hardware. When we push a matrix, we don't need to copy the current data back to the
main process, and the hardware may be able to copy more than one element of the matrix
at a time. Sometimes we might want to keep an identity matrix at the bottom of the stack
so that we don't need to call glLoadIdentity() repeatedly.

42-Examples of Composing Several Transformations VU

© Copyright Virtual University of Pakistan

389

Lecture No.42 Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a particular
result. The two examples discussed are a solar system, in which objects need to rotate on
their axes as well as in orbit around each other, and a robot arm, which has several joints
that effectively transform coordinate systems as they move relative to each other.
Building a Solar System

The program described in this section draws a simple solar system with a planet and a
sun, both using the same sphere-drawing routine. To write this program, we need to use
glRotate*() for the revolution of the planet around the sun and for the rotation of the
planet around its own axis. We also need glTranslate*() to move the planet out to its
orbit, away from the origin of the solar system. Remember that we can specify the desired
size of the two spheres by supplying the appropriate arguments for the glutWireSphere()
routine. To draw the solar system, we first want to set up a projection and a viewing
transformation. For this example, gluPerspective() and gluLookAt() are used. Drawing
the sun is straightforward, since it should be located at the origin of the grand, fixed
coordinate system, which is where the sphere routine places it. Thus, drawing the sun
doesn't require translation; we can use glRotate*() to make the sun rotate about an
arbitrary axis. To draw a planet rotating around the sun, as shown in Figure 24, requires
several modeling transformations. The planet needs to rotate about its own axis once a
day. And once a year, the planet completes one revolution around the sun.

Figure 24 : Planet and Sun

To determine the order of modeling transformations, visualize what happens to the local
coordinate system. An initial glRotate*() rotates the local coordinate system that initially
coincides with the grand coordinate system. Next, glTranslate*() moves the local
coordinate system to a position on the planet's orbit; the distance moved should equal the
radius of the orbit. Thus, the initial glRotate*() actually determines where along the orbit
the planet is (or what time of year it is). A second glRotate*() rotates the local coordinate
system around the local axes, thus determining the time of day for the planet. Once we've
issued all these transformation commands, the planet can be drawn.
In summary, these are the OpenGL commands to draw the sun and planet; the full
program is shown in Example 6.

glPushMatrix();
glutWireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
glTranslatef (2.0, 0.0, 0.0);

42-Examples of Composing Several Transformations VU

© Copyright Virtual University of Pakistan

390

glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();

Example 6 : Planetary System:
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
static int year = 0, day = 0;
void init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);
}
void display(void)
{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glPushMatrix();
glutWireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
glTranslatef (2.0, 0.0, 0.0);
glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();
glutSwapBuffers();
}
void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case `d':
day = (day + 10) % 360;
glutPostRedisplay();
break;
case `D':
day = (day - 10) % 360;
glutPostRedisplay();
break;
case `y':
year = (year + 5) % 360;

42-Examples of Composing Several Transformations VU

© Copyright Virtual University of Pakistan

391

glutPostRedisplay();
break;
case `Y':
year = (year - 5) % 360;
glutPostRedisplay();
break;
default:
break;
}
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMainLoop();
return 0;
}

Try This
Try adding a moon to the planet. Or try several moons and additional planets. Hint: Use
glPushMatrix() and glPopMatrix() to save and restore the position and orientation of the
coordinate system at appropriate moments. If we're going to draw several moons around a
planet, we need to save the coordinate system prior to positioning each moon and restore
the coordinate system after each moon is drawn.
Try tilting the planet's axis.

Building an Articulated Robot Arm
This section discusses a program that creates an articulated robot arm with two or more
segments. The arm should be connected with pivot points at the
shoulder, elbow, or other joints. Figure 25 shows a single joint of such an arm.

Figure 25 : Robot Arm

We can use a scaled cube as a segment of the robot arm, but first we must call the
appropriate modeling transformations to orient each segment. Since the origin of the local
coordinate system is initially at the center of the cube, we need to move the local

42-Examples of Composing Several Transformations VU

© Copyright Virtual University of Pakistan

392

coordinate system to one edge of the cube. Otherwise, the cube rotates about its center
rather than the pivot point.

After we call glTranslate*() to establish the pivot point and glRotate*() to pivot the
cube, translate back to the center of the cube. Then the cube is scaled (flattened and
widened) before it is drawn. The glPushMatrix() and glPopMatrix() restrict the effect of
glScale*(). Here's what our code might look like for this first segment of the arm (the
entire program is shown in Example 7):

glTranslatef (-1.0, 0.0, 0.0);
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

To build a second segment, we need to move the local coordinate system to the next pivot
point. Since the coordinate system has previously been rotated, the x-axis is already
oriented along the length of the rotated arm. Therefore, translating along the x-axis moves
the local coordinate system to the next pivot point. Once it's at that pivot point, we can
use the same code to draw the second segment as we used for the first one. This can be
continued for an indefinite number of segments (shoulder, elbow, wrist, fingers).

glTranslatef (1.0, 0.0, 0.0);
glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

Example 7 : Robot Arm:
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
static int shoulder = 0, elbow = 0;
void init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);
}
void display(void)
{
glClear (GL_COLOR_BUFFER_BIT);
glPushMatrix();
glTranslatef (-1.0, 0.0, 0.0);
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();

42-Examples of Composing Several Transformations VU

© Copyright Virtual University of Pakistan

393

glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();
glTranslatef (1.0, 0.0, 0.0);
glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();
glPopMatrix();
glutSwapBuffers();
}
void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective(65.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef (0.0, 0.0, -5.0);
}
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case `s': /* s key rotates at shoulder */
shoulder = (shoulder + 5) % 360;
glutPostRedisplay();
break;
case `S':
shoulder = (shoulder - 5) % 360;
glutPostRedisplay();
break;
case `e': /* e key rotates at elbow */
elbow = (elbow + 5) % 360;
glutPostRedisplay();
break;
case `E':
elbow = (elbow - 5) % 360;
glutPostRedisplay();
break;
default:
break;
}
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

42-Examples of Composing Several Transformations VU

© Copyright Virtual University of Pakistan

394

glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMainLoop();
return 0;
}

Try This
Modify Example 7 to add additional segments onto the robot arm. l

Modify Example 7 to add additional segments at the same position. For example, give the
robot arm several "fingers" at the wrist, as shown in Figure 26. Hint: Use glPushMatrix()
and glPopMatrix() to save and restore the position and orientation of the coordinate
system at the wrist. If we're going to draw fingers at the wrist, we need to save the current
matrix prior to positioning each finger and restore the current matrix after each finger is
drawn.

Figure 26: Robot Arm with Fingers

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

395

Lecture No.43 Real-World and OpenGL Lighting

When we look at a physical surface, our eye's perception of the color depends on the
distribution of photon energies that arrive and trigger our cone cells. Those photons come
from a light source or combination of sources, some of which are absorbed and some are
reflected by the surface. In addition, different surfaces may have very different properties
- some are shiny and preferentially reflect light in certain directions, while others scatter
incoming light equally in all directions. Most surfaces are somewhere in between.

OpenGL approximates light and lighting as if light can be broken into red, green, and
blue components. Thus, the color of light sources is characterized by the amount of red,
green, and blue light they emit, and the material of surfaces is characterized by the
percentage of the incoming red, green, and blue components that is reflected in various
directions. The OpenGL lighting equations are just an approximation but one that works
fairly well and can be computed relatively quickly. If we desire a more accurate (or just
different) lighting model, we have to do our own calculations in software. Such software
can be enormously complex, as a few hours of reading any optics textbook should
convince us. In the OpenGL lighting model, the light in a scene comes from several light
sources that can be individually turned on and off. Some light comes from a particular
direction or position, and some light is generally scattered about the scene. For example,
when we turn on a light bulb in a room, most of the light comes from the bulb, but some
light comes after bouncing off one, two, three, or more walls. This bounced light (called
ambient) is assumed to be so scattered that there is no way to tell its original direction, but
it disappears if a particular light source is turned off.

Finally, there might be a general ambient light in the scene that comes from no particular
source, as if it had been scattered so many times that its original source is impossible to
determine. In the OpenGL model, the light sources have an effect only when there are
surfaces that absorb and reflect light. Each surface is assumed to be composed of a
material with various properties. A material might emit its own light (like headlights on
an automobile), it might scatter some incoming light in all directions, and it might reflect
some portion of the incoming light in a preferential direction like a mirror or other shiny
surface. The OpenGL lighting model considers the lighting to be divided into four
independent components: emissive, ambient, diffuse and specular. All four components
are computed independently and then added together.

A Simple Example: Rendering a Lit Sphere

These are the steps required to add lighting to our scene. Define NORMAL vectors for
each vertex of all the objects. These NORMALS determine the orientation of the object
relative to the light sources.

Create, select, and position one or more light sources.
Create and select a lighting model, which defines the level of global ambient light and the
effective location of the viewpoint (for the purposes of lighting calculations)
Define material properties for the objects in the scene.

Example 1 accomplishes these tasks. It displays a sphere illuminated by a single light
source, as shown earlier in Figure 1.

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

396

Example 1 : Drawing a Lit Sphere:
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
void init(void)
{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] = { 50.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOOTH);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);
}
void display(void)
{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidSphere (1.0, 20, 16);
glFlush ();
}
void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
if (w <= h)
glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w, 1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
else
glOrtho (-1.5*(GLfloat)w/(GLfloat)h, 1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return 0;
}

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

397

The lighting-related calls are in the init() command; they're discussed briefly in the
following paragraphs and in more detail later in the chapter. One thing to note about
Example 1 is that it uses RGBA color mode, not color-index mode. The OpenGL lighting
calculation is different for the two modes, and in fact the lighting capabilities are more
limited in color-index mode. Thus, RGBA is the preferred mode when doing lighting.

