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Lecture No.1   Introduction to Computer Graphics 

 
1.1 Definition 
 
Computers accept process, transform and present information. 
 
Computer Graphics involves technology to accept, process, transform and present 
information in a visual form that also concerns with producing images (or animations) 
using a computer. 
 
1.2 Why Study Computer Graphics? 
 
There are certain important reasons to study computer graphics. We will discuss them 
under certain heads: 
 
Visualization 
I like to see what I am doing. Many a times it happens that you perform certain tasks 
which you cannot visualize; for example as a student of data structures, you implement 
trees, graphs and other Abstract Data Types (ADTs) but you cannot visualize them 
whereas you must be having an inner quest to see what these actually look like. 
 
I like to show people what I am doing. Similarly at certain times you would be 
performing certain tasks which you know but it would be difficult for others to 
understand them so there is very important requirement of showing the things in order to 
make them understandable. 
 
 Graphics is interesting 
We are visual creatures and for us a picture is worth a thousand words. If we can get rid 
of text based static screen and get some graphics; it’s always interesting to see things in 
colours and motion on the screen. Therefore graphics is interesting because it involves 
simulation, algorithm, and architecture. 
 
 Requirement 
Well there are certain areas which require use of computer graphics heavily.  One 
example is drawing of machines. It is required to prepare drawing of a machine before the 
actual production.  The other heavy requirement is for architects as they have to prepare a 
complete blue print of the building they have to build long before the actual construction 
work gets underway. AutoCAD and other applications of the kind are heavily used today 
for building architecture. 
 
 Entertainment 
Merely a couple of decades back, the idea of a 24 hours Cartoons Network was really a 
far fetched one. That was the time when one would wait for a whole week long before 
getting an entertainment of mere 15 minutes. Well thanks to computer graphics that have 
enabled us to entertain ourselves with animated movies, cartoons etc. 
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1.3 Some History 
 
The term “computer graphics” was coined in 1960 by William Fetter to describe the new 
design methods that he was developing at Boeing. He created a series of widely 
reproduced images on a plotter exploring cockpit design using a 3D model of a human 
body. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Whirlwind: early graphics using Vector Scope (1951) 
 
Spacewars: first computer graphics game (MIT 1961) 
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First CAD system (IBM 1959) 

 
 
 
 
 
 
 
 
 
 
 
 

First bump-mapped images (Blinn 1978) 
 
 
 
 
 
 
 
 
 
 
 
 
Early texture-mapped image (Catmull 1974) 



1-Introduction to Computer Graphics                                                                                                           VU 
 

 
© Copyright Virtual University of Pakistan 

 

6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First distributed ray traced image (Cook 1984) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First ray traced image (Whitted 1980) 
 
1.4 Graphics Applications 
 
Due to rapid growth in the field of computing, now computer is used as an economical 
and efficient tool for the production of pictures. Computer graphics applications are found 
in almost all areas. Here we will discuss some of the important areas including: 
 

i. User Interfaces 
ii. Layout and Design 
iii. Scientific Visualization and Analysis 
iv. Art and Design 
v. Medicine and Virtual Surgery 
vi. Layout Design & Architectural Simulations 
vii. History and cultural heritage 
viii. Entertainment 
ix. Simulations 
x. Games 
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User Interfaces 
 
Almost all the software packages provide a graphical interface. A major component of 
graphical interface is a window manager that allows a user to display multiple windows 
like areas on the screen at the same time. Each window can contain a different process 
that can contain graphical or non-graphical display. In order to make a particular window 
active, we simply have to click in that window using an interactive pointing device. 
 
Graphical Interface also includes menus and icons for fast selection of programs, 
processing operations or parameter values. An icon is a graphical symbol that is designed 
to look like the processing option it represents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B205 Control Console (1960) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Impressive and Interactive 3D environment  
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3D Studio MAX 

 
Layout and Design 
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Scientific Visualization and Analysis 
 
Computer graphics is very helpful in producing graphical representations for scientific 
visualization and analysis especially in the field of engineering and medicine. It helps a 
lot in drawing charts and creating models. 
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ART AND DESIGN 
Computer graphics is widely used in Fine Arts as well as commercial arts for producing 
better as well as cost effective pictures. Artists use a variety of programs in their work, 
provided by computer graphics. Some of the most frequently used packages include: 
Artist’s paintbrush 
Pixel paint 
Super paint 
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Medicine and Virtual Surgery 
Computer graphics has extensive use in tomography and simulations of operations. 
Tomography is the technique that allows cross-sectional views of physiological systems 
in X-rays photography. Moreover, recent advancement is to make model and study 
physical functions to design artificial limbs and even plan and practice surgery.  
 
Computer-aided surgery is currently a hot topic.  
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Room Layout Design and Architectural Simulations 
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Layout Design & Architectural Simulations 
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History and cultural heritage 
Another important application of computer graphics is in the field of history and cultural 
heritage. A lot of work is done in this area to preserve history and cultural heritage. The 
features so for provide are: 
 

 Innovative graphics presentations developed for cultural heritage 
applications  

 Interactive computer techniques for education in art history and archeology  
 New analytical tools designed for art historians 
 Computer simulations of different classes of artistic media 
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Movies 
Computer graphics methods are now commonly used in making motions pictures, music 
videos and television shows. Sometimes the graphics scenes are displayed by themselves 
and sometimes graphics objects are combined with the actors and live scenes. A number 
of hit movies and shows are made using computer graphics technology. Some of them 
are: 
 
Star Trek- The Wrath of Khan 
Deep Space Nine 
Stay Tuned 
Reds Dreams 
She’s Mad 
 

 
 
 
 
Tron (1980) 
First time computer graphics were used for live action sequences. 
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Fully computer generated animated features 
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Star Wars (1977) 
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Star Trek II: The Wrath of Khan, genesis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Last Starfighter (15 minutes) (1982) 
 
 The Last Starfighter (15 minutes) (1982) 
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Special 
Effects… in 
Live Action 
Cinema 
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“Traditional” Animated 
Features… 
Some examples: 
• Automating Keyframing in 
many Disney-type 
animations 
• The flocking behaviour of 
the wild beast in Lion King 
•Non photorealistic 
rendering: 3D effects in 
Futurama  
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Behind the scenes on Antz Production
Number of frames in the movie 119,592 
Number of times the movie was rendered during production 15 (approx.)
Number of feet of approved animation produced in a week 107 ft. 
Total number of hours of rendering per week 275,000 hrs.
Average size of the frame rendered 6 MB 
Total number of Silicon Graphics servers used for rendering 270 
Number of desktop systems used in production 166 
Total Number of processors used for rendering 700 
Average amount of memory per processor 256 MB 
Time it would have taken to render this movie on 1 processor 54 yrs., 222 days, 15 mins., 36 

Amount of storage required for the movie 3.2 TB 
Amount of frames kept online at any given time 75000 frames 
Time to re-film out final cut beginning to end 41.5 days (997 hrs.) 
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Simulations 
Simulation by all means is a very helpful tool to show the idea you have or the work you 
are doing or to see the results of your work. Given below is the picture in which you can 
see wave’s ripples on water; no doubt looking like original but is simply a simulation. A 
number of software packages are used for simulation including: 
 
Crackerjack Computer Skills 
Keen Artistic Eye 
Flash 
Maya 

 
 

 
 
Game 
Thanks to computer graphics, real time games are now possible. Now game programming 
itself has become an independent field and game programmers are in high demand. Some 
of the famous games are: 

 
• Quake 
• Dooms 
• Need For Speed 
• Commandos 



1-Introduction to Computer Graphics                                                                                                           VU 
 

 
© Copyright Virtual University of Pakistan 

 

24

 
 
Related Disciplines 
 
 
 
 
 
 
 
 
 
 
 
 
 
Interdisciplinary 

 Science 
 Physics: light, color, appearance, behavior 
 Mathematics: Curves and Surfaces, Geometry and Perspective 
 Engineering 
 Hardware: graphics media and processors, input and output devices 
 Software: graphics libraries, window systems 
 Art, Perception and Esthetics 
 Color, Composition, Lighting, Realism 

 

IMAGES

Data  
Processing

Image 
Processing 

Computer  
Vision Computer 

Graphics 

DATA
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Lecture No.2   Graphics Systems I 

 
Introduction of Graphics Systems 
With the massive development in the field of computer graphics a broad range of graphics 
hardware and software systems is available. Graphics capabilities for both two-
dimensional and three-dimensional applications are now common on general-purpose 
computers, including many hand-held calculators. On personal computers there is usage 
of a variety of interactive input devices and graphics software packages; whereas, for 
higher-quality applications some special-purpose graphics hardware systems and 
technologies are employed. 
 
VIDEO DISPLAY DEVICES 
The primary output device in a graphics system is a video monitor. The operation of most 
video monitors is based on the standard cathode-ray-tube (CRT) design, but several other 
technologies exist and solid-state monitors may eventually predominate. 
 
Refresh Cathode-Ray Tubes 
Following figures illustrate the basic operation of a CRT. A beam of electrons (cathode 
rays) emitted by an electron gun, passes through focusing and deflection systems that 
direct the beam toward specified positions on the phosphor-coated screen. The phosphor 
then emits a small spot of light at each position contacted by the electron beam. 
 
The light emitted by the phosphor fades very rapidly therefore to keep the picture it is 
necessary to keep the phosphor glowing. This is achieved through redrawing the picture 
repeatedly by quickly directing the electron beam back over the same points and the 
display using this technique is called refresh CRT.  
 
The primary components of an electron gun in a CRT are the heated metal cathode and a 
control grid. Heat is supplied to the cathode by directing a current through filament (a 
coil of wire), inside the cylindrical cathode structure. Heating causes electrons to be 
boiled off the hot cathode surface. In the vacuum inside the CRT envelope, the free, 
negatively charged electrons are then accelerated toward the phosphor coating by a high 
positive voltage. 
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The accelerating voltage can be generated with a positively charged metal coating on 
the inside of the CRT envelope near the phosphor screen an accelerating anode can be 
used. 
 
 

 
 
 

 
 
Intensity of the electron beam is controlled by setting voltage levels on the control grid, 
a metal cylinder that fits over the cathode. A high negative voltage applied to the control 
grid will shut off the beam by repelling electrons and stopping them from passing through 
the small hole at the end of the control grid structure. A smaller negative voltage on the 
control grid simply decreases the number of electrons striking the phosphor coating on 
the screen.  
 
It is the responsibility of focusing system to converge electron beam to a small spot 
where it strikes the phosphor. Otherwise the electrons will repel each other and the beam 
would disperse. This focusing is achieved through electric or magnetic fields.  
 
In electrostatic focusing the electron beam passes through a positively charged metal 
cylinder that forms an electrostatic lens. Then electrostatic lens focuses the electron beam 
at the center of the screen. Similar task can be achieved with a magnetic field setup by a 
coil mounted around the outside of the CRT envelope. Magnetic lens focusing produces 
the smallest spot size on the screen and is used in special purpose devices. 
 
The distance that the electron beam must travel from gun to the exact location of the 
screen that is small spot is different from the distance to the center of the screen in most 
CRTs because of the curvature therefore some additional focusing hardware is required 
in high precision systems to take beam to all positions of the screen. This procedure is 
achieved in two steps in first step beam is conveyed through the exact center of the screen 
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and then additional focusing system adjust the focusing according to the screen position 
of the beam. 
 
Cathode-ray tubes are now commonly constructed with magnetic deflection coils 
mounted on the outside of the CRT envelope. Two pairs of coils are used, with the coils 
in each pair mounted on opposite sides of the neck of the CRT envelope. One pair is 
mounted on the top and bottom of the neck and the other pair is mounted on opposite 
sides of the neck. The magnetic field produced by each pair of coils results in a traverse 
deflection force that is perpendicular both to the direction of the magnetic field and to the 
direction of travel of the electron beam. Horizontal deflection is achieved with one pair 
of coils, and vertical deflection by the other pair. The proper deflection amounts are 
attained by adjusting the current through the coils. When electrostatic deflection is used, 
two pairs of parallel plates are mounted inside the CRT envelope. One pair of plates is 
mounted horizontally to control the vertical deflection, and the other pair is mounted 
vertical to control horizontal deflection.    
 
 
 

Phosphor is available in different kinds. One variety is available in color but a major 
issue is their persistence. Persistence is defined as the time it takes the emitted light from 
the phosphor to decay to one-tenth of its original intensity. Lower persistence phosphors 
require higher refresh rates to maintain a picture on the screen without flicker. A 
phosphor with low persistence is useful for displaying highly complex, static pictures. 
Monitors normally come with persistence in the range from 10 to 60 microseconds. 
 
The maximum number of points (that can be uniquely identified) on a CRT is referred to 
as the resolution. A more precise definition of resolution is the number of points per 
centimeter that can be plotted horizontally and vertically, although it is often simply 
stated as the total number of points in each direction. 
Finally aspect ratio; is the ratio of vertical points to horizontal points necessary to 
produce equal-length lines in both directions on the screen. An aspect ratio of 3/4 means 
that a vertical line plotted with three points has the same length as a horizontal line 
plotted with four points. 
 
RASTER-SCAN SYSTEMS 
Raster scan is the most common type of monitors using CRT. In raster scan picture is 
stored in the area called refresh buffer or frame buffer. First of all why information is 
stored; because picture have to be refreshed again and again for this very reason it is 
stored. Second is how it is stored; so picture is stored in a two dimensional matrix where 
each element corresponds to each pixel on the screen. If there arise a question what is a 
pixel? The very simple answer is a pixel (short for picture element) represents the shortest 
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possible unique position/ element that can be displayed on the monitor without 
overlapping. 
 
The frame buffer stores information in a two dimensional matrix; the question is that how 
many bits are required for each pixel or element. If there is black and white picture then 
there is only one bit required to store ‘0’ for black or 1 for white and in this case buffer 
will be referred as bitmap. In colour pictures obviously multiple bits are required for 
each pixel position depending on the possible number of colours for example to show 256 
colours 8 bits will be required for each pixel and in case if multiple bits are used for one 
pixel frame buffer will be referred as pixmap. 
 
Now with the information in frame buffer, let us see how an image is drawn. The drawing 
is done in a line-by-line fashion. After drawing each line from left to right it reaches at the 
left end of the next line to draw next line; which is called horizontal retrace. Similarly 
after completing all lines in horizontal fashion it again reaches the top left corner to start 
redrawing the image (that is for refreshing) and this is called vertical retrace. Normally 
each vertical retrace takes 1/60th of a second to avoid flickering.  
 
There are two further methods to scan the image: interlaced and non-interlaced. In 
interlaced display beam completes scanning in two passes. In one pass only odd lines are 
drawn and in the second pass even lines are drawn. Interlacing provides effect of double 
refresh rate by completing half of the lines in half of the time. Therefore, in systems with 
low refresh rates interlacing helps avoid flickering. 
 
 
RANDOM-SCAN Displays 
In random-scan displays a portion of the screen can be displayed. Random-scan displays 
draw a picture one line at a time and are also called vector displays (or stroke-writing or 
calligraphic displays). In these systems image consists of a set of line drawing commands 
referred to as Refresh Display File. Random-scan can refresh the screen in any fashion 
by repeating line drawing mechanism. 
 
Random-scan displays are designed to draw all the component lines of a picture 30 to 60 
times each second. High-quality vector systems are capable of handling approximately 
100,000 short lines at this refresh rate. When a small set of lines is to be displayed, each 
refresh cycle is delayed to avoid refresh rates greater than 60 frames per second. 
Otherwise, faster refreshing of the set of lines could burn out the phosphor. 
 
Random-scan displays are designed for line-drawing applications and cannot display 
complex pictures. The lines drawn in vector displays are smoother whereas in raster-scan 
lines often become jagged.  
 