Define Normal Vectors for Each Vertex of Every Object
An object's NORMALS determine its orientation relative to the light sources. For each
vertex, OpenGL uses the assigned normal to determine how much light that particular
vertex receives from each light source. In this example, the NORMALS for the sphere are
defined as part of the glutSolidSphere() routine. (recall "Normal Vectors")

Create, Position, and Enable One or More Light Sources
Example 1 uses only one, white light source; its location is specified by the glLightfv()
call. This example uses the default color for light zero (GL_LIGHT0), which is white; if
we want a differently colored light, use glLight*() to indicate this. We can include at
least eight different light sources in our scene of various colors; the default color of these
other lights is black. (The particular implementation of OpenGL we're using might allow
more than eight.) we can also locate the lights wherever we desire - we can position them
near the scene, as a desk lamp would be, or an infinite distance away, like the sun. In
addition, we can control whether a light produces a narrow, focused beam or a wider
beam. Remember that each light source adds significantly to the calculations needed to
render the scene, so performance is affected by the number of lights in the scene.
After we've defined the characteristics of the lights we want, we have to turn them on
with the glEnable() command. We also need to call glEnable() with GL_LIGHTING as a
parameter to prepare OpenGL to perform lighting calculations.

Select a Lighting Model
As we might expect, the glLightModel*() command describes the parameters of a
lighting model. In Example 1, the only element of the lighting model that's defined
explicitly is the global ambient light. The lighting model also defines whether the viewer
of the scene should be considered to be an infinite distance away or local to the scene, and
whether lighting calculations should be performed differently for the front and back
surfaces of objects in the scene. Example 1 uses the default settings for these two aspects
of the model - an infinite viewer and one-sided lighting. Using a local viewer adds
significantly to the complexity of the calculations that must be performed, because
OpenGL must calculate the angle between the viewpoint and each object. With an infinite
viewer, however, the angle is ignored, and the results are slightly less realistic. Further,
since in this example, the back surface of the sphere is never seen (it's the inside of the
sphere), one-sided lighting is sufficient.

Define Material Properties for the Objects in the Scene
An object's material properties determine how it reflects light and therefore what material
it seems to be made of. Because the interaction between an object's material surface and
incident light is complex, specifying material properties so that an object has a certain
desired appearance is an art. We can specify a material's ambient, diffuse, and specular
colors and how shiny it is. In this example, only these last two material properties - the
specular material color and shininess - are explicitly specified (with the glMaterialfv()
calls).

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

398

Some Important Notes
As we write our own lighting program, remember that we can use the default values for
some lighting parameters; others need to be changed. Also, don't forget to enable
whatever lights we define and to enable lighting calculations. Finally, remember that we
might be able to use display lists to maximize efficiency as we change lighting
conditions.

Creating Light Sources
Light sources have a number of properties, such as color, position, and direction. The
following sections explain how to control these properties and what the resulting light
looks like. The command used to specify all properties of lights is glLight*(); it takes
three arguments: to identify the light whose property is being specified, the property, and
the desired value for that property.

void glLight{if}(GLenum light, GLenum pname, TYPEparam);
void glLight{if}v(GLenum light, GLenum pname, TYPE *param);

Creates the light specified by light, which can be GL_LIGHT0, GL_LIGHT1, ... , or
GL_LIGHT7. The characteristic of the light being set is defined by pname, which
specifies a named parameter (see Table 1). param indicates the values to which the
pname characteristic is set; it's a pointer to a group of values if the vector version is used,
or the value itself if the nonvector version is used. The nonvector version can be used to
set only single-valued light characteristics.

Table 1 : Default Values for pname Parameter of glLight*()

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

399

Note: The default values listed for GL_DIFFUSE and GL_SPECULAR in Table 1 apply
only to GL_LIGHT(). For other lights, the default value is (0.0, 0.0, 0.0, 1.0) for both
GL_DIFFUSE and GL_SPECULAR.
Example 2 shows how to use glLight*():

Example 2 : Defining Colors and Position for a Light Source

GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

As we can see, arrays are defined for the parameter values, and glLightfv() is called
repeatedly to set the various parameters. In this example, the first three calls to
glLightfv() are superfluous, since they're being used to specify the default values for the
GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR parameters.

Note: Remember to turn on each light with glEnable().
All the parameters for glLight*() and their possible values are explained in the following
sections. These parameters interact with those that define the overall lighting model for a
particular scene and an object's material properties.
Color

OpenGL allows we to associate three different color-related parameters - GL_AMBIENT,
GL_DIFFUSE, and GL_SPECULAR - with any particular light. The GL_AMBIENT
parameter refers to the RGBA intensity of the ambient light that a particular light source
adds to the scene. As we can see in Table 1, by default there is no ambient light since
GL_AMBIENT is (0.0, 0.0, 0.0, 1.0). This value was used in Example 1. If this program
had specified blue ambient light as

GLfloat light_ambient[] = { 0.0, 0.0, 1.0, 1.0};
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);

The GL_DIFFUSE parameter probably most closely correlates with what we naturally
think of as "the color of a light." It defines the RGBA color of the diffuse light that a
particular light source adds to a scene. By default, GL_DIFFUSE is (1.0, 1.0, 1.0, 1.0) for
GL_LIGHT0, which produces a bright. The default value for any other light
(GL_LIGHT1, ... , GL_LIGHT7) is (0.0, 0.0, 0.0, 0.0).

The GL_SPECULAR parameter affects the color of the specular highlight on an object.
Typically, a real-world object such as a glass bottle has a specular highlight that's the
color of the light shining on it (which is often white). Therefore, if we want to create a
realistic effect, set the GL_SPECULAR parameter to the same value as the
GL_DIFFUSE parameter. By default, GL_SPECULAR is (1.0, 1.0, 1.0, 1.0) for
GL_LIGHT0 and (0.0, 0.0, 0.0, 0.0) for any other light.

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

400

Note: The alpha component of these colors is not used until blending is enabled.

Position and Attenuation

As previously mentioned, we can choose whether to have a light source that's treated as
though it's located infinitely far away from the scene or one that's nearer to the scene. The
first type is referred to as a directional light source; the effect of an infinite location is
that the rays of light can be considered parallel by the time they reach an object. An
example of a real-world directional light source is the sun. The second type is called a
positional light source, since its exact position within the scene determines the effect it
has on a scene and, specifically, the direction from which the light rays come. A desk
lamp is an example of a positional light source. The light used in Example 1 is a
directional one:

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

As shown, we supply a vector of four values (x, y, z, w) for the GL_POSITION
parameter. If the last value, w, is zero, the corresponding light source is a directional one,
and the (x, y, z) values describe its direction. This direction is transformed by the
modelview matrix. By default, GL_POSITION is (0, 0, 1, 0), which defines a directional
light that points along the negative z-axis. (Note that nothing prevents we from creating a
directional light with the direction of (0, 0, 0), but such a light won't help we much.) If the
w value is nonzero, the light is positional, and the (x, y, z) values specify the location of
the light in homogeneous object coordinates. This location is transformed by the
modelview matrix and stored in eye coordinates. Also, by default, a positional light
radiates in all directions, but we can restrict it to producing a cone of illumination by
defining the light as a spotlight.

Note: Remember that the colors across the face of a smooth-shaded polygon are
determined by the colors calculated for the vertices. Because of this, we probably want to
avoid using large polygons with local lights. If we locate the light near the middle of the
polygon, the vertices might be too far away to receive much light, and the whole polygon
will look darker than we intended. To avoid this problem, break up the large polygon into
smaller ones.

For real-world lights, the intensity of light decreases as distance from the light increases.
Since a directional light is infinitely far away, it doesn't make sense to attenuate its
intensity over distance, so attenuation is disabled for a directional light. However, we
might want to attenuate the light from a positional light.
OpenGL attenuates a light source by multiplying the contribution of that source by an
attenuation factor:

where
d = distance between the light's position and the vertex
kc = GL_CONSTANT_ATTENUATION

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

401

kl = GL_LINEAR_ATTENUATION
kq = GL_QUADRATIC_ATTENUATION
By default, kc is 1.0 and both kl and kq are zero, but we can give these parameters
different values:
glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0);
glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5);

Note that the ambient, diffuse, and specular contributions are all attenuated. Only the
emission and global ambient values aren't attenuated. Also note that since attenuation
requires an additional division (and possibly more math) for each calculated color, using
attenuated lights may slow down application performance.

Spotlights
As previously mentioned, we can have a positional light source act as a spotlight - that is,
by restricting the shape of the light it emits to a cone. To create a spotlight, we need to
determine the spread of the cone of light we desire. (Remember that since spotlights are
positional lights, we also have to locate them where we want them. Again, note that
nothing prevents us from creating a directional spotlight, but it won't give us the result we
want.) To specify the angle between the axis of the cone and a ray along the edge of the
cone, use the GL_SPOT_CUTOFF parameter. The angle of the cone at the apex is then
twice this value, as shown in Figure 2.