Color CRT Monitors 
A CRT monitor displays colour pictures by using a combination of phosphors that emit 
different coloured light. With the combination of phosphor a range of colours can be 
displayed. There are two techniques used in colour CRT monitors: 
 
 Beam Penetration Method 
 Shadow Mask Method 
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In beam penetration method two layers of phosphor, usually coated onto the inside of 
the CRT screen, and the displayed colour depend on how far the electron beam penetrates 
into the phosphor layers. At intermediate beam speeds, combinations of red and green 
light are emitted to show two additional colours, orange and yellow. Beam penetration is 
an inexpensive way to produce colours as only a few colours are possible and the quality 
of picture is also not impressive. 
 
Shadow mask methods can 
display a wide range of colours. 
In this technique each pixel 
position is made up of three 
phosphor dots called triads as 
shown in the following figure. 
Three phosphor dots have 
different colors i.e. red, green and 
blue and the display colour is 
made by the combination of all three dots. Three guns are used to throw beam at the three 
dots of the same pixel. By varying intensity at each dot a wide range of colours can be 
generated. 
 
A shadow-mask is used which has holes aligned with the dots so that each gun can fire 
beam to corresponding dot only. 
 

CRT Displays  
Advantages 

Fast response (high resolution possible) 
Full colour (large modulation depth of E-beam) 
Saturated and natural colours 
Inexpensive, matured technology 
Wide angle, high contrast and brightness 

Disadvantages 
Large and heavy (typ. 70x70 cm, 15 kg) 
High power consumption (typ. 140W) 
Harmful DC and AC electric and magnetic fields 
Flickering at 50-80 Hz (no memory effect) 
Geometrical errors at edges 
 
Direct View Storage Devices 
 
A direct view storage tube stores the picture 
information as a charge distribution just 
behind the phosphor-coated screen. Two 
electron guns are used in this system as 
shown in the following figure. They are: 
 
 Primary Gun 
 Flood Gun 

 
Primary gun is used to store the picture 
pattern whereas flood gun maintains the picture display. 
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DVST has advantage that no refresh is required so very complex pictures can be 
displayed at very high resolutions without flicker. Whereas, it has disadvantage that 
ordinarily no colors can be displayed and that selected parts of a picture cannot be erased. 
To eliminate a picture section, the entire screen must be erased and the modified picture 
redrawn. The erasing and redrawing process can take several seconds for a complex 
picture.  
 
Flat-Panel Displays 
This is emerging technology slowly replacing CRT 
monitors. The flat-panel displays have following 
properties:  
 

• Little Volume 
• Light Weight 
• Lesser Power consumption 

 
Flat panels are used in calculators, pocket video games and 
laptop computers.  
 
There are two categories of flat panel displays: 

• Emissive Display (Plasma Panels) 
• Non-Emissive Display (Liquid Crystal Display) 

 
The emissive displays (emitters) are devices that convert electrical energy into light. 
Plasma panels, thin-film electro-luminescent displays, and light-emitting diodes are 
examples of emissive displays. Non-emissive displays (non-emitters) use optical effects 
to convert sunlight or light from some other 
source into graphics patterns. The most 
important example of a non-emissive flat-panel 
display is a liquid-crystal device. 
 
Plasma-panel Displays 
 
Plasma panels also called gas-discharge displays 
are constructed by filling the region between two 
glass plates with a mixture of gases that usually 
includes neon. A series of vertical conducting 
ribbons is placed on one glass panel, and a set of 
horizontal ribbons is built into the other glass panel. Firing 
voltages applied to a pair of horizontal and vertical 
conductors cause the gas at the intersection of the two 
conductors to break down into glowing plasma of electrons 
and ions. Picture definition is stored in a refresh buffer, and 
the firing voltages are applied to refresh the pixel positions 
60 times per second. 
 
Advantages 
–Large viewing angle 
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–Good for large-format displays 
–Fairly bright 
Disadvantages 
–Expensive 
–Large pixels (~1 mm versus ~0.2 mm) 
–Phosphors gradually deplete 
–Less bright as compared to CRTs, using more power 
 
Liquid Crystal Displays 
 
Liquid crystal refers to the fact that these 
compounds have a crystalline arrangement 
of molecules, yet they flow like a liquid. 
Flat panel displays use nematic liquid 
crystal, as demonstrated in the following 
figures. 
 
Two glass plates, each containing a light 
polarizer at right angles to the other plate, 
sandwich the liquid-crystal material. Rows 
of horizontal transparent conductors are 
built into one glass plate, and columns of 
vertical conductors are put into the other 
plate. The intersection of two conductors 
defines a pixel position. Polarized light 
passing through the material is twisted so 
that it will pass through the opposite 
polarizer. The light is then reflected back to 
the viewer. To turn off the pixel, we apply 
a voltage to the two intersecting conductors 
to align the molecules so that the light is 
not twisted. 
 

LCD Displays 
 
Advantages 
Small footprint (approx 1/6 of CRT) 
Light weight (typ. 1/5 of CRT) 
Low power consumption (typ. 1/4 of CRT) 
Completely flat screen - no geometrical errors 
Crisp pictures - digital and uniform colours 
No electromagnetic emission 
Fully digital signal processing possible 
Large screens (>20 inch) on desktops 
 
Disadvantages 
High price (presently 3x CRT) 
Poor viewing angle (typ. +/- 50 degrees) 
Low contrast and luminance (typ. 1:100) 
Low luminance (Natural light) (typ. 200 cd/m2) 
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Three-Dimensional Viewing Devices 
Graphics monitors for the display of three-dimensional scenes have been devised using a 
technique that reflects a CRT image from a vibrating, flexible mirror. In this system when 
varifocal mirror vibrates it changes focal length. These vibrations are synchronized with 
the display of an object on a CRT so that 
each point on the object is reflected from 
the mirror into spatial position 
corresponding to the distance of that 
point from a specified viewing position. 
This allows user to walk around an object 
or scene and view it from different sides. 
 
Virtual Reality Devices 
Virtual reality system enables users to 
move and react in a computer-simulated 
environment. Various types of devices allow 
users to sense and manipulate virtual objects 
much as they would real objects. This natural 
style of interaction gives participants the 
feeling of being immersed in the simulated 
world. Virtual reality simulations differ from 
other computer simulations in that they require 
special interface devices that transmit the 
sights, sounds, and sensations of the simulated 
world to the user. These devices also record 
and send the speech and movements of the 
participants to the simulation program.  

To see in the virtual world, the user wears a 
head-mounted display (HMD) with screens 
directed at each eye. The HMD contains a 
position tracker to monitor the location of the 
user's head and the direction in which the user 
is looking. Using this information, a computer 
recalculates images of the virtual world to match the 
direction in which the user is looking and displays 
these images on the HMD.  

Users hear sounds in the virtual world through 
earphones in the HMD. The hepatic interface, which 
relays the sense of touch and other 
physical sensations in the virtual 
world, is the least developed 
feature. Currently, with the use of a 
glove and position tracker, the user 
can reach into the virtual world and 
handle objects but cannot actually 
feel them.  
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Another interesting simulation is interactive walk through. A sensing system in the 
headset keeps track of the viewer’s opposition, so that the front and back of objects can 
be seen as the viewer walks and interacts with the displays. Similarly given below is a 
figure using a headset and a data glove worn on the right hand? 
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Lecture No.3   Graphics Systems II 

 
Raster-Scan Systems 
 
Interactive raster graphics systems typically employ several processing units. In addition 
to the CPU, a special purpose processor, called the video controller or display 
controller is used to control the operation of the display device.  
 
Organization of a simple raster system is shown in following figure. Here the frame 
buffer can be anywhere in the system memory, and the video controller accesses the 
frame buffer to refresh the screen. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
In addition to the video controller more sophisticated raster systems employ other 
processors as coprocessors and accelerators to implement various graphics operations. 
  
Video Controller 
Following figure shows a commonly used organization for raster systems. A fixed area of 
the system memory is reserved for the frame buffer, and the video controller is given 
direct access to the frame-buffer memory. 
 
Frame-buffer locations, and the corresponding screen positions, are referenced in 
Cartesian coordinates.  
 
 
 
 

Architecture of a simple raster graphics system
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In the following figure the basic refresh operations of the video controller are 
diagrammed. Two registers are used to store the coordinates of the screen pixels. Initially, 
the x register is set to 0 and the y register is set to ymax. The value stored in the frame 
buffer for this pixel position is then retrieved and used to set the intensity of the CRT 
beam. Then the x register is incremented by 1, and the process repeated for the next pixel 
on the top scan line. This procedure is repeated for each pixel along the next line by 
resetting x register to 0 and decrementing the y register by 1. Pixels along this scan line 
are then processed in turn, and the procedure is repeated for each successive scan line. 
After cycling through all pixels along the bottom scan line y=0, the video controller resets 
to the first pixel position on the top scan line and the refresh process starts over. 
 

 
 
Since the screen must be refreshed at the rate of 60 frames per second, the simple 
procedure illustrated in above figure cannot be accommodated by typical RAM chips. 
The cycle time is too large making the process very slow. To speed up pixel processing, 
video controllers can retrieve multiple pixel values from the refresh buffer on each pass. 

Architecture of a raster system with a fixed portion of a system 
memory reserved for the frame buffer. 

 
 
 

Memory Addresses Pixel Register 

Frame Buffer  

Raster Scan Generator 

Register X Register Y 

Horizontal and Vertical 
Deflection Voltages 

Intensity 

Basic Video Controller Refresh Operations 
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The multiple pixel intensities are then stored in a separate register and used to control the 
CRT beam intensity for a group of adjacent pixels. When that group of pixels has been 
processed, the next block of pixel values is retrieved from the frame buffer. 
 
Raster Scan Display Processor 
Following figure shows one way to setup the organization of a raster system containing a 
separate display processor, sometimes referred to as a graphics controller or a display 
coprocessor. The purpose of the display processor is to free the CPU from the graphics 
chores. In addition to the system memory, a separate display processor memory area can 
also be provided. 
 
A major task of the display processor is digitizing a picture definition given in an 
application program into a set of pixel-intensity values for storage in the frame buffer. 
This digitization process is called scan conversion. 

 
 
Raster-Scan Characters 
Graphics commands specifying straight lines and other geometric objects are scan 
converted into a set of discrete intensity points. Scan converting a straight-line segment, 
for example, means that we have to locate the pixel positions closest to the line path and 
store the intensity for each position in the frame buffer. Similar methods are used for scan 
converting curved lines and polygon outlines.  
 
Characters can be defined with rectangular grids, as shown in following figure, or they 
can be defined with curved outlines shown in the right hand side figure given below. The 
array size for character grids can vary from about 5 by 7 to 9 by 12 or more for higher-
quality displays. A character grid is displayed by superimposing the rectangular grid 
pattern into the frame buffer at a specified coordinate position. With characters that are 
defined as curve outlines, character shapes are scan converted into the frame buffer. 

System Bus 

I/O Devices 

Display Processor 
Memory 

CPU Display 
Processor 

Frame 
Buffer  

Architecture of a raster graphics system with a display processor 

Video 
Controller Monitor 

System Memory 
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Random-Scan Systems 
The organization of a simple random scan system is shown in following figure. An 
application program is input and stored in the system memory along with a graphics 
package. Graphics commands in the application program are translated by the graphics 
package into a display file stored in the system memory. This display file is then accessed 
by the display processor to refresh the screen. The display processor cycles through each 
command in the display file program once during every refresh cycle. Sometimes the 
display processor in a random scan system is referred to as a display processing unit or 
graphics controller. 
 
 Monitor 
 
 
 
 
 
        System Bus 

 
 
 
 

 
      I/O Devices 
 
 
 

Architecture of a simple random scan system 
 
Graphics Card or Display Adapters 
A video card is typically an adapter, a removable expansion card in the PC. Thus, it can 
be replaced!  
 
A video display adapter which is the special printed circuit board that plugs into one of 
the several expansion slots present on the mother board of the computer. A video display 
adapter is simply referred as a video card. 
 

Defined as a grid of 
pixel positions Defined as a 

curve outline 

CPU System 
Memory

Display 
Processor
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The video card can also be an integral part of the system board; this is the case in certain 
brands of PCs and is always the case in laptops and clear preference for the replaceable 
video card in some PCs. 
 
A number of display adapters are available with varying capabilities especially Intel 
systems support following adapters: 
 

 Monochrome Adapter (MA) 
 Hercules Adapter (HA) 
 Color Graphics Adapter (CGA) 
 Enhanced Graphics Adapter (EGA) 
 Multicolor Graphics Adapter (MCGA) 
 Video Graphics Adapter (VGA) 
 Super Video Graphics Adapter (SVGA) 
 Extended Graphics Adapter (XGA) 

 
Monochrome Adapter 
The simplest and the first available adapter is MA. This adapter can display only text in 
single color and has no graphics displaying capability. Originally this drawback only 
prevented the users from playing video games, but today, even the most serious business 
software uses graphics and color to great advantage. Hence, MA is no longer suitable, 
though it offers clarity and high resolution. 
 
Hercules Adapter 
The Hercules card emulates the monochrome adapter but also operates in a graphics 
mode. Having graphics capabilities the Hercules card became somewhat of a standard for 
monochrome systems. 
 
Color Graphics Adapter 
This adapter can display text as well as graphics. In text mode it operates in 25 rows by 
80 column mode with 16 colors. In graphics mode two resolutions are available:   
 

 Medium resolution graphics mode 320 * 200 with 4 colors available from palette 
of 16 colors 

 and 640 * 200 with 2 colors 
 
One drawback of CGA card is that it produces flicker and snow. Flicker is the annoying 
tendency of the text to flash as it moves up or down. Snow is the flurry of bright dots that 
can appear anywhere on the screen. 
 
Enhanced Graphics Adapter 
The EGA was introduced by IBM in 1984 as alternative to CGA card. The EGA could 
emulate most of the functions and all the display modes of CGA and MA. The EGA 
offered high resolution and was not plagued with the snow and flicker problems of CGA. 
In addition EGA is designed to use the enhanced color monitor capable of displaying 640 
* 350 in 16 colors from a palette of 64. 
 
The EGA card has several internal registers. A serious limitation of the EGA card is that 
it supports write operations to most of its internal registers, but no read operation. The 
result is it is not possible for software to detect and preserve the state of the adapter, 
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which makes EGA unsuited for memory resident application or for multitasking like 
windows and OS/2. 
 
 
Multicolor Graphics Adapter 
The MCGA was designed to emulate the CGA card and to maintain compatibility with all 
the CGA modes. In addition to the text and graphics modes of the CGA, MCGA has two 
new graphics modes: 
 640 * 480 with 2 colors 
320 * 200 in with 256 colors 
 
Video Graphics Adapter 
The VGA supports all the display modes of MA, CGA and MCGA. In addition VGA 
supports a graphics mode of 640 * 480 with 16 colors. 
 
Super Video Graphics Adapter 
The SVGA designation refers to enhancements to the VGA standard by independent 
vendors. Unlike display adapters discussed earlier SVGA does not refer to a card that 
meets a particular specification but to a group of cards that have different capabilities. For 
example one card may have resolutions 800 * 600 and 1024 * 768, whereas, another card 
may have same resolution but more colors. These cards have different capabilities, but 
still both of them are classified as SVGA. Since each SVGA card has different 
capabilities, you need special device driver programs for driving them. This means that 
unlike VGA cards which can have a single driver that works with all VGA cards, 
regardless of the vendor, each SVGA card must have a corresponding driver. 
 
Extended Graphics Adapter 
The XGA evolved from the VGA and provides greater resolution, more colors and much 
better performance. The XGA has a graphics processor bus mastering. Being a bus master 
adapter means that the XGA can take control of the system as though it were the mother 
board. In essence, a bus master is an adapter of the mother board. The XGA offers 2 new 
modes: 
 640 * 480 with 16 bit colors (65536 colors) 
 1024 * 768 with 8 bit colors (256 colors) 
 
Video Card Supports the CPU 
The video card provides a support function for the CPU. It is a processor like the CPU. 
However it is especially designed to control screen images.   
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RAM on the Video Card 
Video cards always have a certain amount of RAM. This RAM is also called the frame 
buffer. Today video cards hold plenty of RAM, but earlier it was more important:  
 
 How much RAM? That is significant for color depth at the highest resolutions.  
 Which type of RAM? This is significant for card speed.  
 
Video card RAM is necessary to keep the entire screen image in memory. The CPU sends 
its data to the video card. The video processor forms a picture of the screen image and 
stores it in the frame buffer. This picture is a large bit map. It is used to continually 
update the screen image. 
 
3D - lots of RAM  
Supporting the demand for high quality 3D performance many new cards come with a 
frame buffer of 16 or 32 MB RAM and they use the AGP interface for better bandwidth 
and access to the main memory. 
 
VRAM  
Briefly, in principle all common RAM types can be used on the video card. Most cards 
use very fast editions of ordinary RAM (SDRAM or DDR). 
 
 Some high end cards (like Matrox Millennium II) earlier used special VRAM (Video 
RAM) chips. This was a RAM type, which only was used on video cards. In principle, a 
VRAM cell is made up of two ordinary RAM cells, which are "glued" together. 
Therefore, you use twice as much RAM than otherwise. 
 
VRAM also costs twice as much. The smart feature is that the double cell allows the 
video processor to simultaneously read old and write new data on the same RAM address. 
Thus, VRAM has two gates which can be active at the same time. Therefore, it works 
significantly faster.  
 
With VRAM you will not gain speed improvements increasing the amount of RAM on 
the graphics controller. VRAM is already capable of reading and writing simultaneously 
due to the dual port design. 
UMA and DVMT  
On some older motherboards the video controller was integrated. Using SMBA (Shared 
Memory Buffer Architecture) or UMA (Unified Memory Architecture) in which parts of 
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the system RAM were allocated and used as frame buffer. But sharing the memory was 
very slow and the standards never became very popular. 
  
A newer version of this is found in Intel chip set 810 and the better 815, which also 
integrates the graphics controller and use parts of the system RAM as frame buffer. Here 
the system is called Dynamic Video Memory Technology (D.V.M.T.). 
 
The RAMDAC  
All traditional graphics cards have a RAMDAC chip converting the signals from digital 
to analog form. CRT monitors work on analog signals. The PC works with digital data 
which are sent to the graphics adapter. Before these signals are sent to the monitor they 
have to be converted into analog 
output and this is processed in the 
RAMDAC: 
 
The recommendation on a good 
RAMDAC goes like this:  

 External chip, not 
integrated in the VGA 
chip  

 Clock speed: 250 - 360 
MHz.  

 
Heavy Data Transport 
The original VGA cards were said to be "flat." They were unintelligent. They received 
signals and data from the CPU and forwarded them to the screen, nothing else. The CPU 
had to make all necessary calculations to create the screen image. 
  
As each screen image was a large bit map, the CPU had to move a lot of data from RAM 
to the video card for each new screen image.  
 
The graphic interfaces, like Windows, gained popularity in the early nineties. That 
marked the end of the "flat" VGA cards. The PC became incredibly slow, when the CPU 
had to use all its energy to produce screen images. You can try to calculate the required 
amount of data. 
 
A screen image in 1024 x 768 in 16 bit color is a 1.5 MB bit map. That is calculated as 
1024 x 768 x 2 bytes. Each image change (with a refresh rate of 75 HZ there is 75 of 
them each second) requires the movement of 1.5 MB data. That zaps the PC energy, 
especially when we talk about games with continual image changes. 
  
Furthermore, screen data have to be moved across the I/O bus. In the early nineties, we 
did not have the PCI and AGP buses, which could move large volumes of data. The 
transfer took place through the ISA bus, which has a very limited width. Additionally the 
CPUs were 386’s and early 486’s, which also had limited power.  
  
Accelerator Cards 
In the early nineties the accelerator video cards appeared. Today all cards are accelerated 
and they are connected to the CPU through high speed buses like PCI and AGP.  
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With accelerated video chips, Windows (and with that the CPU) need not calculate and 
design the entire bit map from image to image. The video card is programmed to draw 
lines, Windows and other image elements.  
 
The CPU can, in a brief code, transmit 
which image elements have changed 
since the last transmission. This saves 
the CPU a lot of work in creating screen 
images. The video chip set carries the 
heavy load: 
 
All video cards are connected to the PCI or the AGP bus, this way providing maximum 
data transmission. The AGP bus is an expanded and improved version of the PCI bus - 
used for video cards only. 
  
Modern video cards made for 3D gaming use expensive high-end RAM to secure a 
sufficient bandwidth. If you for example want to see a game in a resolution of 1280 x 
1024 at 80 Hz, you may need to move 400 MB of data each second - that is quite a lot. 
The calculation goes like this: 
  
1280 X 1024 pixels x 32 bit (color depth) x 80 = 419,430,400 bytes 
419,430,400 bytes = 409,600 kilobytes = 400 megabytes. 
 
 

 

 
 
Graphics Libraries 
Graphics developers some time use 2D or 3D libraries to create graphics rapidly and 
efficiently. These developers include game developers, animators, designers etc. 
 
The following libraries are commonly used among developers: 
  
FastGL 
OpenGL 
DirectX 
Others 
 
Advantages of Graphics Libraries 
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These libraries help developers to create fast and optimized animations and also help to 
access features that are available in video hardware. 
 
Hardware manufacturers give support in hardware for libraries. Famous manufacturers 
include SIS, NVIDIA, ATI, INTEL etc. 
 
Graphics Software 
There is a lot of 2D and 3D software available in the market. These software provide 
visual interface for creation of 2D and 3D animation / models image creation. These tools 
are under use of movie makers, professional animators and designers. 
 
These tools are flash, Maya, 3D studio max, adobe photo shop, CorelDraw, image viewer, 
paintbrush etc. 
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Lecture No.4   Point 

 
Pixel: The smallest dot illuminated that can be seen on screen. 
 
Picture: Composition of pixels makes picture that forms on whole screen 
 
Resolution 
We know that Graphics images on the screen are built up from tiny dots called picture 
elements or pixels. The display resolution is defined by the number of rows from top to 
bottom, and number of pixels from left to right on each scan line. 
 
Since each mode uses a particular resolution. For example mode 19 uses a resolution of 
200 scan lines, each containing 320 pixels across. This is often referred to as 320*200 
resolution. 
In general, higher the resolution, more pleasing is the picture. Higher resolution means a 
sharper, clearer picture, with less pronounced ‘staircase’ effect on lines drawn diagonally 
and better looking text characters. On the other hand, higher resolution also means more 
memory requirement for the display. 
 
Text and Graphics Modes 
We discussed different video hardware devices that include VGA cards and monitors. 
Video cards are responsible to send picture data to monitor each time it refresh itself. 
Video cards support both different text and graphics modes. Modes consist of their own 
refresh rate, number of colors and resolutions (number of rows multiply by number of 
columns). The following famous video modes that we can set in today’s VGA cards on 
different refresh rate: 
 
25 * 80 with 16 colors support (text mode) 
320 * 200 with 8 bit colors support (graphics mode) 
640 * 480 with 16 colors support (graphics mode) 
640 * 480 with 8, 16, 24, 32 bit color support (graphics mode) 
800 * 600 with 8, 16, 24, 32 bit color support (graphics mode) 
 
Text and Graphics 
All modes are fundamentally of two types, text or graphics. Some modes display only text 
and some are made only for graphics. As seen earlier, the display adapter continuously 
dumps the contents of the VDU (video display unit) memory on the screen. 
 
The amount of memory required representing a character on screen in text mode and a 
pixel in graphics mode varies from mode to mode. 
 
Mode No. Type Resolution Memory Required 
3 Text 80 x 25 2 bytes per char 
6 Graphics 640 x 200 1 bit per pixel 
7 Text 80 x 25 2 bytes per char 
18 Graphics 640 x 480 1 bit per pixel 
19 Graphics 320 x 200 1 byte per pixel 
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In mode 6 each pixel displayed on the screen occupies one bit in VDU memory. Since 
this bit can take only two values, either 0 or 1, only two colors can be used with each 
pixel. 
 
How text displays 
 
As seen previously text modes need two bytes in VDU memory to represent one character 
on screen; of these two bytes, the first byte contains the ASCII value of the character 
being displayed, whereas the second byte is the attribute byte. The attribute byte controls 
the color in which the character is being displayed. 
 
The ASCII value present in VDU memory must be translated into a character and drawn 
on the screen. This drawing is done by a character generator this is part of the display 
adapter or in VBIOS. The CGA has a character generator that uses 8 scan lines and 8 
pixels in each of these scan lines to produce a character on screen; whereas the MA’s 
character generator uses 9 scan lines and 14 pixels in each of these scan lines to produce a 
character. This larger format of MA makes the characters generated by MA much sharper 
and hence easier to read. 
 
On older display adapters like MA and CGA, the character generator is located in ROM 
(Read Only Memory). EGA and VGA do not have a character generator ROM. Instead, 
character generator data is loaded into plane 2 of display RAM. This feature makes it easy 
for custom character set to be loaded. Multiple character sets (up to 4 for EGA and up to 
8 for VGA) may reside in RAM simultaneously. 
 
A set of BIOS services is available for easy loading of character sets. Each character set 
can contain 256 characters. Either one or two character sets may be active giving these 
adapters on the screen simultaneously. When two character sets are active, a bit in each 
character attribute byte selects which character set will be used for that character. 
 
Using a ROM-BIOS service we can select the active character set. Each character in the 
standard character set provided with the EGA is 8 pixels wide and 14 pixels tall. Since 
VGA has higher resolution, it provides a 9 pixel wide by 16 pixels tall character set. 
Custom character set can also be loaded using BIOS VDU services. 
 
The graphics modes can also display characters, but they are produced quite differently. 
The graphics modes can only store information bit by bit. The big advantage of this 
method is that you design characters of desired style, shape and size. 
 
Text mode colors 
 
In mode 3, for each character on screen there are two bytes in VDU memory, one 
containing the ACCII value of the character and other containing its attribute. The 
attribute byte controls the color of the character. The attribute byte contains three 
components: the foreground color (color of the character itself), the background color 
(color of the area not covered by the character) and the blinking component of the 
character. The next slide shows the breakup of the attribute byte. 
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Bits 
7  6 5  4 3 2 1 Purpose 
X x x x x x x 1 Blue component of foreground color 
X x x x x x 1 x  Green component of foreground color 
X x x x x 1 x x Red component of foreground color 
X x x x 1 x x x Intensity component of foreground color 
X x x 1 x x x x Blue component of background color 
X x 1 x x x x x Green component of background color 
X 1 x x x x x x  Red component of background color 
1 x x x x x x x  Blinking component 

 
Graphics Mode colors 
So far we have seen how to set color in text modes. Setting color in graphics modes is 
quite different. In the graphics mode each pixel on the screen has a color associated with 
it. There are important differences here as compared to setting color in text mode. First, 
the pixels cannot blink. Second, each pixel is a discrete dot of color, there is no 
foreground and background. Each pixel is simply one color or another. The number of 
colors that each adapter can support and the way each adapter generates these colors is 
drastically different. But we will only discuss here colors in VGA. 
 
Colors in VGA 
IBM first introduced the VGA card in April 1987. VGA has 4 color planes – red, green, 
blue and intensity, with one bit from each of these planes contributing towards 1 pixel 
value. 
 
There are lots of ways that you can write pixel on screen. You can write pixel on screen 
by using one of the following methods: 
 
Using video bios services to write pixel 
Accessing memory and registers directly to write pixel on screen. 
Using library functions to write pixel on screen 
 
Practical approach to write pixel on screen 
As we have discussed three ways to write pixel on screen. Here we will discuss all these 
ways practically and see how the pixel is displayed on screen. For that we will have to 
write code in Assembly and C languages. So get ready with these languages 
 
Writing pixel Using Video BIOS 
The following steps are involved to write pixel using video BIOS services. 
Setting desired video mode 
Using bios service to set color of a screen pixel 
Calling bios interrupt to execute the process of writing pixel. 
 
 
Source code 
Below are the three lines written in assembly language that can set graphics mode 
19(13h). You can use this for assembler or you can embed this code in C language using 
‘asm’ keyword 
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   MOV AH,0 
   MOV AL,13h ;;mode number from 0-19 
   INT 10H 
 
To insert in C language above code will be inserted with key word asm and curly braces. 
asm{ 
   MOV AH,0 
   MOV AL,13h ;;mode number from 0-19 
   INT 10H 
  } 
 
Description 
Line #1: mov ah,0  is the service number for setting video mode that is in register ah 
Line #2: mov al,13h   is the mode number that is in register al 
Line #3: int 10h   is the video bios interrupt number that will set mode 13h 
 
Source code for writing pixel 
The following code can be used to write pixel using video bios interrupt 10h and service 
number 0ch. 
 
MOV AH,0Ch 
MOV AL,COLOR_NUM 
MOV BH,0 
MOV CX,ROW_NUM 
MOV DX,COLUMN_NUM 
INT 10h 
 
Description 
Line#1: service number in register Ah 
Line#2: color value, since it is 13h mode so it has 0-255 colors range. You can assign any 
color number from 0 to 255 to all register. Color will be selected from default palette 
setting against the number you have used. 
Line#3: page number in Bh register. This mode supports only one page. So 0 is used in 
Bh register. 0 mean default page. 
Line#4: column number will be used in CX register 
Line#5: row number will be used in DX register 
Line#6: BIOS interrupt number 10h 
 
 
Writing pixel by accessing memory directly 
So far we used BIOS to draw pixel. Here we will draw pixel by accessing direct pointer to 
the video memory and write color value. The following steps are involved to write direct 
pixel without using BIOS: 
 
Set video mode by using video BIOS routine as discussed earlier 
Set any pointer to the video graphics memory address 0x0A0000. 
Now write any color value in the video memory addressing 
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Direct Graphics Memory Access Code 
 
Mov ax,0a000h 
Mov ds,ax  ;;segment address changed 
Mov si,10  ;; column number 
Mov [si],COLOR_NUM 
 
Work to do: 
Write pixel at 12th row and 15th column 
Hint: use formula (row * 320 + column) in si register. 
 
Writing character directly on screen 
You can also write direct text by setting any text mode using BIOS service and then 
setting direct pointer at text memory address 0x0b8000. 
 
Example 
Set mode Number 3. using BIOS service and then use this code to write character 
 
Mov ax,0b8000h 
Mov ds,ax 
Mov si,10   ;;column number 
Mov [si],’a’   ;;character to write 
 
Using Library functions 
While working in C language, you can use graphics library functions to write pixel on 
screen. These graphics library functions then use BIOS routines or use direct memory 
access drivers to draw pixel on screen. 
 
initgraph(&gdriver, &gmode, "");  
/* read result of initialization */ 
errorcode = graphresult();  
if (errorcode != grOk) 
/* an error occurred */ 
 {                                                                           
 printf("Graphics error: %s\n", getch()); exit(1);              
 /* return with error code */                        
  } 
/* draw a pixel on 10th row and 10 column */ 
putpixel(10, 10, BLUE); 
/* clean up */ 
closegraph(); 
 
Steps in C language 
First call Initgraph() function 
and then call putpixel() function to draw pixel on screen. It takes row, column and color 
value as parameters. 
after drawing pixel use closegraph() function to close the graphics routines provided by 
built in driver by Borland. 
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Discussion on pixel drawing methods 
BIOS routines are standard routines built in VGA cards but these routines are very much 
slow. You will use pixel to draw filled triangle, rectangles and circles and these all will be 
much slower than direct memory access method. Direct memory access method allows 
you to write pixel directly by passing the complex BIOS routines. It is easy and faster but 
its programming is only convenient in mode 13h. Library functions are easier to use and 
even faster because these are optimized and provided with special drivers by different 
companies. 
 