Figure 2 : GL_SPOT_CUTOFF Parameter

Note that no light is emitted beyond the edges of the cone. By default, the spotlight
feature is disabled because the GL_SPOT_CUTOFF parameter is 180.0. This value
means that light is emitted in all directions (the angle at the cone's apex is 360 degrees, so
it isn't a cone at all). The value for GL_SPOT_CUTOFF is restricted to being within the
range [0.0,90.0] (unless it has the special value 180.0). The following line sets the cutoff
parameter to 45 degrees:

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

We also need to specify a spotlight's direction, which determines the axis of the cone of
light:

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

402

GLfloat spot_direction[] = { -1.0, -1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction);

The direction is specified in object coordinates. By default, the direction is (0.0, 0.0, -1.0),
so if we don't explicitly set the value of GL_SPOT_DIRECTION, the light points down
the negative z-axis. Also, keep in mind that a spotlight's direction is transformed by the
modelview matrix just as though it were a normal vector, and the result is stored in eye
coordinates.

In addition to the spotlight's cutoff angle and direction, there are two ways we can control
the intensity distribution of the light within the cone. First, we can set the attenuation
factor described earlier, which is multiplied by the light's intensity. We can also set the
GL_SPOT_EXPONENT parameter, which by default is zero, to control how concentrated
the light is. The light's intensity is highest in the center of the cone. It's attenuated toward
the edges of the cone by the cosine of the angle between the direction of the light and the
direction from the light to the vertex being lit, raised to the power of the spot exponent.
Thus, higher spot exponents result in a more focused light source.

Multiple Lights
As mentioned, we can have at least eight lights in our scene (possibly more, depending on
our OpenGL implementation). Since OpenGL needs to perform calculations to determine
how much light each vertex receives from each light source, increasing the number of
lights adversely affects performance. The constants used to refer to the eight lights are
GL_LIGHT0, GL_LIGHT1, GL_LIGHT2, GL_LIGHT3, and so on. In the preceding
discussions, parameters related to GL_LIGHT0 were set. If we want an additional light,
we need to specify its parameters; also, remember that the default values are different for
these other lights than they are for GL_LIGHT0, as explained in Table 1. Example 3
defines a white attenuated spotlight.

Example 3 : Second Light Source

GLfloat light1_ambient[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat light1_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light1_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light1_position[] = { -2.0, 2.0, 1.0, 1.0 };
GLfloat spot_direction[] = { -1.0, -1.0, 0.0 };
glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, light1_specular);
glLightfv(GL_LIGHT1, GL_POSITION, light1_position);
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.5);
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.5);
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.2);
glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0);
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_direction);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0);
glEnable(GL_LIGHT1);

If these lines were added to Example 1, the sphere would be lit with two lights, one
directional and one spotlight.

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

403

Try This
Modify Example 1 in the following manner:
Change the first light to be a positional colored light rather than a directional white one.
Add an additional colored spotlight. Hint: Use some of the code shown in the preceding
section. Measure how these two changes affect performance.

Controlling a Light's Position and Direction
OpenGL treats the position and direction of a light source just as it treats the position of a
geometric primitive. In other words, a light source is subject to the same matrix
transformations as a primitive. More specifically, when glLight*() is called to specify the
position or the direction of a light source, the position or direction is transformed by the
current modelview matrix and stored in eye coordinates. This means we can manipulate a
light source's position or direction by changing the contents of the modelview matrix.
(The projection matrix has no effect on a light's position or direction.) This section
explains how to achieve the following three different effects by changing the point in the
program at which the light position is set, relative to modeling or viewing
transformations:

A light position that remains fixed
A light that moves around a stationary object
A light that moves along with the viewpoint

Keeping the Light Stationary
In the simplest example, as in Example 1, the light position remains fixed. To achieve this
effect, we need to set the light position after whatever viewing and/or modeling
transformation we use. In Example 4, the relevant code from the init() and reshape()
routines might look like this.

Example 4 : Stationary Light Source

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
if (w <= h)
glOrtho (-1.5, 1.5, -1.5*h/w, 1.5*h/w, -10.0, 10.0);
else
glOrtho (-1.5*w/h, 1.5*w/h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
/* later in init() */
GLfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 };
glLightfv(GL_LIGHT0, GL_POSITION, position);

As we can see, the viewport and projection matrices are established first. Then, the
identity matrix is loaded as the modelview matrix, after which the light position is set.
Since the identity matrix is used, the originally specified light position (1.0, 1.0, 1.0) isn't
changed by being multiplied by the modelview matrix. Then, since neither the light
position nor the modelview matrix is modified after this point, the direction of the light
remains (1.0, 1.0, 1.0).

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

404

Independently Moving the Light
Now suppose we want to rotate or translate the light position so that the light moves
relative to a stationary object. One way to do this is to set the light position after the
modeling transformation, which is itself changed specifically to modify the light position.
We can begin with the same series of calls in init() early in the program. Then we need to
perform the desired modeling transformation (on the modelview stack) and reset the light
position, probably in display(). Example 5 shows what display() might be.

Example 5 : Independently Moving Light Source

static GLdouble spin;
void display(void)
{
GLfloat light_position[] = { 0.0, 0.0, 1.5, 1.0 };
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glPushMatrix();
glRotated(spin, 1.0, 0.0, 0.0);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glPopMatrix();
glutSolidTorus (0.275, 0.85, 8, 15);
glPopMatrix();
glFlush();
}

spin is a global variable and is probably controlled by an input device. display() causes
the scene to be redrawn with the light rotated spin degrees around a stationary torus. Note
the two pairs of glPushMatrix() and glPopMatrix() calls, which are used to isolate the
viewing and modeling transformations, all of which occur on the modelview stack. Since
in Example 5 the viewpoint remains constant, the current matrix is pushed down the stack
and then the desired viewing transformation is loaded with gluLookAt(). The matrix
stack is pushed again before the modeling transformation glRotated() is specified. Then
the light position is set in the new, rotated coordinate system so that the light itself
appears to be rotated from its previous position. (Remember that the light position is
stored in eye coordinates, which are obtained after transformation by the modelview
matrix.) After the rotated matrix is popped off the stack, the torus is drawn.
Example 6 is a program that rotates a light source around an object. When the left mouse
button is pressed, the light position rotates an additional 30 degrees. A small, unlit,
wireframe cube is drawn to represent the position of the light in the scene.

Example 6 : Moving a Light with Modeling Transformations:
#include <GL/gl.h>
#include <GL/glu.h>
#include "glut.h"
static int spin = 0;
void init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOOTH);

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

405

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);
}
/* Here is where the light position is reset after the modeling
* transformation (glRotated) is called. This places the
* light at a new position in world coordinates. The cube
* represents the position of the light.
*/
void display(void)
{
GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix ();
glTranslatef (0.0, 0.0, -5.0);
glPushMatrix ();
glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);
glLightfv (GL_LIGHT0, GL_POSITION, position);
glTranslated (0.0, 0.0, 1.5);
glDisable (GL_LIGHTING);
glColor3f (0.0, 1.0, 1.0);
glutWireCube (0.1);
glEnable (GL_LIGHTING);
glPopMatrix ();
glutSolidTorus (0.275, 0.85, 8, 15);
glPopMatrix ();
glFlush ();
}
void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void mouse(int button, int state, int x, int y)
{
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
spin = (spin + 30) % 360;
glutPostRedisplay();
}
break;
default:
break;
}
}

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

406

int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();
return 0;
}

Selecting a Lighting Model
The OpenGL notion of a lighting model has three components:

The global ambient light intensity
Whether the viewpoint position is local to the scene or whether it should be considered to
be an infinite distance away
Whether lighting calculations should be performed differently for both the front and back
faces of objects

This section explains how to specify a lighting model. It also discusses how to enable
lighting - that is, how to tell OpenGL that we want lighting calculations performed.
The command used to specify all properties of the lighting model is glLightModel*().
glLightModel*() has two arguments: the lighting model property and the desired value
for that property.

void glLightModel{if}(GLenum pname, TYPEparam);
void glLightModel{if}v(GLenum pname, TYPE *param);
Sets properties of the lighting model. The characteristic of the lighting model being set is
defined by pname, which specifies a named parameter (see Table 2). param indicates the
values to which the pname characteristic is set; it's a pointer to a group of values if the
vector version is used, or the
value itself if the nonvector version is used. The nonvector version can be used to set only
single-valued lighting model characteristics, not for
GL_LIGHT_MODEL_AMBIENT.

Table 2 : Default Values for pname Parameter of glLightModel*()

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

407

Global Ambient Light

As discussed earlier, each light source can contribute ambient light to a scene. In addition,
there can be other ambient light that's not from any particular source. To specify the
RGBA intensity of such global ambient light, use the GL_LIGHT_MODEL_AMBIENT
parameter as follows:

GLfloat lmodel_ambient[] = { 0.2, 0.2, 0.2, 1.0 };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);

In this example, the values used for lmodel_ambient are the default values for
GL_LIGHT_MODEL_AMBIENT. Since these numbers yield a small amount of white
ambient light, even if we don't add a specific light source to our scene, we can still see the
objects in the scene.