Drawing pixel in Microsoft Windows 
So far we have been discussing writing pixel in DOS. Here we will discuss briefly how to 
write pixel in Microsoft Windows. Microsoft windows are a complete graphical operating 
system but it does not allow you to access BIOS or direct memory easily. It provides 
library functions (APIs) that can be used to write graphics. 
By working in graphics in windows one must have knowledge about Windows GDI 
(graphics device interface) system. 
 
Windows GDI functions 
Here are some windows GDI functions that can be used to draw pixel e.g SetPixel and 
SetPixelV. Both are used to draw pixel on screen. The example and source code of 
writing pixel in windows will be available. 
 
Window Code Example: 
 
// a.cpp : Defines the entry point for the application. 
// 
 
#include "stdafx.h" 
#include "resource.h" 
 
#define MAX_LOADSTRING 100 
 
// Global Variables: 
HINSTANCE hInst;        // current 
instance 
TCHAR szTitle[MAX_LOADSTRING];       
 // The title bar text 
TCHAR szWindowClass[MAX_LOADSTRING];      
  // The title bar text 
 
// Foward declarations of functions included in this code module: 
ATOM    MyRegisterClass(HINSTANCE hInstance); 
BOOL    InitInstance(HINSTANCE, int); 
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); 
LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM); 
 
int APIENTRY WinMain(HINSTANCE hInstance, 
                     HINSTANCE hPrevInstance, 
                     LPSTR     lpCmdLine, 
                     int       nCmdShow) 
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{ 
  // TODO: Place code here. 
 MSG msg; 
 HACCEL hAccelTable; 
 
 // Initialize global strings 
 LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING); 
 LoadString(hInstance, IDC_A, szWindowClass, MAX_LOADSTRING); 
 MyRegisterClass(hInstance); 
 
 // Perform application initialization: 
 if (!InitInstance (hInstance, nCmdShow))  
 { 
  return FALSE; 
 } 
 
 hAccelTable = LoadAccelerators(hInstance, (LPCTSTR)IDC_A); 
 
 // Main message loop: 
 while (GetMessage(&msg, NULL, 0, 0))  
 { 
  if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))  
  { 
   TranslateMessage(&msg); 
   DispatchMessage(&msg); 
  } 
 } 
 
 return msg.wParam; 
} 
 
//  FUNCTION: MyRegisterClass() 
// 
//  PURPOSE: Registers the window class. 
// 
//  COMMENTS: 
// 
//    This function and its usage is only necessary if you want this code 
//    to be compatible with Win32 systems prior to the 'RegisterClassEx' 
//    function that was added to Windows 95. It is important to call this function 
//    so that the application will get 'well formed' small icons associated 
//    with it. 
// 
ATOM MyRegisterClass(HINSTANCE hInstance) 
{ 
 WNDCLASSEX wcex; 
 
 wcex.cbSize = sizeof(WNDCLASSEX);  
 
 wcex.style = CS_HREDRAW | CS_VREDRAW; 
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 wcex.lpfnWndProc = (WNDPROC)WndProc; 
 wcex.cbClsExtra  = 0; 
 wcex.cbWndExtra  = 0; 
 wcex.hInstance  = hInstance; 
 wcex.hIcon   = LoadIcon(hInstance, (LPCTSTR)IDI_A); 
 wcex.hCursor  = LoadCursor(NULL, IDC_ARROW); 
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); 
 wcex.lpszMenuName = (LPCSTR)IDC_A; 
 wcex.lpszClassName = szWindowClass; 
 wcex.hIconSm  = LoadIcon(wcex.hInstance, (LPCTSTR)IDI_SMALL); 
 
 return RegisterClassEx(&wcex); 
} 
 
// 
//   FUNCTION: InitInstance(HANDLE, int) 
// 
//   PURPOSE: Saves instance handle and creates main window 
// 
//   COMMENTS: 
// 
//        In this function, we save the instance handle in a global variable and 
//        create and display the main program window. 
// 
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow) 
{ 
   HWND hWnd; 
 
   hInst = hInstance; // Store instance handle in our global variable 
 
   hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW, 
      CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL); 
 
   if (!hWnd) 
   { 
      return FALSE; 
   } 
 
   ShowWindow(hWnd, nCmdShow); 
   UpdateWindow(hWnd); 
 
   return TRUE; 
} 
 
// 
//  FUNCTION: WndProc(HWND, unsigned, WORD, LONG) 
// 
//  PURPOSE:  Processes messages for the main window. 
// 
//  WM_COMMAND - process the application menu 
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//  WM_PAINT - Paint the main window 
//  WM_DESTROY - post a quit message and return 
// 
// 
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, 
LPARAM lParam) 
{ 
 int wmId, wmEvent; 
 PAINTSTRUCT ps; 
 HDC hdc; 
 TCHAR szHello[MAX_LOADSTRING]; 
 LoadString(hInst, IDS_HELLO, szHello, MAX_LOADSTRING); 
 
 switch (message)  
 { 
  case WM_COMMAND: 
   wmId    = LOWORD(wParam);  
   wmEvent = HIWORD(wParam);  
   // Parse the menu selections: 
   switch (wmId) 
   { 
    case IDM_ABOUT: 
       DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX, hWnd, 
(DLGPROC)About); 
       break; 
    case IDM_EXIT: 
       DestroyWindow(hWnd); 
       break; 
    default: 
       return DefWindowProc(hWnd, message, wParam, 
lParam); 
   } 
   break; 
  case WM_PAINT: 
   { 
   hdc = BeginPaint(hWnd, &ps); 
   // TODO: Add any drawing code here... 
   RECT rt; 
   GetClientRect(hWnd, &rt); 
   int j=0; 
   //To draw some pixels of RED colour on the screen 
   for(int i=0;i<100;i++) 
   { 
    SetPixel(hdc,i+j,10,RGB(255,0,0)); 
    j+=6; 
   } 
 
   EndPaint(hWnd, &ps); 
   } 
   break; 
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  case WM_DESTROY: 
   PostQuitMessage(0); 
   break; 
  default: 
   return DefWindowProc(hWnd, message, wParam, lParam); 
   } 
   return 0; 
} 
// Mesage handler for about box. 
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, 
LPARAM lParam) 
{ 
 switch (message) 
 { 
  case WM_INITDIALOG: 
    return TRUE; 
 
  case WM_COMMAND: 
   if (LOWORD(wParam) == IDOK || LOWORD(wParam) == 
IDCANCEL)  
   { 
    EndDialog(hDlg, LOWORD(wParam)); 
    return TRUE; 
   } 
   break; 
 } 
    return FALSE; 
} 
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Lecture No.5   Line Drawing Techniques 

 
Line 
A line, or straight line, is, roughly speaking, an (infinitely) thin, (infinitely) long, straight 
geometrical object, i.e. a curve that is long and straight. Given two points, in Euclidean 
geometry, one can always find exactly one line that passes through the two points; this 
line provides the shortest connection between the points and is called a straight line. 
Three or more points that lie on the same line are called collinear. Two different lines can 
intersect in at most one point; whereas two different planes can intersect in at most one 
line. This intuitive concept of a line can be formalized in various ways. 

 
A line may have three forms with respect to slope i.e. it may have slope = 1 as shown in 
following figure (a), or may have slope < 1 as shown in figure (b) or it may have slope > 
1 as shown in figure (c). Now if a line has slope = 1 it is very easy to draw the line by 
simply starting form one point and go on incrementing the x and y coordinates till they 
reach the second point. So that is a simple case but if slope < 1 or is > 1 then there will be 
some problem. 
 

   
figure (a)   figure (b)   figure (c) 

 
There are three techniques to be discussed to draw a line involving different time 
complexities that will be discussed later. These techniques are: 
 

 Incremental line algorithm 
 DDA line algorithm 
 Bresenham line algorithm 

 
Incremental line algorithm 
This algorithm exploits simple line equation y = m x + b 
Where m = dy / dx 
and b = y – m x 
 
Now check if |m| < 1 then starting at the first point, simply increment x by 1 (unit 
increment) till it reaches ending point; whereas calculate y point by the equation for each 
x and conversely if |m|>1 then increment y by 1 till it reaches ending point; whereas 
calculate x point corresponding to each y, by the equation. 
 
Now before moving ahead let us discuss why these two cases are tested. First if |m| is less 
than 1 then it means that for every subsequent pixel on the line there will be unit 
increment in x direction and there will be less than 1 increment in y direction and vice 
versa for slope greater than 1. Let us clarify this with the help of an example: 
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Suppose a line has two points p1 (10, 10) and p2 (20, 18) 
Now difference between y coordinates that is dy = y2 – y1 = 18 – 10 = 8 
Whereas difference between x coordinates is dx = x2 – x1 = 20 – 10 = 10 
This means that there will be 10 pixels on the line in which for x-axis there will be 
distance of 1 between each pixel and for y-axis the distance will be 0.8. 
 
Consider the case of another line with points p1 (10, 10) and p2 (16, 20) 
Now difference between y coordinates that is dy = y2 – y1 = 20 – 10 = 10 
Whereas difference between x coordinates is dx = x2 – x1 = 16 – 10 = 6 
 
This means that there will be 10 pixels on the line in which for x-axis there will be 
distance of 0.6 between each pixel and for y-axis the distance will be 1. 
 
Now having discussed this concept at length let us learns the algorithm to draw a line 
using above technique, called incremental line algorithm: 
 
Incremental_Line (Point p1, Point p2) 
dx = p2.x – p1.x 
dy = p2.y – p1.y 
m = dy / dx 
x = p1.x 
y = p1.y 
b = y – m * x 
if |m| < 1 
 for counter = p1.x to p2.x 
  drawPixel (x, y) 
  x = x + 1 
  y = m * x + b 
else 
 for counter = p1.y to p2.y 
  drawPixel (x, y) 
  y = y + 1 
  x = ( y – b ) / m 
 
Discussion on algorithm: 
Well above algorithm is quite simple and easy but firstly it involves lot of mathematical 
calculations that is for calculating coordinate using equation each time secondly it works 
only in incremental direction. 
 
We have another algorithm that works fine in all directions and involving less calculation 
mostly only addition; which will be discussed in next topic. 
 
Digital Differential Analyzer (DDA) Algorithm: 
DDA abbreviated for digital differential analyzer has very simple technique. Find 
difference dx and dy between x coordinates and y coordinates respectively ending points 
of a line. If |dx| is greater than |dy|, than |dx| will be step and otherwise |dy| will be step. 
 
if |dx|>|dy| then 

step = |dx| 
else  
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step = |dy| 
  
 
Now very simple to say that step is the total number of pixel required for a line.  Next 
step is to divide dx and dy by step to get xIncrement and yIncrement that is the increment 
required in each step to find next pixel value. 
 
xIncrement = dx/step 
yIncrement = dy/step 
 
Next a loop is required that will run step times. In the loop drawPixel and add xIncrement  
in x1 by and yIncrement  in y1. 
 
To sum-up all above in the algorithm, we will get, 
 
DDA_Line (Point p1, Point p2) 
dx = p2.x – p1. x 
dy = p2.y – p1. y 
x1=p1.x 
y1=p1.y 
if |dx|>|dy| then 

step = |dx| 
else  

step = |dy| 
xIncrement = dx/step 
yIncrement = dy/step 
for counter = 1 to step 

drawPixel (x1, y1) 
x1 = x1 + xIncrement 

 y1 = y1 + yIncrement 
 
Criticism on Algorithm: 
There is serious criticism on the algorithm that is use of floating point calculation. They 
say that when we have to draw points that should have integers as coordinates then why 
to use floating point calculation, which requires more space as well as they have more 
computational cost. 
 
Therefore there is need to develop an 
algorithm which would be based on 
integer type calculations. Therefore, 
work is done and finally we will 
come up with an algorithm 
“Bresenham Line Drawing 
algorithm” which will be discussed 
next. 
 
Bresenham's Line Algorithm 
 
Bresenham's algorithm finds the 
closest integer coordinates to the 
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actual line, using only integer math. Assuming that the slope is positive and less than 1, 
moving 1 step in the x direction, y either stays the same, or increases by 1. A decision 
function is required to resolve this choice. 
 
If the current point is (xi, yi), the next point can be either (xi+1,yi) or (xi+1,yi+1) . The 
actual position on the line is (xi+1, m(xi+1)+c) . Calculating the distance between the true 
point, and the two alternative pixel positions available gives:  
 

d1 = y - yi 
= m * (x+1)+b-yi  

d2 = yi + 1 - y 
= yi + 1 – m ( xi + 1 ) - b 

 
Let us magically define a decision function p, to determine which distance is closer to the 
true point. By taking the difference between the distances, the decision function will be 
positive if d1 is larger, and negative otherwise. A positive scaling factor is added to 
ensure that no division is necessary, and only integer math need be used. 
 

pi = dx (d1-d2) 
pi = dx (2m * (xi+1) + 2b – 2yi-1 ) 
pi = 2 dy (xi+1) –2 dx yi + dx (2b-1 ) ------------------ (i) 
pi = 2 dy xi – 2 dx yi + k    ------------------ (ii) 

where  k=2 dy + dx (2b-1) 
 

Then we can calculate pi+1 in terms of pi without any xi , yi or k . 
 

pi+1 = 2 dy xi+1 – 2 dx yi+1 + k  
pi+1 = 2 dy (xi + 1) - 2 dx yi+1 + k  since xi+1= xi + 1 
pi+1 = 2 dy xi  + 2 dy- 2 dx yi+1 + k   ------------------ (iii) 
Now subtracting (ii) from (iii), we get 
pi+1 - pi = 2 dy - 2 dx (yi+1 - yi ) 
pi+1  = pi + 2 dy - 2 dx (yi+1 - yi ) 

If the next point is: (xi+1,yi) then 
 

d1<d2 => d1-d2<0  
=> pi<0  
=> pi+1= pi + 2 dy  
 

If the next point is: (xi+1,yi+1) then  
 

d1>d2 => d1-d2>0  
=> pi>0  
=> pi+1= pi + 2 dy - 2 dx  

 
The pi is our decision variable, and calculated using integer arithmetic from pre-computed 
constants and its previous value.  Now a question is remaining how to calculate initial 
value of pi. For that use equation (i) and put values (x1, y1) 

 
pi = 2 dy (x1+1) – 2 dx yi + dx (2b-1 ) 
where b = y – m x implies that 
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pi = 2 dy x1 +2 dy – 2 dx yi + dx ( 2 (y1 – mx1) -1  ) 
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1  - dx 
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1  - dx 

 
there are certain figures will cancel each other shown in same different colour 
 

pi = 2 dy  - dx 
 

Thus Bresenham's line drawing algorithm is as follows: 
dx =  x2-x1 
dy =  y2-y1  
p  =  2dy-dx 
c1 =  2dy  
c2 =  2(dy-dx) 
x  =  x1  
y  =  y1  
plot (x,y,colour) 
while (x <  x2 )  
 x++;  
 if (p < 0)  
  p = p +  c1   
 else  
  p = p +  c2   

y++  
plot (x,y,colour)  

Again, this algorithm can be easily generalized to other arrangements of the end points of 
the line segment, and for different ranges of the slope of the line. 
 
Improving performance 
 
Several techniques can be used to improve the performance of line-drawing procedures. 
These are important because line drawing is one of the fundamental primitives used by 
most of the other rendering applications. An improvement in the speed of line-drawing 
will result in an overall improvement of most graphical applications.  
 
Removing procedure calls using macros or inline code can produce improvements. 
Unrolling loops also may produce longer pieces of code, but these may run faster. 
 
The use of separate x and y coordinates can be discarded in favour of direct frame buffer 
addressing. Most algorithms can be adapted to calculate only the initial frame buffer 
address corresponding to the starting point and to replaced: 

 
X++ with Addr++  
Y++ with Addr+=XResolution  

 
Fixed point representation allows a method for performing calculations using only integer 
arithmetic, but still obtaining the accuracy of floating point values. In fixed point, the 
fraction part of a value is stored separately, in another integer:  
 

M = Mint.Mfrac  
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Mint = Int(M)  
Mfrac = Frac(M)× MaxInt  
 

Addition in fixed point representation occurs by adding fractional and integer components 
separately, and only transferring any carry-over from the fractional result to the integer 
result. The sequence could be implemented using the following two integer additions: 
ADD  Yfrac,Mfrac ; ADC  Yint,Mint  
 
Improved versions of these algorithms exist. For example the following variations exist 
on Bresenham's original algorithm: 
 
Symmetry (forward and backward simultaneously)  
Segmentation (divide into smaller identical segments - GCD(D x,D y) )  
Double step, triple step, n step. 
 
Setting a Pixel 
Initial Task: Turning on a pixel (loading the frame buffer/bit-map). Assume the simplest 
case, i.e., an 8-bit, non-interlaced graphics system. Then each byte in the frame buffer 
corresponds to a pixel in the output display. 

 

To find the address of a particular pixel (X,Y) we use the following formula: 

addr(X, Y) = addr(0,0) + Y rows * (Xm + 1) + X (all in bytes) 

addr(X,Y) = the memory address of pixel (X,Y) 

addr(0,0) = the memory address of the initial pixel (0,0) 

Number of rows = number of raster lines. 

Number of columns = number of pixels/raster line. 
 
Example: 
For a system with 640 × 480 pixel resolution, find the address of pixel X = 340, Y = 150 
addr(340, 150) = addr(0,0) + 150 * 640 (bytes/row) + 340 

= base + 96,340 is the byte location 

Graphics system usually have a command such as set_pixel (x, y) where x, y are integers. 
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Lecture No.6   Circle Drawing Techniques 

 
Circle 
A circle is the set of points in a plane that are equidistant from a 
given point O. The distance r from the center is called the 
radius, and the point O is called the center. Twice the radius is 
known as the diameter . The angle a circle subtends 
from its center is a full angle, equal to 360° or radians.  

A circle has the maximum possible area for a given perimeter, 
and the minimum possible perimeter for a given area.  

The perimeter C of a circle is called the circumference, and is given by  

     C = 2 π r 

 
Circle Drawing Techniques 
First of all for circle drawing we need to know what the input will be. Well the input will 
be one center point (x, y) and radius r. Therefore, using these two inputs there are a 
number of ways to draw a circle. They involve understanding level very simple to 
complex and reversely time complexity inefficient to efficient. We see them one by one 
giving comparative study. 
 
Circle drawing using Cartesian coordinates 
This technique uses the equation for a circle on radius r centered at (0, 0) 
given as: 
 
   x2 + y2 = r2,  
an obvious choice is to plot 
 

   y = ±  
 
 
Obviously in most of the cases the circle is not centered at (0, 0), rather there is a center 
point (xc, yc); other than (0, 0). Therefore the equation of the circle having center at point 
(xc, yc): 
   (x- xc) 2 + (y-yc)2 = r2, 
this implies that ,  
  y = yc ±  
 
Using above equation a circle can easily be drawn. The value of x varies from r-xc to r+xc. 
and y will be calculated using above formula. Using this technique a simple algorithm 
will be: 
 
Circle1 (xcenter, ycenter, radius) 
for x = radius - xcenter  to  radius + xcenter 
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y = xc +  

drawPixel (x, y) 

y = xc -  

drawPixel (x, y)  
 
This works, but is inefficient because of the 
multiplications and square root operations.  It 
also creates large gaps in the circle for values of 
x close to r as shown in the above figure. 
 
 
Circle drawing using Polar coordinates 
A better approach, to eliminate unequal spacing as shown in above figure is to calculate 
points along the circular boundary using polar coordinates r and θ. Expressing the circle 
equation in parametric polar form yields the pair of equations 
 
   x = xc + r cos θ 
   y = yc + r sin θ 
 
Using above equation circle can be plotted by calculating x and y coordinates as θ takes 
values from 0 to 360 degrees or 0 to 2π. The step size chosen for θ depends on the 
application and the display device. Larger angular separations along the circumference 
can be connected with straight-line segments to approximate the circular path. For a more 
continuous boundary on a raster display, we can set the step size at 1/r. This plots pixel 
positions that are approximately one unit apart. 
 
Now let us see how this technique can be sum up in algorithmic form. 
 
Circle2 (xcenter, ycenter, radius) 
for θ = 0 to 2π step 1/r 
 x = xc + r * cos θ 
 y = yc + r * sin θ 

drawPixel (x, y)  
 
Again this is very simple technique and also solves 
problem of unequal space but unfortunately this 
technique is still inefficient in terms of calculations 
involves especially floating point calculations. 
 
Calculations can be reduced by considering the symmetry of circles. The shape of circle 
is similar in each quadrant. We can generate the circle section in the second quadrant of 
the xy-plane by noting that the two circle sections are symmetric with respect to the y axis 
and circle sections in the third an fourth quadrants can be obtained from sections in the 
first and second quadrants by considering symmetry about the x axis. We can take this 
one step further and note that there is also symmetry between octants. Circle sections in 
adjacent octants within one quadrant are symmetric with respect to the 45o line dividing 
the two octants. These symmetry conditions are illustrated in above figure. 
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x=yx  + y  - r    = 0
22 2

 
Therefore above algorithm can be optimized by using symmetric octants. Let’s see: 
 
Circle2 (xcenter, ycenter, radius) 
for θ = 0 to π / 4 step 1/r 
 x = xc + r * cos θ 
 y = yc + r * sin θ 

DrawSymmetricPoints (xcenter, ycenter, x, y)  
 
DrawSymmeticPoints (xcenter, ycenter, x, y) 
Plot (  x + xcenter,  y + ycenter ) 
Plot (  y + xcenter,  x + ycenter ) 
Plot (  y + xcenter, -x + ycenter ) 
Plot (  x + xcenter, -y + ycenter ) 
Plot ( -x + xcenter, -y + ycenter) 
Plot ( -y + xcenter, -x + ycenter) 
Plot ( -y + xcenter,  x + ycenter) 
Plot ( -x + xcenter,  y + ycenter) 
  

 
Hence we have reduced half the calculations by considering symmetric octants of the 
circle but as we discussed earlier inefficiency is still there and that is due to the use of 
floating point calculations. In next algorithm we will try to remove this problem. 
 
Midpoint circle Algorithm 
As in the Bresenham line drawing algorithm we derive a decision parameter that helps us 
to determine whether or not to increment in the y coordinate against increment of x 
coordinate or vice versa for slope > 1. Similarly here we will try to derive decision 
parameter which can give us closest pixel position. 
Let us consider only the first octant of a circle of 
radius r centred on the origin.  We begin by plotting 
point (r, 0) and end when x < y. 
 
The decision at each step is whether to choose the 
pixel directly above the current pixel or the pixel; 
which is above and to the left (8-way stepping). 
 
Assume: 

Pi = (xi, yi)   is the current pixel. 
 Ti = (xi, yi +1)  is the pixel directly above 
 Si = (xi -1, yi +1)  is the pixel above and to the left. 
 
To apply the midpoint method, we define a circle function: 
  
 fcircle(x, y) = x2 + y2 – r2 

 
Therefore following relations can be observed: 
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Xk+1 

Yk 

Yk-1 

Xk 

X2+Y2-r2=0 

  < 0, if (x, y) is inside the circle boundary 
f circle (x, y) = 0, if (x, y) is on the circle boundary 
  > 0, if (x, y) is outside the circle boundary 
 
The circle function tests given above are performed for the 
midpoints between pixels near the circle path at each 
sampling step. Thus, the circle function is the decision 
parameter in the midpoint algorithm, and we can set up 
incremental calculations for this function as we did in the 
line algorithm. 
 
Figure given above shows the midpoint between the two candidate pixels at sampling 
position xk+1. Assuming we have just plotted the pixel at (xk, yk), we next need to 
determine whether the pixel at position (xk + 1, yk), we next need to determine whether 
the pixel at position (xk+1, yk) or the one at position (xk+1, yk-1) is closer to the circle. 
Our decision parameter is the circle function evaluated at the midpoint between these two 
pixels: 
 
  Pk = f circle ( xk + 1, yk - ½ ) 

                 Pk
 = ( xk + 1 ) 2 + ( yk - ½ ) 2 – r 2 …………………………( 1 ) 

 
If pk < 0, this midpoint is inside the circle and the pixel on scan line yk is closer to the 
circle boundary. Otherwise, the mid position is outside or on the circle boundary, and we 
select the pixel on scan-line yk-1. 
 
Successive decision parameters are obtained using incremental calculations. We obtain a 
recursive expression for the next decision parameter by evaluating the circle function at 
sampling position xk+2= xk+1+1=xk+1+1 = xk+2: 
 
  Pk+1 = f circle ( xk+1 + 1,  yk+1 - ½ ) 

Pk+1 = [ ( xk + 1 ) + 1 ] 2 + ( yk+1 - ½ ) 2 –  r 2…………………………( 2 ) 

 
Subtracting (1) from (2), we get 
  

Pk+1 - Pk = [ ( xk + 1 ) + 1 ] 2 + ( yk+1 - ½ ) 2 –  r 2 – ( xk + 1 ) 2 - ( yk - ½ ) 2 + 
r 2 

or 
Pk+1 = Pk + 2( xk + 1 ) + ( y2

k+1 - y2
k ) – ( yk+1 - yk ) + 1 

 
Where yk+1 is either yk or yk-1, depending on the sign of Pk. Therefore, if Pk < 0 or negative 
then yk+1 will be yk and the formula to calculate Pk+1 will be: 
 

Pk+1 = Pk + 2( xk + 1 ) + ( y2
k - y2

k ) – ( yk - yk ) + 1 
Pk+1 = Pk + 2( xk + 1 ) + 1 

 
Otherwise, if Pk > 0 or positive then yk+1 will be yk-1and the formula to calculate Pk+1 will 
be: 
 

Pk+1 = Pk + 2( xk + 1 ) + [ (y k -1)2
 - y2

k ] – ( yk -1- yk ) + 1 
Pk+1 = Pk + 2( xk + 1 ) + (y2

 k - 2 y k +1 - y2
k ] – ( yk -1- yk ) + 1 
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Pk+1 = Pk + 2( xk + 1 ) - 2 y k + 1 + 1 +1 
Pk+1 = Pk + 2( xk + 1 ) - 2 y k + 2 +1 
Pk+1 = Pk + 2( xk + 1 ) - 2 ( y k – 1 ) + 1 
 

Now a similar case that we observe in line algorithm is that how would starting Pk be 
evaluated. For this at the start pixel position will be ( 0, r ). Therefore, putting this value is 
equation , we get  
 

                 P0
 = ( 0 + 1 ) 2 + ( r - ½ ) 2 – r 2 

                 P0
 = 1 +  r2

  - r + ¼  – r 2 

 P0
 =  5/4 – r 

 
If radius r is specified as an integer, we can simply round p0 to:  
 

P0
 =  1 – r 

 

Since all increments are integer. Finally sum up all in the algorithm: 
 
MidpointCircle (xcenter, ycenter, radius) 
y = r;  
x = 0;  
p = 1 - r; 
do 
 DrawSymmetricPoints (xcenter,  ycenter, x, y)  
 x = x + 1 
 If p < 0 Then  
  p = p + 2 * ( x + 1 ) + 1 
 else 
  y = y - 1 
  p = p + 2 * ( x + 1 ) – 2 * ( y  - 1 ) + 1   
while ( x  <  y ) 
 
Now let us consider an example to calculate first octant of the circle using above 
algorithm; while one quarter is displayed where you can observe that exact circle is 
passing between the points calculated in a raster circle. 
 
Example: 

xcenter= 0 ycenter= 0 radius= 10 
 
 
 
 
 
 
 
 
 
 

p  x  Y 
-9  0  10 
-6  1  10 
-1  2  10 
6  3  10 
-3  4  9 
8  5  9 
5  6  8 
6  7  7 
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Lecture No.7   Ellipse and Other Curves
 
 
Ellipse 
 
An ellipse is a curve that is the locus of all points in the plane the sum of whose distances 
r1 and r2 from two fixed points F1 and F2, (the foci) 
separated by a distance of  is a given positive 
constant . This results in the two-center bipolar 
coordinate equation:  

r1 + r2 = 2a 

where a is the semi-major axis and the origin of the 
coordinate system is at one of the foci. The 
corresponding parameter b is known as the semi-
minor axis.  

The ellipse was first studied by Menaechmus, investigated by Euclid, and named by 
Apollonius. The focus and conic section 
directrix of an ellipse were considered by 
Pappus. In 1602, Kepler believed that the 
orbit of Mars was oval; he later discovered 
that it was an ellipse with the Sun at one 
focus. In fact, Kepler introduced the word 
"focus" and published his discovery in 1609. 
In 1705 Halley showed that the comet now 
named after him moved in an elliptical orbit around the Sun (MacTutor Archive). An 
ellipse rotated about its minor axis gives an oblate spheroid, while an ellipse rotated about 
its major axis gives a prolate spheroid.  

Let an ellipse lie along the x-axis and find the equation of the figure given above where 
F1 and F2 are at (-c, 0) and (c, 0). In Cartesian coordinates,  

 
 
Bring the second term to the right side and square both sides,  

 

Now solve for the square root term and simplify  

    

     
Square one final time to clear the remaining square root,  
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Grouping the x terms then gives  

 

this can be written in the simple form  

 

Defining a new constant  

 

puts the equation in the particularly simple form 

  
 
The parameter b is called the semi-minor axis by analogy with the parameter a, which is 
called the semi-major axis (assuming b < a). The fact that b as defined at right is actually 
the semi-minor axis is easily shown by letting r1 and r2 be equal. Then two right triangles 
are produced, each with hypotenuse a, base c, and height b =  a2 - c2. Since the largest 
distance along the minor axis will be achieved at this point, b is indeed the semi-minor 
axis.  

If, instead of being centered at (0, 0), the center of the ellipse is at (x0, y0), at right 
equation becomes:  

 
 
Ellipse Drawing Techniques 
Now we already understand circle 
drawing techniques. One way to 
draw ellipse is to use the following 
equation: 
 

 
 
where x0 may be replaced by xc in 
case of center other than origin and 
same in case of y. 
 
Another way is to use polar coordinates r and θ, for that we have parametric equations: 
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 x = xc + rx cos θ 
 y = yc + ry sin θ 
 
Four-way symmetry 
Symmetric considerations can be had to 
further reduce computations. An ellipse in 
standard position is symmetric between 
quadrants, but unlike a circle, it is not 
symmetric between the two octants of a 
quadrant. Thus, we must calculate pixel 
positions along the elliptical arc throughout 
one quadrant, and then we obtain positions 
in the remaining three quadrants by 
symmetry as shown in at right figure.  
 