Enabling Lighting

With OpenGL, we need to explicitly enable (or disable) lighting. If lighting isn't enabled,
the current color is simply mapped onto the current vertex, and no calculations
concerning normals, light sources, the lighting model, and material properties are
performed. Here's how to enable lighting:

glEnable(GL_LIGHTING);

To disable lighting, call glDisable() with GL_LIGHTING as the argument. We also need
to explicitly enable each light source that we define, after we've specified the parameters
for that source. Example 1 uses only one light,

GL_LIGHT0:
glEnable(GL_LIGHT0);

Defining Material Properties

We've seen how to create light sources with certain characteristics and how to define the
desired lighting model. This section describes how to define the material properties of the
objects in the scene: the ambient, diffuse, and specular colors, the shininess, and the color
of any emitted light. Most of the material properties are conceptually similar to ones
we've already used to create light sources. The mechanism for setting them is similar,
except that the command used is called glMaterial*().

void glMaterial{if}(GLenum face, GLenum pname, TYPEparam);
void glMaterial{if}v(GLenum face, GLenum pname, TYPE *param);

Specifies a current material property for use in lighting calculations. face can be
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the
object the material should be applied to. The particular material property being set is
identified by pname and the desired values for that property are given by param, which is
either a pointer to a group of values (if the vector version is used) or the actual value (if
the nonvector version is used). The nonvector version works only for setting

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

408

GL_SHININESS. The possible values for pname are shown in Table 3. Note that
GL_AMBIENT_AND_DIFFUSE allows we to set both the ambient and diffuse material
colors simultaneously to the same RGBA value.

Table 3 : Default Values for pname Parameter of glMaterial*()

As discussed in "Selecting a Lighting Model," we can choose to have lighting
calculations performed differently for the front- and back-facing polygons of objects. If
the back faces might indeed be seen, we can supply different material properties for the
front and the back surfaces by using the face parameter of glMaterial*().

Note that most of the material properties set with glMaterial*() are (R, G, B, A) colors.
Regardless of what alpha values are supplied for other parameters, the alpha value at any
particular vertex is the diffuse-material alpha value (that is, the alpha value given to
GL_DIFFUSE with the glMaterial*() command, as described in the next section). Also,
none of the RGBA material properties apply in color-index mode.

Diffuse and Ambient Reflection

The GL_DIFFUSE and GL_AMBIENT parameters set with glMaterial*() affect the
color of the diffuse and ambient light reflected by an object. Diffuse reflectance plays the
most important role in determining what we perceive the color of an object to be. It's
affected by the color of the incident diffuse light and the angle of the incident light
relative to the normal direction. (It's most intense where the incident light falls
perpendicular to the surface.) The position of the viewpoint doesn't affect diffuse
reflectance at all.

Ambient reflectance affects the overall color of the object. Because diffuse reflectance is
brightest where an object is directly illuminated, ambient reflectance is most noticeable
where an object receives no direct illumination. An object's total ambient reflectance is
affected by the global ambient light and ambient light from individual light sources. Like

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

409

diffuse reflectance, ambient reflectance isn't affected by the position of the viewpoint. For
real-world objects, diffuse and ambient reflectance are normally the same color. For this
reason, OpenGL provides we with a convenient way of assigning the same value to both
simultaneously with glMaterial*():

GLfloat mat_amb_diff[] = { 0.1, 0.5, 0.8, 1.0 };
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, mat_amb_diff);

In this example, the RGBA color (0.1, 0.5, 0.8, 1.0) - a deep blue color - represents the
current ambient and diffuse reflectance for both the front- and
back-facing polygons.

Specular Reflection

Specular reflection from an object produces highlights. Unlike ambient and diffuse
reflection, the amount of specular reflection seen by a viewer does depend on the location
of the viewpoint - it's brightest along the direct angle of reflection. To see this, imagine
looking at a metallic ball outdoors in the sunlight. As we move our head, the highlight
created by the sunlight moves with us to some extent. However, if we move our head too
much, we lose the highlight entirely.

OpenGL allows us to set the effect that the material has on reflected light (with
GL_SPECULAR) and control the size and brightness of the highlight (with
GL_SHININESS). We can assign a number in the range of [0.0, 128.0] to
GL_SHININESS - the higher the value, the smaller and brighter (more focused) the
highlight.

Twelve spheres, each with different material parameters. The row properties are as
labeled above. The first column uses a blue diffuse material color with no specular
properties. The second column adds white specular reflection with a low shininess
exponent. The third column uses a high shininess exponent and thus has a more
concentrated highlight. The fourth column uses the blue diffuse color and, instead of
specular reflection, adds an emissive component.

In above figure, the spheres in the first column have no specular reflection. In the second
column, GL_SPECULAR and GL_SHININESS are assigned values as follows:

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

410

GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat low_shininess[] = { 5.0 };
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);

In the third column, the GL_SHININESS parameter is increased to 100.0.

Emission
By specifying an RGBA color for GL_EMISSION, we can make an object appear to be
giving off light of that color. Since most real-world objects (except lights) don't emit
light, we'll probably use this feature mostly to simulate lamps and other light sources in a
scene.

GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);

Notice that the spheres appear to be slightly glowing; however, they're not actually acting
as light sources. We would need to create a light source and position it at the same
location as the sphere to create that effect.

Changing Material Properties
Example 1 uses the same material properties for all vertices of the only object in the scene
(the sphere). In other situations, we might want to assign different material properties for
different vertices on the same object. More likely, we have more than one object in the
scene, and each object has different material properties. For example, the code that
produced "above figure” has to draw twelve different objects (all spheres), each with
different material properties. Example 8 shows a portion of the code in display().

Example 8 : Different Material Properties:
GLfloat no_mat[] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat mat_ambient[] = { 0.7, 0.7, 0.7, 1.0 };
GLfloat mat_ambient_color[] = { 0.8, 0.8, 0.2, 1.0 };
GLfloat mat_diffuse[] = { 0.1, 0.5, 0.8, 1.0 };
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat no_shininess[] = { 0.0 };
GLfloat low_shininess[] = { 5.0 };
GLfloat high_shininess[] = { 100.0 };
GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
/* draw sphere in first row, first column
* diffuse reflection only; no ambient or specular
*/
glPushMatrix();
glTranslatef (-3.75, 3.0, 0.0);
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat);
glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess);
glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

411

glutSolidSphere(1.0, 16, 16);
glPopMatrix();
/* draw sphere in first row, second column
* diffuse and specular reflection; low shininess; no ambient
*/
glPushMatrix();
glTranslatef (-1.25, 3.0, 0.0);
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);
glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
glutSolidSphere(1.0, 16, 16);
glPopMatrix();
/* draw sphere in first row, third column
* diffuse and specular reflection; high shininess; no ambient
*/
glPushMatrix();
glTranslatef (1.25, 3.0, 0.0);
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, high_shininess);
glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
glutSolidSphere(1.0, 16, 16);
glPopMatrix();
/* draw sphere in first row, fourth column
* diffuse reflection; emission; no ambient or specular refl.
*/
glPushMatrix();
glTranslatef (3.75, 3.0, 0.0);
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat);
glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess);
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
glutSolidSphere(1.0, 16, 16);
glPopMatrix();

As we can see, glMaterialfv() is called repeatedly to set the desired material property for
each sphere. Note that it only needs to be called to change a property that needs to be
respecified. The second, third, and fourth spheres use the same ambient and diffuse
properties as the first sphere, so these properties do not need to be respecified. Since
glMaterial*() has a performance cost associated with its use, Example 8 could be
rewritten to minimize material-property changes. Another technique for minimizing
performance costs associated with changing material properties is to use
glColorMaterial().

void glColorMaterial(GLenum face, GLenum mode);

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

412

Causes the material property (or properties) specified by mode of the specified material
face (or faces) specified by face to track the value of the current color at all times. A
change to the current color (using glColor*()) immediately updates the specified material
properties. The face parameter can beGL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK (the default). The mode parameter can be GL_AMBIENT,
GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE (the default), GL_SPECULAR, or
GL_EMISSION. At any given time, only one mode is active. glColorMaterial() has no
effect on color-index lighting.

Note that glColorMaterial() specifies two independent values: the first specifies which
face or faces are updated, and the second specifies which material property or properties
of those faces are updated. OpenGL does not maintain separate mode variables for each
face. After calling glColorMaterial(), we need to call glEnable() with
GL_COLOR_MATERIAL as the parameter. Then, we can change the current color using
glColor*() (or other material properties, using glMaterial*()) as needed as we draw:

glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL_DIFFUSE);
/* now glColor* changes diffuse reflection */
glColor3f(0.2, 0.5, 0.8);
/* draw some objects here */
glColorMaterial(GL_FRONT, GL_SPECULAR);
/* glColor* no longer changes diffuse reflection */
/* now glColor* changes specular reflection */
glColor3f(0.9, 0.0, 0.2);
/* draw other objects here */
glDisable(GL_COLOR_MATERIAL);

We should use glColorMaterial() whenever we need to change a single material
parameter for most vertices in our scene. If we need to change more than one material
parameter, as was the case for "in above figure”, use glMaterial*(). When we don't need
the capabilities of glColorMaterial() anymore, be sure to disable it so that we don't get
undesired material properties and don't incur the performance cost associated with it. The
performance value in using glColorMaterial() varies, depending on our OpenGL
implementation. Some implementations may be able to optimize the vertex routines so
that they can quickly update material properties based on the current color.

Example 9 shows an interactive program that uses glColorMaterial() to change material
parameters. Pressing each of the three mouse buttons changes the color of the diffuse
reflection.