Midpoint ellipse algorithm 
 
Consider an ellipse centered at the origin: 
 

 
 
To apply the midpoint method, we define an ellipse function: 
 
 f ellipse (x, y) = ry2x2 + rx2y2 – rx2 ry2 
 
Therefore following relations can be observed: 
 
  < 0, if (x, y) is inside the circle boundary 
f ellipse (x, y) = 0, if (x, y) is on the circle boundary 
  > 0, if (x, y) is outside the circle boundary 
 
Now as you have some idea that ellipse is different 
from circle. Therefore, a similar approach that is 
applied in circle can be applied here using some 
different sampling direction as shown in the figure 
at right. There are two regions separated in one 
octant. 
 
Therefore, idea is that in region 1 sampling will be 
at x direction; whereas y coordinate will be related 
to decision parameter. In region 2 sampling will be 
at y direction; whereas x coordinate will be related 
to decision parameter.  
 
So consider first region 1. We will start at (0, r y); we take unit steps in the x direction 
until we reach the boundary between region 1 and region 2. Then we switch to unit steps 
in the y direction over the remainder of the curve in the first quadrant. At each step, we 
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ry
2x2 + rx

2y2 – rx
2 ry

2=0 

need to test the value of the slope of the curve. The ellipse slope is calculated from 
following equation: 
 
 dy / dx = -2 ry2x2 / 2 rx2y2   
 
At the boundary region 1 and region 2, dy/ dx = -1 
and 
 
 2 rx2y2 = 2 ry2x2 

 
Therefore, we move out of region 1 whenever 
  

 2 ry2x2 >= 2 rx2y2  

 
Figure at right shows the midpoint between the two candidate pixels at sampling position 
xk + 1 in the first region. Assuming position (xk, yk) has been selected at the previous 
step; we determine the next position along the ellipse path by evaluating the decision 
parameter at this midpoint:  
 
 P1k = f ellipse ( xk + 1, yk – ½ ) 
 f ellipse (xk +1, yk – ½ ) = r2y ( xk + 1)2 + rx2 ( yk – ½ )2 – rx2 ry2 -------( 1 ) 
If pk < 0, this midpoint is inside the ellipse and the pixel on scan line yk is closer to the 
ellipse boundary. Otherwise, the mid position is outside or on the ellipse boundary, and 
we select the pixel on scan-line yk-1. 
 
Successive decision parameters are obtained using incremental calculations. We obtain a 
recursive expression for the next decision parameter by evaluating the ellipse function at 
sampling position xk+1=xk+2: 
 

fellipse (xk+1 +1, yk+1 – ½ ) = ry2 [( xk + 1) + 1 ] 2 + rx2 ( yk+1 – ½ ) 2 – rx2 
ry2  ---( 2 )  
 
Subtracting (1) from (2), and by simplification, we get 
  

Pk+11 = Pk1 + 2 ry2 ( xk + 1) + rx2 ( yk+12– yk2 ) - rx2 (yk+1 - yk ) + ry2 
 
Where yk+1 is either yk or yk-1, depending on the sign of Pk. Therefore, if Pk < 0 or negative 
then yk+1 will be yk and the formula to calculate Pk+1 will be: 
 

P1k+1 = Pk1 + 2 ry2 ( xk + 1) + rx2 ( y k2 – yk2 ) - rx2 (yk - yk ) + ry2 
 Pk+11 = Pk1 + 2 ry2 ( xk + 1 ) + ry2 

 
Otherwise, if Pk > 0 or positive then yk+1 will be yk-1and the formula to calculate Pk+1 will 
be: 
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Pk+11 = Pk1  + 2 ry2 ( xk + 1) + r2x ( (yk –1)2 – yk2 ) - rx2 (yk – 1 – yk ) + ry2  
P1k+1 = P1k + 2 r y

 2 ( x  k + 1) + r x
 2  (  – 2 y k + 1 ) - r x

 2 ( – 1 ) + r y
 2 

P1k+1 = P1k + 2 ry
2 ( x k + 1) – 2 rx

2 y k + r2
x

  + rx
2 + ry

2 
P1k+1 = P1k + 2 r y

2 ( x k + 1) – 2 r x
2 ( y k – 1 ) + r y

2 
 

Now a similar case that we observe in line algorithm is from where starting Pk will 
evaluate. For this at the start pixel position will by ( 0, ry ). Therefore, putting this value is 
equation , we get  
 

P10
 = r y

2 ( 0 + 1) 2 + r x
2 (ry – ½ ) 2 – rx

2 ry
2 

P10
 = r2

y
  + rx

2 ry
2 – r2

x
 ry + ¼ rx

2 – rx
2 ry

2 

P10
 = r2

y
  – rx

2 r y + ¼ rx
2 

 
Similarly same procedure will be adapted for region 2 and decision parameter will be 
calculated, here we are giving decision parameter and there derivation is left as an 
exercise for the students. 
 

Pk+12 = Pk2 – 2 rx2 ( yk + 1 ) + rx2  ,   
 if pk2 > 0 
   

Pk+12 = Pk2 + 2 ry2 ( xk + 1) – 2 rx2 yk + rx2  
otherwise  

 
The initial parameter for region 2 will be calculated by following formula using the last 
point calculated in region 1 as: 

 

P02 = ry2  (x0 +  ½  ) + rx2 (y0 - 1 )2 – rx2ry2 

 
Since all increments are integer. Finally sum up all in the algorithm: 
 
MidpointEllipse (xcenter, ycenter, r x, r y) 
x =0  
x =0  
 y = ry 
 do 
  DrawSymmetricPoints (xcenter,  ycenter, x, y) 
  P01 = ry2 – rx2 ry + ¼ rx2  x = x +1 

 

If p1k < 0 
  Pk+11 = Pk1 + 2 ry2 ( xk + 1 ) + ry2 else 
  Pk+11 = Pk1 + 2 ry2 ( xk + 1) – 2 rx2 ( yk– 1 ) + r2y 
   y = y -1 
 
  P02 = ry2  (x 0 +  ½  ) + rx2 (y 0 - 1 )2 – rx2 ry2 y = y -1 
  If p2k > 0 
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  Pk+12 = Pk2 – 2 rx2 ( yk + 1 ) + rx2 else 
  Pk+12 = Pk2 + 2 ry2 ( xk + 1) – 2 rx2 yk + rx2  x = x + 1 
while ( 2 ry2x2 >= 2 rx2y2 ) 

 
Other Curves 
Various curve functions are useful in object modeling, animation path specifications, 
data, function graphing, and other graphics applications. Commonly encountered curves 
include conics, trigonometric and exponential functions, probability distributions, general 
polynomials, and spline functions.  
 
Displays of these curves can be generated with methods similar to those discussed for the 
circle and ellipse. We can obtain positions along curve paths directly from explicit 
representations y = f(x) or from parametric forms. Alternatively, we could apply the 
incremental midpoint method to plot curves described with implicit functions f(x,y) = 0. 
 
Conic Sections 
A conic section is the intersection of a plane and a cone. 
 
Circle 

 

Ellipse (h)Parabola (h)Hyperbola (h) 

  

 

Ellipse (v)Parabola (v)Hyperbola (v)

 
 
The general equation for a conic section: 
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 
 
The type of section can be found from the sign of: B2-4AC 
 
If B2 - 4AC is then the curve is a... 
 < 0 ellipse, circle, point or no curve. 
 = 0 parabola, 2 parallel lines, 1 line or no curve. 
 > 0 hyperbola or 2 intersecting lines. 
 
For any of the below with a center (j, k) instead of (0, 0), replace each x term with (x-j) 
and each y term with (y-k).  
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  Circle Ellipse Parabola Hyperbola 
Equation (horiz. 
vertex): x2 + y2 = r2 x2 / a2 + y2 / b2

= 1 4px = y2 x2 / a2 - y2 / b2 = 1 

Equations of 
Asymptotes:       y = ± (b/a)x 

Equation (vert. 
vertex): x2 + y2 = r2 y2 / a2 + x2 / b2

= 1 4py = x2 y2 / a2 - x2 / b2 = 1 

Equations of 
Asymptotes:       x = ± (b/a)y 

Variables: r = circle 
radius 

a = major 
radius (= 1/2 
length major 
axis) 
b = minor 
radius (= 1/2 
length minor 
axis) 
c = distance 
center to focus

p = distance 
from vertex to 
focus (or 
directrix) 

a = 1/2 length 
major axis
b = 1/2 length 
minor axis
c = distance center 
to focus 

Eccentricity: 0   c/a c/a 
Relation to Focus: p = 0 a2 - b2 = c2 p = p a2 + b2 = c2 
Definition: is the 
locus of all points 
which meet the 
condition... 

distance to 
the origin is 
constant 

sum of 
distances to 
each focus is 
constant 

distance to 
focus = distance 
to directrix 

difference between 
distances to each 
foci is constant 

 
Hyperbola 
We begin this section with the definition of a hyperbola. A hyperbola is the set of all 
points (x, y) in the plane the difference of whose distances from two fixed points is some 
constant. The two fixed points are called the foci.  

Each hyperbola consists of two branches. The line 
segment; which connects the two foci intersects the 
hyperbola at two points, called the vertices. The line 
segment; which ends at these vertices is called the 
transverse axis and the midpoint of this line is 
called the center of the hyperbola. See figure at right 
for a sketch of a hyperbola with these pieces 
identified.  

Note that, as in the case of the ellipse, a hyperbola 
can have a vertical or horizontal orientation.  

We now turn our attention to the standard equation 
of a hyperbola. We say that the standard equation of 
a hyperbola centered at the origin is given by  

Focus 

Center 

Transverse 
Axis 

Vertex 
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if the transverse axis is horizontal, or  

 

if the transverse axis is vertical.  

Notice a very important difference 
in the notation of the equation of a 
hyperbola compared to that of the 
ellipse. We see that a always 
corresponds to the positive term in 
the equation of the ellipse. The 
relationship of a and b does not determine the orientation of the hyperbola. (Recall that 
the size of a and b was used in the section on the ellipse to determine the orientation of 
the ellipse.) In the case of the hyperbola, the variable in the ``positive'' term of the 
equation determines the orientation of the hyperbola. Hence, if the variable x is in the 
positive term of the equation, as it is in the equation 

x2/a2-y2/b2=1, 

  

 

then the hyperbola is oriented as follows:  

 

If the variable y is in the positive term of the equation, as it is in the equation  

 

then we see the following type of hyperbola:  
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Note that the vertices are always a units from the center of the hyperbola, and the distance 
c of the foci from the center of the hyperbola can be determined using a, b, and the 
following equality:  

 

We will use this relationship often, so keep it in mind.  

The next question you might ask is this: ``what happens to the equation if the center of 
the hyperbola is not (0, 0)?'' As in the case of the ellipse, if the center of the hyperbola is 
(h, k), then the equation of the hyperbola becomes  

 

if the transverse axis is horizontal, or  

 

if the transverse axis is vertical.  

A few more terms should be mentioned here before we move to some examples. First, as 
in the case of an ellipse, we say that the eccentricity of a hyperbola, denoted by e, is given 
by  

 

or we say that the eccentricity of a hyperbola is given by the ratio of the distance between 
the foci to the distance between the vertices. Now in the case of a hyperbola, the distance 
between the foci is greater than the distance between the vertices. Hence, in the case of a 
hyperbola,  

 

Recall that for the ellipse,  

 

Two final terms that we must mention are asymptotes and the conjugate axis. The two 
branches of a hyperbola are “bounded by” two straight lines, known as asymptotes. These 
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asymptotes are easily drawn once one plots the vertices and the points (h, k+b) and (h, k-
b) and draws the rectangle which goes through these four points. The line segment joining 
(h, k+b) and (h, k-b) is called the conjugate axis. The asymptotes then are simply the lines 
which go through the corners of the rectangle. 

But what are the actual equations of these asymptotes? Note that if the hyperbola is 
oriented horizontally, then the corners of this rectangle have the following coordinates:  

 

and  

 

Here I have paired these points in such a way that each asymptote goes through one pair 
of the points. Consider the first pair of points:  

 

Given two points, we can find the equation of the unique line going through the points 
using the point--slope form of the line. First, let us determine the slope of our line. We 
find this as ``change in y over change in x'' or ``rise over run''. In this case, we see that 
this slope is equal to  

 

or simply  

 

Then, we also know that the line goes through the center (h, k). Hence, by the point--
slope form of a line, we know that the equation of this asymptote is  

 

or  

 

The other asymptote in this case has a negative slope; which is given by  

 

Using the same argument, we see that this asymptote has equation  

 

What if the hyperbola is vertically oriented? Then one of the asymptote will go through 
the “corners” of the rectangle given by  
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Then the slope in this case will not be b/a but will be a/b. Hence, analogous to the work 
we just performed, we can show that the asymptotes of a vertically oriented hyperbola are 
determined by  

 

and  

 
 
Parabola 
A parabola is the set of all points (x, y) that are 
the same distance from a fixed line (called the 
directrix) and a fixed point (focus) not on the 
directrix. See figure for the view of a parabola 
and its related focus and directrix.  

Note that the graph of a parabola is similar to one branch of a hyperbola. However, you 
should realize that a parabola is not simply one branch of a hyperbola. Indeed, the 
branches of a hyperbola approach linear asymptotes, while a parabola does not do so.  

Several other terms exist which are associated with a 
parabola. The midpoint between the focus and 
directrix of the parabola is called the vertex and the 
line passing through the focus and vertex is called 
the axis of the parabola. (This is similar to the major 
axis of the ellipse and the transverse axis of the 
hyperbola.) See figure at right.  

 

Now let's move to the standard algebraic equations 
for parabolas and note the four types of parabolas 
that exist. As we discuss the four types, you 
should notice the differences in the equations 
that are related to each of the four parabolas.  

The standard form of the equation of the 
parabola with vertex at (0, 0) with the focus 
lying d units from the vertex is given by  

 

if the axis is vertical and  

 

if the axis is horizontal. See figure below for an 
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example with vertical axis and figure below for an example with horizontal axis.  

Note here that we have assumed that  

 

It is also the case that d could be negative, which flips the orientation of the parabola. 
(See Figures)  

Thus, we see that there are four different orientations of parabolas, which depend on a) 
which variable is squared (x or y) and b) whether d is positive or negative.   

One last comment before going to some 
examples; if the vertex of the parabola is at      
(h, k), then the equation of the parabola does 
change slightly. The equation of a parabola with 
vertex at (h, k) is given by  

 

if the axis is vertical and  

 
 
 
 
Rotation of Axes 
Note that in the sections at right dealing with the ellipse, hyperbola, and the parabola, the 
algebraic equations that appeared did not contain a term of the form xy. However, in our 
“Algebraic View of the Conic Sections,'' we stated that every conic section is of the form  

 

where A, B, C, D, E, and F are constants. In 
essence, all of the equations that we have studied 
have had B=0. So the question arises: ``what 
role, if any, does the xy term play in conic 
sections? If it were present, how would that 
change the geometric figure?''  

First of all, the answer is NOT that the conic 
changes from one type to another. That is to say, 
if we introduce a xy term, the conic does NOT 
change from an ellipse to a hyperbola. If we start 
with the standard equation of an ellipse and 
insert an extra term, a xy term, we still have an 
ellipse.  

So what does the xy term do? The xy term 
actually rotates the graph in the plane. For example, in the case of an ellipse, the major 
axis is no longer parallel to the x-axis or y-axis. Rather, depending on the constant in 
front of the xy term, we now have the major axis rotated. 

gy 

v 

x
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Animated Applications 
Ellipses, hyperbolas, and parabolas are particularly useful in certain animation 
applications. These curves describe orbital and other motions for objects subjected to 
gravitational, electromagnetic, or nuclear forces. Planetary orbits in the solar system, for 
example, are ellipses; and an object projected into a uniform gravitational field travels 
along a parabolic trajectory.  
 