Example 9 : Using glColorMaterial():
#include <GL/gl.h>
#include <GL/glu.h>
#include "glut.h"
GLfloat diffuseMaterial[4] = { 0.5, 0.5, 0.5, 1.0 };
void init(void)
{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

413

glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOOTH);
glEnable(GL_DEPTH_TEST);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseMaterial);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialf(GL_FRONT, GL_SHININESS, 25.0);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glColorMaterial(GL_FRONT, GL_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
}
void display(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidSphere(1.0, 20, 16);
glFlush ();
}
void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
if (w <= h)
glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w, 1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
else
glOrtho (-1.5*(GLfloat)w/(GLfloat)h, 1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void mouse(int button, int state, int x, int y)
{
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) { /* change red */
diffuseMaterial[0] += 0.1;
if (diffuseMaterial[0] > 1.0)
diffuseMaterial[0] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}
break;
case GLUT_MIDDLE_BUTTON:
if (state == GLUT_DOWN) { /* change green */
diffuseMaterial[1] += 0.1;
if (diffuseMaterial[1] > 1.0)
diffuseMaterial[1] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}

43-Real-World and OpenGL Lighting VU

© Copyright Virtual University of Pakistan

414

break;
case GLUT_RIGHT_BUTTON:
if (state == GLUT_DOWN) { /* change blue */
diffuseMaterial[2] += 0.1;
if (diffuseMaterial[2] > 1.0)
diffuseMaterial[2] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}
break;
default:
break;
}
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();
return 0;
}

Try This
Modify Example 8 in the following manner:
Change the global ambient light in the scene. Hint: Alter the value of the
GL_LIGHT_MODEL_AMBIENT parameter.

Change the diffuse, ambient, and specular reflection parameters, the shininess exponent,
and the emission color. Hint: Use the glMaterial*() command, but avoid making
excessive calls.

Use two-sided materials and add a user-defined clipping plane so that we can see the
inside and outside of a row or column of spheres. if we need to recall user-defined
clipping planes.) Hint: Turn on two-sided lighting with
GL_LIGHT_MODEL_TWO_SIDE, set the desired material properties, and add a
clipping plane.

Remove all the glMaterialfv() calls, and use the more efficient glColorMaterial() calls
to achieve the same lighting.

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

415

Lecture No.44 Evaluators, curves and Surfaces

Evaluators

A Bézier curve is a vector-valued function of one variable

C(u) = [X(u) Y(u) Z(u)]

where u varies in some domain (say [0,1]).
A Bézier surface patch is a vector-valued function of two variables

S(u,v) = [X(u,v) Y(u,v) Z(u,v)]

Where u and v can both vary in some domain. The range isn't necessarily three-
dimensional as shown here. You might want two-dimensional output for curves on a
plane or texture coordinates, or you might want four-dimensional output to specify
RGBA information. Even one-dimensional output may make sense for gray levels. For
each u (or u and v, in the case of a surface), the formula for C() (or S()) calculates a point
on the curve (or surface). To use an evaluator, first define the function C() or S(), enable
it, and then use the glEvalCoord1() or glEvalCoord2() command instead of glVertex*().
This way, the curve or surface vertices can be used like any other vertices - to form points
or lines, for example. In addition, other commands automatically generate series of
vertices that produce a regular mesh uniformly spaced in u (or in u and v). One- and two-
dimensional evaluators are similar, but the description is somewhat simpler in one
dimension, so that case is discussed first.

One-Dimensional Evaluators

This section presents an example of using one-dimensional evaluators to draw a curve. It
then describes the commands and equations that control evaluators.

One-Dimensional Example: A Simple Bézier Curve

The program shown in Example 1 draws a cubic Bézier curve using four control points,
as shown in Figure 1.

Figure 1 : Bézier Curve

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

416

Example 1 : Bézier Curve with Four Control Points:
#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <GL/glut.h>
GLfloat ctrlpoints[4][3] = {
{ -4.0, -4.0, 0.0}, { -2.0, 4.0, 0.0},
{2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}};
void init(void)
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);
glEnable(GL_MAP1_VERTEX_3);
}
void display(void)
{

int i;
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0);
glBegin(GL_LINE_STRIP);

for (i = 0; i <= 30; i++)
glEvalCoord1f((GLfloat) i/30.0);

glEnd();
/* The following code displays the control points as dots. */
glPointSize(5.0);
glColor3f(1.0, 1.0, 0.0);
glBegin(GL_POINTS);

for (i = 0; i < 4; i++)
glVertex3fv(&ctrlpoints[i][0]);

glEnd();
glFlush();
}
void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (w <= h)

glOrtho(-5.0, 5.0, -5.0*(GLfloat)h/(GLfloat)w,
5.0*(GLfloat)h/(GLfloat)w, -5.0, 5.0);

else
glOrtho(-5.0*(GLfloat)w/(GLfloat)h,
5.0*(GLfloat)w/(GLfloat)h, -5.0, 5.0, -5.0, 5.0);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}

int main(int argc, char** argv)
{

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

417

glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return 0;
}

A cubic Bézier curve is described by four control points, which appear in this example in
the ctrlpoints[][] array. This array is one of the arguments to glMap1f(). All the
arguments for this command are as follows:

GL_MAP1_VERTEX_3

Three-dimensional control points are provided and three-dimensional vertices are
produced

0.0 : Low value of parameter u
1.0 : High value of parameter u
3 : The number of floating-point values to advance in the data between one control
point and the next
4 : The order of the spline, which is the degree+1: in this case, the degree is 3 (since this
is a cubic curve)
&ctrlpoints[0][0] : Pointer to the first control point's data

Note that the second and third arguments control the parameterization of the curve - as
the variable u ranges from 0.0 to 1.0, the curve goes from one end to the other. The call to
glEnable() enables the one-dimensional evaluator for three-dimensional vertices.

The curve is drawn in the routine display() between the glBegin() and glEnd() calls.
Since the evaluator is enabled, the command glEvalCoord1f() is just like issuing a
glVertex() command with the coordinates of a vertex on the curve corresponding to the
input parameter u.

44.1 Defining and Evaluating a One-Dimensional Evaluator

The Bernstein polynomial of degree n (or order n+1) is given by

If Pi represents a set of control points (one-, two-, three-, or even four- dimensional), then
the equation

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

418

represents a Bézier curve as u varies from 0.0 to 1.0. To represent the same curve but
allowing u to vary between u1 and u2 instead of 0.0 and 1.0, evaluate

The command glMap1() defines a one-dimensional evaluator that uses these equations.

void glMap1{fd}(GLenum target, TYPEu1, TYPEu2, GLint stride,
GLint order, const TYPE*points);

Defines a one-dimensional evaluator. The target parameter specifies what the control
points represent, as shown in Table 1, and therefore how many values need to be supplied
in points. The points can represent vertices, RGBA color data, normal vectors, or texture
coordinates. For example, with GL_MAP1_COLOR_4, the evaluator generates color
data along a curve in four-dimensional (RGBA) color space. You also use the parameter
values listed in Table 1 to enable each defined evaluator before you invoke it. Pass the
appropriate value to glEnable() or glDisable() to enable or disable the evaluator. The
second two parameters for glMap1*(), u1 and u2, indicate the range for the variable u.
The variable stride is the number of single- or double-precision values (as appropriate)
in each block of storage. Thus, it's an offset value between the beginning of one control
point and the beginning of the next. The order is the degree plus one, and it should agree
with the number of control points. The points parameter points to the first coordinate of
the first control point. Using the example data structure for glMap1*(), use the following
for points:

(GLfloat *)(&ctlpoints[0].x)

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

419

Table 1 : Types of Control Points for glMap1*()

More than one evaluator can be evaluated at a time. If you have both a
GL_MAP1_VERTEX_3 and a GL_MAP1_COLOR_4 evaluator defined and enabled, for
example, then calls to glEvalCoord1() generate both a position and a color. Only one of
the vertex evaluators can be enabled at a time, although you might have defined both of
them. Similarly, only one of the texture evaluators can be active. Other than that,
however, evaluators can be used to generate any combination of vertex, normal, color,
and texture-coordinate data. If more than one evaluator of the same type is defined and
enabled, the one of highest dimension is used. Use glEvalCoord1*() to evaluate a
defined and enabled one-dimensional map.

void glEvalCoord1{fd}(TYPE u);
void glEvalCoord1{fd}v(TYPE *u);

Causes evaluation of the enabled one-dimensional maps. The argument u is the value (or
a pointer to the value, in the vector version of the command) of the domain coordinate.
For evaluated vertices, values for color, color index, normal vectors, and texture
coordinates are generated by evaluation. Calls to glEvalCoord*() do not use the current
values for color, color index, normal vectors, and texture coordinates. glEvalCoord*()
also leaves those values unchanged.

44.2 Defining Evenly Spaced Coordinate Values in One Dimension

You can use glEvalCoord1() with any values for u, but by far the most common use is
with evenly spaced values, as shown previously in Example 1. To obtain evenly spaced

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

420

values, define a one-dimensional grid using glMapGrid1*() and then apply it using
glEvalMesh1().

void glMapGrid1{fd}(GLint n, TYPEu1, TYPEu2);
Defines a grid that goes from u1 to u2 in n steps, which are evenly spaced.

void glEvalMesh1(GLenum mode, GLint p1, GLint p2);
Applies the currently defined map grid to all enabled evaluators. The mode can be either
GL_POINT or GL_LINE, depending on whether you want to draw points or a connected
line along the curve. The call has exactly the same effect as issuing a glEvalCoord1() for
each of the steps between and including p1 and p2, where 0 <= p1, p2 <= n.
Programmatically, it's equivalent to the following:

glBegin(GL_POINTS); /* OR glBegin(GL_LINE_STRIP); */
for (i = p1; i <= p2; i++)
glEvalCoord1(u1 + i*(u2-u1)/n);
glEnd();
except that if i = 0 or i = n, then glEvalCoord1() is called with exactly u1 or u2 as its
parameter.