Figure at right shows a parabolic path in standard position for gravitational field acting in 
the negative y direction. The explicit equation for the parabolic trajectory of the object 
shown can be written as: 
 

y = y0 + a (x - x0 )2 + b ( x - x0 )  
 
With constants a and b determined by the initial velocity v0 of the object and the 
acceleration g due to the uniform gravitational force. We can also describe such parabolic 
motions with parametric equations using a time parameter t, measured in seconds from 
the initial projection point: 
 
x =  x0 + vx0 t 
y = y0 + vy0 t – ½ g t 2 
 
Here vx0 and vy0 are the initial velocity components, and the value of g near the surface of 
the earth is approximately 980 cm/ sec2. Object positions along the parabolic path are 
then calculated at selected time steps. 
 
Some related real world applications are given below. 
 
Parabolic Reflectors 
One of the ``real--world'' applications 
of parabolas involves the concept of a 
3-dimensional parabolic reflector in 
which a parabola is revolved about its 
axis (the line segment joining the 
vertex and focus). The shape of car 
headlights, mirrors in reflecting 
telescopes, and television and radio 
antennae (such as the one at right) all 
utilize this property.  

In terms of a car headlight, this 
property is used to reflect the light 
rays emanating from the focus of the parabola 
(where the actual light bulb is located) in parallel 
rays.  

This property is used in a converse fashion when 
one considers parabolic antennae. Here, all 
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incoming rays parallel to the axis of the parabola are reflected through the focus.  
 
Elliptical Orbits 
At one time, it was thought that the planets in our solar system revolve around the sun in 
a circular orbit. It was later discovered, however, that the orbits are not circular, but were 
actually very round elliptical shapes. (Recall the discussion of the eccentricity of an 
ellipse mentioned at right.) The eccentricity of the orbit of the Earth around the sun is 
approximately 0.0167, a fairly small number. Pluto's orbit has the highest eccentricity of 
all the planets in our solar system at 0.2481. Still, this is not a very large value.  

As a matter of fact, the sun acts as one of the foci in the ellipse. This phenomenon was 
first noted by Apollonius in the second century B.C. Kepler later studied this in a more 
rigorous fashion and developed the scientific view of planetary motion.  
 
Whispering Galleries 
In rooms whose ceilings are elliptical, a sound made at one focus of the ellipse will be 
reflected to the other focus (across the room), allowing people standing at the two foci to 
hear one another very clearly. This has been called the ``whispering gallery'' effect and 
has been used by many in the design of special rooms. In particular, St. Paul's Cathedral 
and one of the rooms at the United States Capitol were built with this in mind. 
 
Polynomials and Spline Curves 
A polynomial function of nth degree in x is defined as 
 
 y =   a k x k 

 
y = a 0 x 0 + a 1 x 1 + ----------------+ a n-1 x n-1 + a n x n 

 
Where n is a nonnegative integer and the a k are constants, with a n not equal to 0. We get 
a quadratic when n = 2; a cubic polynomial when n = 3; a quadratic when n = 4; and so 
forth. And obviously a straight line when n = 1. Polynomials are useful in a number of 
graphics applications, including the design of object shapes, the specifications of 
animation paths, and the graphing of data trends in a discrete set of data points. 
 
Designing object shapes or motion paths is typically done by specifying a few points to 
define the general curve contour, then fitting the selected points with a polynomial. One 
way to accomplish the curve fitting is to construct a cubic polynomial curve section 
between each pair of specified points. Each curve section is then described in parametric 
form as 
 

x = a x0 + a x1 u + a x2 u 2 + a x3 u 3 
y = a y0 + a y1 u + a y2 u 2 + a y3 u 3 

Where parameter u varies over the interval 0 to1.  A curve is shown below calculated 
using at right equations. 
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Continuous curves that are formed with polynomial pieces are called spline curves, or 
simply splines. Spline is a detailed topic; which will be discussed later in 3 dimensions.
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Lecture No.8   Filled-Area Primitives-I
 
So far we have covered some output primitives that is drawing primitives like point, line, 
circle, ellipse and some other variations of curves. Also we can draw certain other shapes 
with the combinations of lines like triangle, rectangle, square and other polygons (we will 
have some discussion on polygons coming ahead). Also we can draw some shapes using 
mixture of lines and curves or circles etc. So we are able to draw outline/ sketch of certain 
models but need is there to make a solid model. 
Therefore, in this section we will see what are filled area primitives and what are the 
different issues related to them. There are two basic approaches to area filling on raster 
systems. One way is to draw straight lines between the edges of polygon called scan-line 
polygon filling. As said earlier there are several issues related to scan line polygon, which 
we will discuss in detail. Second way is to start from an interior point and paint outward 
from this point till we reach the boundary called boundary-fill. A slight variation of this 
technique is used to fill an area specified by cluster (having no specific boundary). The 
technique is called flood-fill and having almost same strategy that is to start from an 
interior point and start painting outward from this point till the end of cluster. 
Now having an idea we will try to see each of these one by one, starting from scan-line 
polygon filling.  
 
Scan-line Polygon Fill 
Before we actually start discussion on scan-line polygon filling technique, it is useful to 
discuss what is polygon? Besides polygon definition we will discuss the following topics 
one by one to have a good understanding of the concept and its implementation.  

 Polygon Definition  

 Filled vs. Unfilled Polygons  

 Parity Definition  

 Scan-Line Polygon Fill Algorithm  

 Special Cases Handled By the Fill  

 Polygon Fill Example   
Polygon 
A polygon can be defined as a shape that is formed by line segments that are placed end 
to end, creating a continuous closed path. Polygons can be divided into three basic types: 
convex, concave, and complex.  

I. Convex polygons are the simplest type of polygon to fill. To determine 
whether or not a polygon is convex, ask the following question:  

Does a straight line connecting ANY two points that are inside the polygon intersect any 
edges of the polygon? 
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If the answer is no, the polygon is convex. This means that for any scan-line, the scan-line 
will cross at most two polygon edges (not counting any horizontal edges). Convex 
polygon edges also do not intersect each other.  

II. Concave polygons are a superset of convex polygons, having fewer 
restrictions than convex polygons. The line connecting any two points 
that lie inside the polygon may intersect more than two edges of the 
polygon. Thus, more than two edges may intersect any scan line that 
passes through the polygon. The polygon edges may also touch each 
other, but they may not cross one another. 

  

Complex polygons are just what their name suggests: complex. Complex polygons are 
basically concave polygons that may have self-intersecting edges. The complexity arises 
from distinguishing which side is inside the polygon when filling it. 

  
 

Difference between Filled and Unfilled Polygon  
When an unfilled polygon is rendered, only the points on the perimeter of the polygon are 
drawn. Examples of unfilled polygons are shown in the next page.  

However, when a polygon is filled, the interior of the polygon must be considered. All of 
the pixels within the boundaries of the polygon must be set to the specified color or 
pattern. Here, we deal only with solid colors. The following figure shows the difference 
between filled and unfilled polygons.  
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In order to determine which pixels are inside the polygon, the odd-parity rule is used 
within the scan-line polygon fill algorithm. This is discussed next. 
Parity 
What is parity? Parity is a concept used to determine which pixels lie within a polygon, 
i.e. which pixels should be filled for a given polygon.  

The Underlying Principle: Conceptually, the odd parity test entails drawing a line 
segment from any point that lies outside the polygon to a point P that we wish to 
determine whether it is inside or outside of the polygon. Count the number of edges that 
the line crosses. If the number of polygon edges crossed is odd, then P lies within the 
polygon. Similarly, if the number of edges is even, then P lies outside of the polygon. 
There are special ways of counting the edges when the line crosses a vertex. This will be 
discussed in the algorithm section. Examples of counting parity can be seen in the 
following demonstration.  

    
Using the Odd Parity Test in the Polygon Fill Algorithm 

The odd parity method creates a problem: How do we determine whether a pixel lies 
outside of the polygon to test for an inside one, if we cannot determine whether one lies 
within or outside of the polygon in the first place? If we assume our polygon lies entirely 
within our scene, then the edge of our drawing surface lies outside of the polygon.  

Furthermore, it would not be very efficient to check each point on our drawing surface to 
see if it lies within the polygon and, therefore, needs to be colored.  

So, we can take advantage of the fact that for each scan-line we begin with even parity; 
we have NOT crossed any polygon edges yet. Then as we go from left to right across our 
scan line, we will continue to have even parity (i.e., will not use the fill color) until we 
cross the first polygon edge. Now our parity has changed to odd and we will start using 
the fill color.  

How long will we continue to use the fill color? Well, our parity won't change until we 
cross the next edge. Therefore, we want to color all of the pixels from when we crossed 
the first edge until we cross the next one. Then the parity will become even again.  
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So, you can see if we have a sorted list of x-intersections of all of the polygon edges with 
the scan line, we can simply draw from the first x to the second, the third to the forth and 
so on. 
Polygon Filling 
In order to fill a polygon, we do not want to have to determine the type of polygon that 
we are filling. The easiest way to avoid this situation is to use an algorithm that works for 
all three types of polygons. Since both convex and concave polygons are subsets of the 
complex type, using an algorithm that will work for complex polygon filling should be 
sufficient for all three types. The scan-line polygon fill algorithm, which employs the 
odd/even parity concept previously discussed, works for complex polygon filling.  

Reminder: The basic concept of the scan-line algorithm is to draw points from edges of 
odd parity to even parity on each scan-line.  

b) What is a scan-line?  

A scan-line is a line of constant y value, i.e., y=c, where c lies within our drawing region, 
e.g., the window on our computer screen.  

The scan-line algorithm is outlined next.  
Algorithm 
When filling a polygon, you will most likely just have a set of vertices, indicating the x 
and y Cartesian coordinates of each vertex of the polygon. The following steps should be 
taken to turn your set of vertices into a filled polygon.  

1. Initializing All of the Edges:  

The first thing that needs to be done is determine how the polygon's vertices are related. 
The all_edges table will hold this information.  

Each adjacent set of vertices (the first and second, second and 
third, similarly last and first) defines an edge. In above figure 
vertices are shown by small lines and edges are numbered from 
1 to 9 each between successive vertices. 

For each edge, the following information needs to be kept in a 
table: 

1. The minimum y value of the two vertices  

2. The maximum y value of the two vertices  

3. The x value associated with the minimum y value 

4. The slope of the edge  

The slope of the edge can be calculated from the formula for a line:  

y = mx + b;  

where m = slope,   b = y-intercept,  
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y0 = maximum y value,  

y1 = minimum y value,  

x0 = maximum x value,  

x1 = minimum x value The formula for the slope is as follows:  

m = (y0 - y1) / (x0 - x1).  

For example, the edge values may be kept as follows, where N is equal to the total 
number of edges - 1 (starting from 0) and each index into the all_edges array contains a 
pointer to the array of edge values.  

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  16 20 10 1.5 

  - - - - 

  - - - - 

N  10 16 28 0 

Table:  All_edges 

2. Initializing the Global Edge Table:  

The global edge table will be used to keep track of the edges that are still needed to 
complete the polygon. Since we will fill the edges from bottom to top and left to right. To 
do this, the global edge table should be inserted with edges grouped by increasing 
minimum y values. Edges with the same minimum y values are sorted on minimum x 
values as follows:  

1. Place the first edge with a slope that is not equal to zero in the global edge table.  

2. If the slope of the edge is zero, do not add that edge to the global edge table.  

3. For every other edge, start at index 0 and increase the index of the global edge table 
once each time the current edge's y value is greater than that of the edge at the current 
index in the global edge table.  

Next, Increase the index to the global edge table once each time the current edge's x value 
is greater than and the y value is less than or equal to that of the edge at the current index 
in the global edge table.  

If the index, at any time, is equal to the number of edges currently in the global edge 
table, do not increase the index.  

Place the edge information for minimum y value, maximum y value, x value, and 1/m in 
the global edge table at the index.  
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The global edge table should now contain all of the edge information necessary to fill the 
polygon in order of increasing minimum y and x values.  

3. Initializing Parity  

The initial parity is even since no edges have been crossed yet.  

4. Initializing the Scan-Line  

The initial scan-line is equal to the lowest y value for all of the global edges. Since the 
global edge table is sorted, the scan-line is the minimum y value of the first entry in this 
table.  

5. Initializing the Active Edge Table  

The active edge table will be used to keep track of the edges that are intersected by the 
current scan-line. This should also contain ordered edges. This is initially set up as 
follows:  

Since the global edge table is ordered on minimum y and x values, search, in order, 
through the global edge table and, for each edge found having a minimum y value equal 
to the current scan-line, append the edge information for the maximum y value, x value, 
and 1/m to the active edge table. Do this until an edge is found with a minimum y value 
greater than the scan line value. The active edge table will now contain ordered edges of 
those edges that are being filled as such:  

Index  Y-max X-val 1/m 

0  16 10 0 

1  20 10 1.5 

  - - - 

  - - - 

N  16 28 0 

Active 

6. Filling the Polygon  

Filling the polygon involves deciding whether or not to draw pixels, adding to and 
removing edges from the active edge table, and updating x values for the next scan-line.  

Starting with the initial scan-line, until the active edge table is empty, do the following:  

1. Draw all pixels from the x value of odd to the x value of even parity edge pairs.  

2. Increase the scan-line by 1.  

3. Remove any edges from the active edge table for which the maximum y value is equal 
to the scan line.  
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4. Update the x value for each edge in the active edge table using the formula x1 = x0 + 
1/m. (This is based on the line formula and the fact that the next scan-line equals the 
old scan-line plus one.)  

5. Remove any edges from the global edge table for which the minimum y value is equal 
to the scan-line and place them in the active edge table.  

6. Reorder the edges in the active edge table according to increasing x value. This is 
done in case edges have crossed.  

Special Cases 
There are some special cases, the scan-line polygon fill algorithm covers these cases, but 
you may not understand how or why. The following will explain the handling of special 
cases to the algorithm.  

1. Horizontal Edges:  

Here we follow the minimum y value rule during scan-line polygon fill. If the edge is at 
the minimum y value for all edges, it is drawn. Otherwise, if the edge is at the maximum 
y value for any edge, we do not draw it. (See the next section containing information 
about top vs. bottom edges.)  

This is easily done in the scan-line polygon fill implementation. Horizontal edges are 
removed from the edge table completely.  

Question arises that how horizontal lines are are filled then? Since each horizontal line 
meets exactly two other edge end-points on the scan-line, the algorithm will allow a fill of 
the pixels between those two end-point vertices when filling on the scan-line which the 
horizontal line is on, if it meets the top vs. bottom edge criteria.  

 

--> --> 

As can be seen above, if we start with a polygon with horizontal edges, we can remove 
the horizontal edges from the global edge table. The two endpoints of the edge will still 
exist and a line will be drawn between the lower edges following the scan-line polygon 
fill algorithm. (The blue arrowed line is indicating the scan-line for the bottom horizontal 
edge.)  

2. Bottom and Left Edges vs. Top and Right Edges:  

If polygons, having at least one overlapping edge the other, were filled completely from 
edge to edge, these polygons would appear to overlap and/or be distorted. This would be 
especially noticeable for polygons in which edges have limited space between them.  

In order to correct for this phenomenon, our algorithm does not allow fills of the right or 
top edges of polygons. This distortion problem could also be corrected by not drawing 
either the left or right edges and not drawing either the top or bottom edges of the 
polygon. Either way, a consistent method should be used with all polygons. If some 
polygons are filled with the left and bottom edges and others with the bottom and right 
edges, this problem will still occur.  



8-Filled-Area Primitives-I                                                                                                                             VU       
 

 
© Copyright Virtual University of Pakistan 

 

87

--> 

 
As can be seen above, if we remove the right and top edges from both polygons, the 
polygons no longer appear to be different shapes. For polygons with more overlap 
than just one edge, the polygons will still appear to overlap as was meant to happen.  