Two-Dimensional Evaluators
In two dimensions, everything is similar to the one-dimensional case, except that all the
commands must take two parameters, u and v, into account. Points, colors, normals, or
texture coordinates must be supplied over a surface instead of a curve. Mathematically,
the definition of a Bézier surface patch is given by

∑∑
= =

=
n

i

m

j
ij

m
j

n
i PvBBvuS

0 0
)(),(

where Pij are a set of m*n control points, and the Bi are the same Bernstein polynomials
for one dimension. As before, the Pij can represent vertices, normals, colors, or texture
coordinates.
The procedure to use two-dimensional evaluators is similar to the procedure for one
dimension.

1. Define the evaluator(s) with glMap2*().
2. Enable them by passing the appropriate value to glEnable().
3. Invoke them either by calling glEvalCoord2() between a glBegin() and

glEnd() pair or by specifying and then applying a mesh with glMapGrid2() and
glEvalMesh2().

44.3 Defining and Evaluating a Two-Dimensional Evaluator

Use glMap2*() and glEvalCoord2*() to define and then invoke a two-dimensional
evaluator.

void glMap2{fd}(GLenum target, TYPEu1, TYPEu2, GLint ustride,
GLint uorder, TYPEv1, TYPEv2, GLint vstride,
GLint vorder, TYPE points);

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

421

The target parameter can have any of the values in Table 1, except that the string MAP1
is replaced with MAP2. As before, these values are also used with glEnable() to enable
the corresponding evaluator. Minimum and maximum values for both u and v are
provided as u1, u2, v1, and v2. The parameters ustride and vstride indicate the number of
single- or double-precision values (as appropriate) between independent settings for
these values, allowing users to select a subrectangle of control points out of a much
larger array. For example, if the data appears in the form

GLfloat ctlpoints[100][100][3];

and you want to use the 4x4 subset beginning at ctlpoints[20][30], choose ustride to be
100*3 and vstride to be 3. The starting point, points, should be set to
&ctlpoints[20][30][0]. Finally, the order parameters, uorder and vorder, can be
different, allowing patches that are cubic in one direction andquadratic in the other, for
example.

void glEvalCoord2{fd}(TYPE u, TYPE v);
void glEvalCoord2{fd}v(TYPE *values);

Causes evaluation of the enabled two-dimensional maps. The arguments u and v are the
values (or a pointer to the values u and v, in the vector version of the command) for the
domain coordinates. If either of the vertex evaluators is enabled (GL_MAP2_VERTEX_3
or GL_MAP2_VERTEX_4), then the normal to the surface is computed analytically. This
normal is associated with the generated vertex if automatic normal generation has been
enabled by passing GL_AUTO_NORMAL to glEnable(). If it's disabled, the
corresponding enabled normal map is used to produce a normal. If no such map exists,
the current normal is used.

44.4 Two-Dimensional Example: A Bézier Surface

Example 2 draws a wire frame Bézier surface using evaluators, as shown in Figure 2. In
this example, the surface is drawn with nine curved lines in each direction. Each curve is
drawn as 30 segments. To get the whole program, add the reshape() and main() routines
from Example 1.

Figure 2 : Bézier Surface
Example 2 : Bézier Surface:
#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

422

#include <GL/glut.h>
GLfloat ctrlpoints[4][4][3] = {

{{-1.5, -1.5, 4.0}, {-0.5, -1.5, 2.0},
{0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}},
{{-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0},

{0.5, -0.5, 0.0}, {1.5, -0.5, -1.0}},
{{-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0},
{0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}},
{{-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0},
{0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}}
};
void display(void)
{
int i, j;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0);
glPushMatrix ();
glRotatef(85.0, 1.0, 1.0, 1.0);
for (j = 0; j <= 8; j++) {

glBegin(GL_LINE_STRIP);
for (i = 0; i <= 30; i++)
glEvalCoord2f((GLfloat)i/30.0, (GLfloat)j/8.0);
glEnd();
glBegin(GL_LINE_STRIP);
for (i = 0; i <= 30; i++)
glEvalCoord2f((GLfloat)j/8.0, (GLfloat)i/30.0);
glEnd();

}
glPopMatrix ();
glFlush();
}
void init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,0, 1, 12, 4, &ctrlpoints[0][0][0]);
glEnable(GL_MAP2_VERTEX_3);
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_FLAT);
}

Defining Evenly Spaced Coordinate Values in Two Dimensions

In two dimensions, the glMapGrid2*() and glEvalMesh2() commands are similar to the
one-dimensional versions, except that both u and v information must be included.

void glMapGrid2{fd}(GLint nu, TYPEu1, TYPEu2,GLint nv, TYPEv1, TYPEv2);
void glEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2);

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

423

Defines a two-dimensional map grid that goes from u1 to u2 in nu evenly spaced steps,
from v1 to v2 in nv steps (glMapGrid2*()), and then applies this grid to all enabled
evaluators (glEvalMesh2()). The only significant difference from the one-dimensional
versions of these two commands is that in glEvalMesh2() the mode parameter can be
GL_FILL as well as GL_POINT or GL_LINE. GL_FILL generates filled polygons using
the quad-mesh primitive. Stated precisely, glEvalMesh2() is nearly equivalent to one of
the following three code fragments. (It's nearly equivalent because when i is equal to nu
or j to nv, the parameter is exactly equal to u2 or v2, not to u1+nu*(u2-u1)/nu, which
might be slightly different due to round-off error.)

glBegin(GL_POINTS); /* mode == GL_POINT */

for (i = nu1; i <= nu2; i++)
for (j = nv1; j <= nv2; j++)
glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);

glEnd();

or

for (i = nu1; i <= nu2; i++) { /* mode == GL_LINE */

glBegin(GL_LINES);
for (j = nv1; j <= nv2; j++)
glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
glEnd();

}
for (j = nv1; j <= nv2; j++) {

glBegin(GL_LINES);
for (i = nu1; i <= nu2; i++)
glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
glEnd();

}

or

for (i = nu1; i < nu2; i++) { /* mode == GL_FILL */

glBegin(GL_QUAD_STRIP);
for (j = nv1; j <= nv2; j++) {
glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
glEvalCoord2(u1 + (i+1)*(u2-u1)/nu, v1+j*(v2-v1)/nv);
glEnd();

}

Example 3 shows the differences necessary to draw the same Bézier surface as Example
2, but using glMapGrid2() and glEvalMesh2() to subdivide the square domain into a
uniform 8x8 grid. This program also adds lighting and shading, as shown in Figure 3.

44-Evaluators, curves and Surfaces VU

© Copyright Virtual University of Pakistan

424

Figure 3 : Lit, Shaded Bézier Surface Drawn with a Mesh

Example 3 : Lit, Shaded Bézier Surface Using a Mesh:

void initlights(void)
{
GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
GLfloat position[] = {0.0, 0.0, 2.0, 1.0};
GLfloat mat_diffuse[] = {0.6, 0.6, 0.6, 1.0};
GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat mat_shininess[] = {50.0};
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
}
void display(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glRotatef(85.0, 1.0, 1.0, 1.0);
glEvalMesh2(GL_FILL, 0, 20, 0, 20);
glPopMatrix();
glFlush();
}
void init(void)
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glEnable(GL_DEPTH_TEST);
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
0, 1, 12, 4, &ctrlpoints[0][0][0]);
glEnable(GL_MAP2_VERTEX_3);
glEnable(GL_AUTO_NORMAL);
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
initlights();
}

45-Animations VU

© Copyright Virtual University of Pakistan

425

Lecture No.45 Animations

The passage of time has fascinated artists, scientists and theologians for thousands
of years. Naturally they have attributed to it different interpretations, different
implications and different conclusions. Nevertheless there seems to be general
agreement on one aspect of time; that we are all conditioned by it and that,
whether we like it or not, there is a time space into which we inevitably have to
fit.

Einstein, among other well known names in the world of science, made a special
study of time in relation to his research in physics. His theory of relativity
maintains that space and time are merely different aspects of the same thing. Since
then other physicists have pointed out that objects can be moved backward and
forward in space, but nothing can be moved back in time.

Another method of describing the concept of time is through the ‘three arrows of
time’. The first ‘arrow’ is thermodynamic and can be seen operating when sugar
dissolves in hot water. Second, is the historical ‘arrow’, whereby a single-celled
organism evolves to produce more complex and varied species? The third is the
cosmological ‘arrow’ which is the theory that the universe is expanding from a
‘big bang’ in the past. This cosmic expansion cannot be reversed in time. While
the principle of relationships between the ‘time arrows’ is still to be worked out on
a scientific level, the actual application of it is constantly related to all work which
utilizes it, such as music and the performing arts. In the latter it is one of the most
important raw materials.

In terms of animation, the idea of film time is one of the most vital concepts to
understand and to use. It is an essential raw material which can be compressed or
expanded and used for effects and moods in a highly creative way. It is, therefore,
essential to learn and to understand how time can be applied to animation. The
great advantage of animation is that the animator can creatively manipulate time
since an action must be timed prior to carrying out the actual physical work on a
film.

It is also essential to understand how the audience will react to the manipulation of
time from their point of view. Time sense or ‘a sense of timing’, therefore, is just
as important as color sense and skill of drawing or craftsmanship in film
animation.

It has to be realized that while a performance on stage and on the screen requires a
basic understanding of how timing works, this lecture is primarily confined to
hand drawn animation which up to this point in film history still comprises 90% of
all output in the animation medium.
Timing for TV series
For economic reasons, TV series are made as simply as possible from the
animation point of view. This approach is generally known as limited animation.
Animation is expensive, non-animation is cheaper. So to keep the films lively the
plots are usually carried along by means of dialogue. It is often necessary to work
with prerecorded blocks of dialogue which must remain intact. If this dialogue is
well recorded for maximum dramatic effect, lengths of pauses between phrases

45-Animations VU

© Copyright Virtual University of Pakistan

426

cannot be changed (except within very narrow limits) without destroying that
effect. In this case, the overall timing of long sections of the film is governed
entirely by the dialogue. (There could be, however, considerable flexibility for
more detailed timing within this fixed overall length.)

The director has room to maneuver sections. So, if the total timing for all the
recorded dialogue is subtracted from the required length for the whole film, this
gives the amount of time that is available without dialogue. This can then be split
up in the normal way and distributed throughout the film to give the best effect.
Limited animation
With limited animation as many repeats as possible are used within the 24 frames
per second. A hold is also lengthened to reduce the number of drawings. As a rule
not more than 6 drawings are produced for one second of animation. Limited
animation requires almost as much skill on the part of the animator as full
animation, since he must create an illusion of action with the greatest sense of
economy.
Full animation
Full animation implies a large number of drawings per second of action. Some
action may require that every single frame of the 24 frames within the second is
animated in order to achieve an illusion of fluidity on the screen. Neither time nor
money is spared on animation. As a rule only, TV commercials and feature-length
animated films can afford this luxury.

Animation is expensive and time-consuming. It is not economically possible to
animate more than is needed and edit the scenes later, as it is in live-action films.
In cartoons the director carefully pre-times every action so that the animator
works within exact limits and does no more drawings than necessary.

Ideally, the director should be able to view line test loops of the film as it
progresses and so have a chance to make adjustments. But often there is no time to
make corrections in limited animation and the aim is to make the animation work
the first time.
Timing for Animation in general
Timing in animation is an elusive subject. It only exists whilst the film is being
projected, in the same way that a melody only exists when it is being played. A
melody is more easily appreciated by listening to it than by trying to explain it in
words. So with cartoon timing, it is difficult to avoid using a lot of words to
explain what may seem fairly simple when seen on the screen.

Timing is also a dangerous factor to try to formulate—something which works in
one situation or in one mood may not work at all in another situation or mood.
The only real criterion for timing is: if it works effectively on the screen it is good,
if it doesn't, it isn't.

So if having looked through the following pages you can see a better way to
achieve an effect, then go ahead and do it!

In this book we attempt to look at the laws of movement in nature. What do
movements mean? What do they express? How can these movements be

45-Animations VU

© Copyright Virtual University of Pakistan

427

simplified and exaggerated to be made ‘animatable’ and to express ideas, feelings
and dramatic effects? The timing mainly described is that which is used in so-
called ‘classical’ or ‘full’ animation. To cover all possible kinds of timing in all
possible kinds of animation would be quite impossible.

Nevertheless we hope to provide a basic
understanding of how timing in animation is
ultimately based on timing in nature and how,
from this starting point, it is possible to apply
such a difficult and invisible concept to the
maximum advantage in film animation.
Animation Principles
What is good timing?
Timing is the part of animation which gives
meaning to movement. Movement can easily be
achieved by drawing the same thing in two
different positions and inserting a number of
other drawings between the two. The result on
the screen will be movement, but it will not be
animation. In nature, things do not just move.
Newton's first law of motion stated that things
do not move unless a force acts upon them. So
in animation the movement itself is of secondary
importance; the vital factor is how the action
expresses the underlying causes of the
movement. With inanimate objects these causes
may be natural forces, mainly gravity. With
living characters the same external forces can
cause movement, plus the contractions of
muscles but, more importantly, there are the
underlying will, mood, instincts and so on of the
character who is moving.

In order to animate a character from A to B, the forces which are operating to
produce the movement must be considered. Firstly, gravity tends to pull the
character down towards the ground. Secondly, his body is built and jointed in a
certain way and is acted on by a certain arrangement of muscles which tend to
work against gravity. Thirdly, there is the psychological reason or motivation for
his action—whether he is dodging a blow, welcoming a guest or threatening
someone with a revolver.

A live actor faced with these problems moves his muscles and limbs and deals
with gravity automatically from habit, and so can concentrate on acting. An
animator has to worry about making his flat, weightless drawings move like solid,
heavy objects, as well as making them act in a convincing way. In both these
aspects of animation, timing is of primary importance.

Part of the working storyboard of The Story of the Bible by Halas and Batchelor.
At this stage the director works out the smooth visual flow of the film, the editing,

45-Animations VU

© Copyright Virtual University of Pakistan

428

camera movements and so on. All these elements combine to tell the story in an
interesting way.
The storyboard
A smooth visual flow is the major objective in any film, especially if it is an
animated one. Good continuity depends on coordinating the action of the
character, choreography, scene changes and camera movement. All these different
aspects cannot be considered in isolation. They must work together to put across a
story point. Furthermore the right emphasis on such planning, including the
behaviour of the character, must also be realised.

The storyboard should serve as a blueprint for any film project and as the first
visual impression of the film. It is at this stage that the major decisions are taken
as far as the film's content is concerned. It is generally accepted that no production
should proceed until a satisfactory storyboard is achieved and most of the creative
and technical problems which may arise during the film's production have been
considered.

There is no strict rule as to how many sketches are required for a film. It depends
on the type, character and content of the project. A rough guideline is
approximately 100 storyboard sketches for each minute of film. If, however, a
film is technically complex, the number of sketches could double. For a TV
commercial, more sketches are produced as a rule because there are usually more
scene changes and more action than in longer films.
The basic unit of time in animation
The basis of timing in
animation is the fixed
projection speed of 24
frames per second (fps)
for film and video. While
other projection speeds
have been used in the
past the standard
projection rate for film of
all formats—16mm, 35mm and 70mm remains 24 fps. On television and video
this becomes 25 frames per second (PAL) or 30 fps (NTSC), but the difference is
usually imperceptible.

The thing to remember is that if an action on the screen takes one second it covers
24 frames of film, and if it takes half a second it covers 12 frames and so on.

24 frames of film go through the projector every second (25 on television). This
fixed number of frames provides the basis on which all actions are planned and
timed by the director.

For single frame animation, where one drawing is done for each frame, a second
of action needs 24 drawings. If the same action is animated on double frames,
where each drawing is photographed twice in succession, 12 drawings are
necessary out the number of frames and hence the speed of the action would be
the same in both cases.

45-Animations VU

© Copyright Virtual University of Pakistan

429

Whatever the mood or pace of the action that appears on the screen, whether it be
a frantic chase or a romantic love scene, all timing calculations must be based on
the fact that the projector continues to hammer away at its constant projection rate.
That is—24 fps for film and either 25 fps or 30 fps for television and video
depending on format. The unit of time within which an animator works is,
therefore, 1/24 sec, 1/25 sec or 1/30 sec and an important part of the skill, which
the animator has to learn is what this specific timing ‘feels’ like on screen. With
practice the animator also learns what multiples of this unit look like—3 frames, 8
frames, 12 frames and so on.
Animation and properties of matter
The basic question which an animator is continually asking himself is: ‘What will
happen to this object when a force acts upon it?’ And the success of his animation
largely depends on how well he answers this question.

All objects in nature have their own weight, construction and degree of flexibility,
and therefore each behaves in its own individual way when a force acts upon it.
This behavior, a combination of position and timing, is the basis of animation.
Animation consists of drawings, which have neither weight nor do they have any
forces acting on them. In certain types of limited or abstract animation, the
drawings can be treated as moving patterns. However, in order to give meaning to
movement, the animator must consider Newton's laws of motion which contain all
the information necessary to move characters and objects around. There are many
aspects of his theories which are important in this book. However, it is not
necessary to know the laws of motion in their verbal form, but in the way which is
familiar to everyone, that is by watching things move. For instance, everyone
knows that things do not start moving suddenly from rest—even a cannonball has
to accelerate to its maximum speed when fired. Nor do things suddenly stop
dead—a car hitting a wall of concrete carries on moving after the first impact,
during which time it folds itself rapidly up into a wreck.

It is not the exaggeration of the weight of the object which is at the centre of
animation, but the exaggeration of the tendency of the weight—any weight—to
move in a certain way.

The timing of a scene for animation has two aspects:

1. The timing of inanimate objects

2. The timing of the movement of a living character

With inanimate objects the problems are straightforward dynamics. ‘How long
does a door take to slam?’, ‘How quickly does a cloud drift across the sky?’,
‘How long does it take a steamroller, running out of control downhill, to go
through a brick wall?’.

With living characters the same kind of problems occur because a character is a
piece of flesh which has to be moved around by the action of forces on it. In
addition, however, time must be allowed for the mental operation of the character,
if he is to come alive on the screen. He must appear to be thinking his way
through his actions, making decisions and finally moving his body around under
the influence of his own will power and muscle.

45-Animations VU

© Copyright Virtual University of Pakistan

430

Animation consists of sequences of weightless drawings. The success of
animation on the screen depends largely on how well these drawings give the
impression of reacting in an exaggerated way when weight and forces are made to
act upon them.
Movement and caricature
The movement of most everyday objects around us is caused by the effect of
forces acting upon matter.

The movement of objects becomes so familiar to us that, subconsciously, these
movements give us a great deal of information about the objects themselves and
about the forces acting on them. This is true not only of inanimate objects, but
also of living things—especially people.

The animator's job is to synthesize movements and to apply just the right amount
of creative exaggeration to make the movement look natural within the cartoon
medium.

Cartoon film is a medium of caricature. The character of each subject and the
movement it expresses are
exaggerated. The subjects
can be considered as
caricatured matter acted
upon by caricatured forces.

Cartoon film can also be a
dramatic medium. This
particular quality can be
achieved, among other
means, by speeded up action
and highly exaggerated
timing. The difference
between an action containing
caricature, or humour or
drama, may be very subtle.
Eventually, with enough
experience in animation
timing, it becomes possible
to emphasise the difference.

Caricatured matter has the
same properties as natural
matter, only more so. To
understand how cartoon
matter behaves it is
necessary to look more closely into the way matter behaves naturally.

Cartoon is a medium of caricature—naturalistic action looks weak in animation.
Look at what actually happens, simplify down to the essentials of the movement
and exaggerate these to the extreme.

45-Animations VU

© Copyright Virtual University of Pakistan

431

Cause and effect
There is a train of cause
and effect which runs
through an object when it
is acted upon by a force.
This is the result of the
transmission of the force
through a more or less
flexible medium (ie
caricatured matter). This
is one aspect of good
movement in animation.

An animator must
understand the mechanics
of the natural movement
of an object and then
keep this knowledge in
the back of his mind
whilst he concentrates on
the real business of
animation. This is the
creation of mood and
conveying the right
feeling by the way an
action is done.

Examples of cause and effect:
Figs A and B
A rope wrapped around anything and pulled tight has the tendency shown. How
far the reaction goes depends on:

i. the strength of the forces pulling the rope.

ii. the flexibility or rigidity of the object being squeezed. Exaggerate the
tendency.

45-Animations VU

© Copyright Virtual University of Pakistan

432

A A rope wrapped round
something.

B The ends of the rope are
pulled tight.
Fig. C
On the seesaw, the end of the
plank with the smaller stone
tends to stay where it is to begin
with because of its inertia, so
bending plank D. A moment
later it starts to accelerate and
the plank springs back with the
opposite curvature causing the
stone to whizz out of the screen,
E.

C A stone on one end of a
seesaw.

D and E A bigger stone
drops onto the other end.
Newton's laws of motion
Every object or character
has weight and moves only
when a force is applied to it.
This is Newton's first law of
motion. An object at rest
tends to remain at rest until a
force moves it and once it is
moving it tends to keep
moving in a straight line until
another force stops it.

The heavier an object is, or
strictly speaking, the greater
its mass, the more force is
required to change its motion.
A heavy body has more inertia
and more momentum than a
light one.

A heavy object at rest, such as
a cannonball, needs a lot of
force to move it (following Fig. A). When fired from a cannon, the force of the
charge acts on the cannonball only whilst it is in the gun barrel. Since the force of

45-Animations VU

© Copyright Virtual University of Pakistan

433

the explosive charge is very large indeed, this is sufficient to accelerate the
cannonball to a considerable speed. A smaller force acting for a short time, say a
strong kick, may have no effect on the cannonball at all. In fact it is more likely to
damage the kicker's toe. However, persistent force, even if not very strong, would
gradually start the cannonball rolling and it would eventually be travelling fairly
quickly.

A A cannon ball needs a lot of
force to start it moving. Once
moving, it takes a lot of
stopping.

Once the cannonball is
moving, it tends to keep
moving at the same speed and
requires some force to stop it.
If it meets an obstacle it may,
depending on its speed, crash
straight through it. If it is
rolling on a rough surface it comes to rest fairly soon, but if rolling on a smooth
flat surface, friction takes quite a long time to bring it to rest.

When dealing with very heavy objects, therefore, the director must allow plenty of
time to start, stop or change their movements, in order to make their weight look
convincing. The animator, for his part, must see that plenty of force is applied to
the cannonball to make it start, stop or change direction.

Light objects have much less resistance to change of movement and so behave
very differently when forces act on them. A toy balloon (Fig. B) needs much less
time to start it moving. The flick of a finger is enough to make it accelerate
quickly away. When moving, it has little momentum and the friction of the air
quickly slows it up, so it does not travel very far.

B A balloon needs only a
small force to move it, but
air resistance quickly
brings it to rest. In both
these examples a circle is
being animated. The
timing of its movements
can make it look heavy or
light on the screen.

The way an object
behaves on the screen, and
the effect of weight that it gives, depends entirely on the spacing of the animation
drawings and not on the drawing itself. It does not matter how beautifully drawn
the cannonball is in the static sense, it does not look like a cannonball if it does not
behave like one and the same applies to the balloon, and indeed to any other
object or character.

45-Animations VU

© Copyright Virtual University of Pakistan

434

Fast run cycles
An eight frame run cycle—that is four frames to each step—gives a fast and
vigorous dash. At this speed the successive leg positions are quite widely
separated and may need drybrush or speed lines to make the movement flow.
Drawing 5 shows the same position as drawing 1 but with opposite arms and feet.
Similarly drawings 6 and 2, 7 and 3, and 8 and 4 show the same positions. These
alternate positions should be varied slightly in each case, to avoid the rather
mechanical effect of the same positions occurring every four frames.

A twelve frame cycle gives a less frantic run, but if the cycle is more than sixteen
frames the movement tends to lose its dash and appear too leisurely.

The body normally leans forward in the direction of movement, although for
comic effect a backward lean can sometimes work. If a faster run than an eight
frame repeat is needed, then perhaps several foot positions can be given on each
drawing, to fill up the gaps in the movement, or possibly the legs can become a
complete blur treated entirely in dry-brush.

In the first example, drawing 4 is equivalent to the ‘step’ position in a walk, with
the maximum forward and backward leg and arm movement. In a run it is also the
point at which the centre of gravity of the body is farthest from the ground, that is,

45-Animations VU

© Copyright Virtual University of Pakistan

435

in mid-stride. In drawing 1 the weight is returning to its lowest point, which is in
drawing 2. In drawing 3 the body starts to rise again as the thrust of the back foot
gives the forward impetus for the next stride.

These are both examples of eight frame run cycles. This means four drawings to
each step. Drawings 1 and 5 show the same leg and arm positions but with
opposite feet, and so do 2 and 6, 3 and 7, 4 and 8. In such a short cycle these
positions should be varied slightly to avoid a mechanical effect.
Timing and music
Ever since the very first animated productions, Disney's Steamboat Mickey and
Fischinger's abstract film Brahm's Hungarian Dances, it was clear that there is a
strong relationship between animation and music. This relationship can be
explained on two accounts. First, both elements have a basic mathematical
foundation and move forward at a determined speed. Second, since animation is
created manually frame by frame, it can be fitted to music in a very exact manner.
It is further able to capture its rhythm, its mood and hit the beat right to the frame.
Most animation makes good use of this advantage.

In general principle it is more difficult to follow the rhythm of a musical
composition with its mood than its beat. The latter aspect of the music is easily
measured, since beats are fitted into bar units of defined time length and are
interpreted in time units.

Bars can contain various numbers of beats and these must be measured to the film
frame. Having done this, it is comparatively easy to fit the animation to the speed
of the beat and find the right type of movement to follow the music, whether it is a
slow waltz of 36 frames, or 4 frames for rock music. A beat can be emphasised by
synchronisation of the feet but it works better if the whole body is used. In quick
beats of 3,4 or 6 frames it is possible to follow every second beat without losing
the rhythm. It is always better to work to specially prepared music if this can be
afforded.

A This eight frame cycle,
animated on double frames, of
a whirling Spanish dancer is
fitted closely to strong
flamenco music. The figure
fully conveys the character of
the music with all its functional
simplicity.

B Single and double frame
animation are alternated to fit
the beats of the sound of a
Spanish guitar. It is essential
for the movement to follow the
musical lead of a specially

45-Animations VU

© Copyright Virtual University of Pakistan

436

prerecorded music track, for accurate synchronisation.

Camera movements
Tracks are used to move into a closer field or pull back to a more distant one.
They are done by moving the camera frame by frame, up or down its vertical
pillar, above the animation drawings. Usually the field centre also moves during a
track and as the camera travels on a fixed axis this movement in a north south,
east west direction is done by moving the table.

Tracks and table moves are worked out in terms of general timing—track lengths
and the action which the various fields must include—by the director on bar
sheets before production begins.

When the animator finalises the action of the scene in detail, he converts the
director's timing into specific instructions to the cameraman. He writes down the
field sizes and marks the frames where camera movements start and stop in the
‘camera instructions’ column on the exposure chart (Fig. A). He also provides a
drawn field key with field centres marked (Fig. B).

It then becomes the
cameraman's
responsibility to
achieve the required
effect smoothly and
accurately on the
screen. Briefly, the
procedure is as
follows: in Fig. B the
track is made from
field X to field Y so
the screen centre
moves towards the
south-east. This means
that under the camera,
the table must move
north-west. Fig. C is
an enlargement of this
table move, showing
how the cameraman
divides the line to
achieve a smooth
movement from X to
Y. At the same time he
measures the distance
the camera travels on
its column during the
track, and divides this

45-Animations VU

© Copyright Virtual University of Pakistan

437

in exactly the same way as Fig. C, so that camera and table top move smoothly
together. Fig. D is a similar track and table move which includes a tilt. This would
also be done as a table move.

Tracks and table moves are usually animated on single frames.

A The director's timing of tracks is finalised by the animator in the ‘camera
instructions’ column on the exposure sheet.

B The accompanying field key.

C Enlargement of field centres from Fig. B, inverted for use as table move.

D Another example of a track including a table tilt.