3. How do we deal with two edges meeting at a vertex when counting parity? This is a 
scenario which needs to be accounted for in one of the following ways:  

1.  

When dealing with two edges; which meet at a vertex and for both edges the vertex is the 
minimum point, the pixel is drawn and is counted twice for parity.  

Essentially, the following occurs. In the scan-line polygon fill algorithm, the vertex is 
drawn for the first edge, since it is a minimum value for that edge, but not for the second 
edge, since it is a right edge and right edges are not drawn in the scan-line fill algorithm. 
The parity is increased once for the first edge and again for the second edge.  

2.  

When dealing with two edges; which meet at a vertex and for both edges the vertex is the 
maximum point, the pixel is not drawn and is counted twice for parity.  

Basically, this occurs because the vertex is not drawn for the first edge, since it is a 
maximum point for that edge, and parity is increased. The vertex is then not drawn for the 
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second edge, since it is a right edge, and parity is The point should not be drawn since 
maximum y values for edges are not drawn in the scan-line polygon fill implementation.  

3. When dealing with two edges; which meet at a vertex and for one edge the vertex is 
the maximum point and for the other edge the vertex is the minimum point, we must also 
consider whether the edges are left or right edges. Two edges meeting in such a way can 
be thought of as one edge; which is "bent".  

 

If the edges are on the left side of the polygon, the pixel is drawn and is counted once 
for parity purposes. This is due to the fact that left edges are drawn in the scan-line 
polygon fill implementation. The vertex is drawn just once for the edge; which has this 
vertex as its minimum point. Parity is incremented just once for this "bent edge".  

4.  

If both edges are on the right, the pixel is not drawn and is counted just once for parity 
purposes. This is due to the fact that right edges are not drawn in the scan-line polygon 
fill implementation.  
A Simple Example 
Just to reiterate the 
algorithm, the following 
simple example of scan-
line polygon filling will 
be outlined. Initially, 
each vertex of the 
polygon is given in the 
form of (x, y) and is in 
an ordered array as 
such:  

Ordered Vertices 

We will now walk through the steps of the algorithm to fill in the polygon:  

 

0 (10, 10) 

1 (10, 16) 

2 (16, 20) 

3 (28, 10) 

4 (28, 16) 

5 (22, 10) 
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1. Initializing All of the Edges:  

We want to determine the minimum y value, maximum y value, x value, and 1/m for each 
edge and keep them in the all_edges table. We determine these values for the first edge as 
follows:  

Y-min: Since the first edge consists of the first and second vertex in the array, we use the 
y values of those vertices to choose the lesser y value. In this case it is 10.  

Y-max: In the first edge, the greatest y value is 16.  

X-val: Since the x value associated with the vertex with the highest y value is 10, 10 is 
the x value for this edge.  

1/m: Using the given formula, we get (10-10)/ (16-10) for 1/m.  

The edge value results are in the form of Y-min, Y-max, X-val, and Slope for each edge 
array pointed to in the all_edges table. As a result of calculating all edge values, we get 
the following in the all_edges table.  

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  16 20 10 1.5 

2  10 20 28 -1.2 

3  10 16 28 0 

4  10 16 22 1 

5  10 10 10 Inf 

Table:  All_edges 

2. Initializing the Global Edge Table:  

We want to place all the edges in the global edge table in increasing y and x values, as 
long as slope is not equal to zero. For the first edge, the slope is not zero so it is placed in 
the global edge table at index=0.  

 

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

Table:  global 

For the second edge, the slope is not zero and the minimum y value is greater than that at 
zero, so it is placed in the global edge table at index=1.  

 



8-Filled-Area Primitives-I                                                                                                                             VU       
 

 
© Copyright Virtual University of Pakistan 

 

90

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  16 20 10 1.5 

Table:  global 

For the third edge, the slope is not zero and the minimum y value is equal the edge's at 
index zero and the x value is greater than that at index 0, so the index is increased to 1. 
Since the third edge has a lesser minimum y value than the edge at index 2 of the global 
edge table, the index for the third edge is not increased again. The third edge is placed in 
the global edge table at index=1. 

  

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  10 20 28 -1.2 

2  16 20 10 1.5 

Table:  global 

We continue this process until we have the following:  

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  10 16 22 1 

2  10 16 28 0 

3  10 20 28 -1.2 

4  16 20 10 1.5 

Table:  global 

Notice that the global edge table has only five edges and the all_edges table has six. This 
is due to the fact that the last edge has a slope of zero and, therefore, is not placed in the 
global edge table.  

3. Initializing Parity  

Parity is initially set to even.  

4. Initializing the Scan-Line  

Since the lowest y value in the global edge table is 10, we can safely choose 10 as our 
initial scan-line.  
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5. Initializing the Active Edge Table  

Since our scan-line value is 10, we choose all edges which have a minimum y value of 10 
to move to our active edge table. This results in the following.  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 22 1  

2  16 28 0  

3  20 28 -1.2  

Table:  active       Table:  global 

6. Filling the Polygon  

Starting at the point (0, 10), which is on our scan-line and outside of the polygon, will 
want to decide which points to draw for each scan-line.  

1. Scan-line = 10:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=22. Parity is then changed to even. The next 
edge is reached at x=28 and the point is drawn once on this scan-line due to the special 
parity case. We are now done with this scan-line. The polygon is now filled as follows:  
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First, we update the x values in the active edge table using the formula x1 = x0 + 1/m to 
get the following:  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 23 1  

2  16 28 0  

3  20 26.8 -1.2  

Table:  active       Table:  global 

The edges then need to be reordered since the edge at index 3 of the active edge table has 
a lesser x value than that of the edge at index 2. Upon reordering, we get:  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 23 1  

2  16 26.8 -1.2  

3  20 28 0  

Table:  active       Table:  global 

2. Scan-line = 11:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=23. Parity is then changed to even. The next 
edge is reached at x=27 and parity is changed to odd. The points are then drawn until the 
next edge is reached at x=28. We are now done with this scan-line. The polygon is now 
filled as follows:  

 

Upon updating the x values, the edge tables are as follows:  
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Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 24 1  

2  16 25.6 -1.2  

3  20 28 0  

Table:  active       Table:  global 

It can be seen that no reordering of edges is needed at this time.  

3. Scan-line = 12:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=24. Parity is then changed to even. The next 
edge is reached at x=26 and parity is changed to odd. The points are then drawn until the 
next edge is reached at x=28. We are now done with this scan-line.  The polygon is now 
filled as follows:  

 

Updating the x values in the active edge table gives us:  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 25 1  

2  16 24.4 -1.2  

3  20 28 0  

Table:  active       Table:  global 

We can see that the active edges need to be reordered since the x value of 24.4 at index 2 
is less than the x value of 25 at index 1. Reordering produces the following:  
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Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 24.4 1  

2  16 25 0  

3  20 28 -1.2  

Table:  active       Table:  global 

4. Scan-line = 13:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=25 Parity is then changed to even. The next 
edge is reached at x=25 and parity is changed to odd. The points are then drawn until the 
next edge is reached at x=28. We are now done with this scan-line. The polygon is now 
filled as follows:  

 

Upon updating the x values for the active edge table, we can see that the edges do not 
need to be reordered.  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 23.2 1  

2  16 26 0  

3  20 28 -1.2  

Table:  active       Table:  global 

5. Scan-line = 14:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=24. Parity is then changed to even. The next 
edge is reached at x=26 and parity is changed to odd. The points are then drawn until the 
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next edge is reached at x=28. We are now done with this scan-line. The polygon is now 
filled as follows:  

 

Upon updating the x values for the active edge table, we can see that the edges still do not 
need to be reordered.  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 22 -1.2  

2  16 27 1  

3  20 28 0  

Table:  active       Table:  global 

6. Scan-line = 15:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=22. Parity is then changed to even. The next 
edge is reached at x=27 and parity is changed to odd. The points are then drawn until the 
next edge is reached at x=28. We are now done with this scan-line. The polygon is now 
filled as follows:  
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Since the maximum y value is equal to the next scan-line for the edges at indices 0, 2, and 
3, we remove them from the active edge table. This leaves us with the following:  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  20 22 -1.2  0  16 20 10 1.5 

Table:  active       Table:  global 

We then need to update the x values for all remaining edges.  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  20 20.8 -1.2  0  16 20 10 1.5 

Table:  active       Table:  global 

Now we can add the last edge from the global edge table to the active edge table since its 
minimum y value is equal to the next scan-line. The active edge table now looks as 
follows (the global edge table is now empty):  

Index  Y-
max 

X-
val 

1/m 

0  20 20.8 -1.2 

1  20 10 1.5 

Table:  active 

These edges obviously need to be reordered. After reordering, the active edge table 
contains the following:  

Index  Y-
max 

X-
val 

1/m 

0  20 10 1.5 

1  20 20.8 -1.2 

Table:  active 

7. Scan-line = 16:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is reached at x=21. We are now done with this scan-line. The 
polygon is now filled as follows:  
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The x values are updated and the following is obtained:  

Index  Y-
max 

X-
val 

1/m 

0  20 11.5 1.5 

1  20 19.6 -1.2 

Table:  active 

8. Scan-line = 17:  

Once the first edge is encountered at x=12, parity = odd. All points are drawn from this 
point until the next edge is reached at x=20. We are now done with this scan-line. The 
polygon is now filled as follows:  

 

We update the x values and obtain:  

Index  Y-
max 

X-
val 

1/m 

0  20 13 1.5 

1  20 18.4 -1.2 

Table:  active 

9. Scan-line = 18:  
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Once the first edge is encountered at x=13, parity = odd. All points are drawn from this 
point until the next edge is reached at x=19. We are now done with this scan-line. The 
polygon is now filled as follows:  

 

Upon updating the x values we get:  

Index  Y-
max 

X-
val 

1/m 

0  20 14.5 1.5 

1  20 17.2 -1.2 

Table:  active 

10. Scan-line = 19:  

Once the first edge is encountered at x=15, parity = odd. All points are drawn from this 
point until the next edge is reached at x=18. We are now done with this scan-line. Since 
the maximum y value for both edges in the active edge table is equal to the next scan-line, 
we remove them. The active edge table is now empty and we are now done.  

The polygon is now filled as follows:  

 

Now that we have filled the polygon, let's see what it looks like to the human eye:  
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Lecture No.9   Filled-Area Primitives-II 

  
Boundary fill 
Another important class of area-filling algorithms starts at a point known to be inside a 
figure and starts filling in the figure outward from the point. Using these algorithms a 
graphic artist may sketch the outline of a figure and then select a color or pattern with 
which to fill it. The actual filling process begins when a point inside the figure is selected. 
These routines are like the paint-scan function seen in common interactive paint 
packages.  
The first such method that we will discuss is called the boundary-fill algorithm. The 
boundary-fill method requires the coordinates of a starting point, a fill color, and a 
boundary color as arguments.  
 
Boundary fill algorithm: 
The Boundary fill algorithm performs the following steps: 
Check the pixel for boundary color 
Check the pixel for fill color 
Set the pixel in fill color 
Run the process for neighbors 
 
The pseudo code for Boundary fill algorithm can be written as: 
    boundaryFill (x, y, fillColor, boundaryColor) 
     if ((x < 0) || (x >= width))  
    return 
 if ((y < 0) || (y >= height))  
    return 
 current = GetPixel(x, y) 
 if ((current != boundaryColor) && (current != fillColor)) 
 setPixel(fillColor, x, y) 
 boundaryFill (x+1, y, fillColor, boundaryColor) 
 boundaryFill (x, y+1, fillColor, boundaryColor) 
 boundaryFill (x-1, y, fillColor, boundaryColor) 
 boundaryFill (x, y-1, fillColor, boundaryColor) 
 
Note that this is a recursive routine. Each invocation of boundaryFill () may call itself 
four more times.  
The logic of this routine is very simple. If we are not either on a boundary or already 
filled we first fill our point, and then tell our neighbors to fill themselves. 
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Process of Boundary Fill Algorithm 
 
By the way, sometimes the boundary fill algorithm doesn't work. Can you think of such a 
case?  
 
Flood Fill  
Sometimes we need an area fill algorithm that replaces all connected pixels of a selected 
color with a fill color.  
The flood-fill algorithm does exactly that.  
Flood-fill algorithm 
An area fill algorithm that replaces all connected pixels of a selected color with a fill 
color.  

 
Before Applying Flood-fill algorithm (Light color) 
 

 
After Applying Flood-fill algorithm (Dark color) 
 
Flood-fill algorithm in action 
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The pseudo code for Flood fill algorithm can be written as: 
    public void floodFill(x, y, fillColor, oldColor) 
     
        if ((x < 0) || (x >= width))  
    return 
        if ((y < 0) || (y >= height))  
    return 
        if ( getPixel (x, y) == oldColor)  
  
            setPixel (fillColor, x, y) 
            floodFill (x+1, y, fillColor, oldColor) 
            floodFill (x, y+1, fillColor, oldColor) 
            floodFill (x-1, y, fillColor, oldColor) 
            floodFill (x, y-1, fillColor, oldColor) 
         
     
It's a little awkward to kick off a flood fill algorithm because it requires that the old color 
must be read before it is invoked. The following implementation overcomes this 
limitation, and it is also somewhat faster, a little bit longer. The additional speed comes 
from only pushing three directions onto the stack each time instead of four. 
    fillFast (x, y, fillColor) 
        if ((x < 0) || (x >=width)) return 
        if ((y < 0) || (y >=height)) return 
        int oldColor = getPixel (x, y) 
        if ( oldColor == fill ) return 
        setPixel (fillColor, x, y) 
        fillEast (x+1, y, fillColor, oldColor) 
        fillSouth (x, y+1, fillColor, oldColor) 
        fillWest (x-1, y, fillColor, oldColor) 
        fillNorth (x, y-1, fillColor, oldColor) 
     
    fillEast (x, y, fillColor, oldColor) 
        if (x >= width) return 
        if ( getPixel(x, y) == oldColor)  
            setPixel( fillColor, x, y) 
            fillEast (x+1, y, fillColor, oldColor) 
            fillSouth (x, y+1, fillColor, oldColor) 
            fillNorth (x, y-1, fillColor, oldColor) 
 
    fillSouth(x, y, fillColor, oldColor) 
        if (y >=height) return 
        if (getPixel (x, y) == oldColor)  
            setPixel (fillColor, x, y) 
            fillEast (x+1, y, fillColor, oldColor) 
            fillSouth (x, y+1, fillColor, oldColor) 
            fillWest (x-1, y, fillColor, oldColor) 
         
    fillWest(x, y, fillColor, oldColor) 
    { 
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        if (x < 0) return 
        if (getPixel (x, y) == oldColor) 
            setPixel (fillColor, x, y) 
            fillSouth (x, y+1, fillColor, oldColor) 
            fillWest (x-1, y, fillColor, oldColor) 
            fillNorth (x, y-1, fillColor, oldColor) 
      
    fillNorth (x, y, fill, old) 
        if (y < 0) return 
        if (getPixel (x, y) == oldColor)  
            setPixel (fill, x, y) 
            fillEast (x+1, y, fillColor, oldColor) 
            fillWest (x-1, y, fillColor, oldColor) 
            fillNorth (x, y-1, fillColor, oldColor) 
         
 
 
A final consideration when writing an area-fill algorithm is the size and connectivity of 
the neighborhood around a given pixel.  
 

 
 
The eight-connected neighborhood is able to get into nooks and crannies that an 
algorithm based on a four-connected neighborhood cannot.  
 
Here's the code for an eight-connected flood fill.  
    floodFill8 (x, y, fill, old)     
        if ((x < 0) || (x >=width)) return 
        if ((y < 0) || (y >=height)) return 
        if (getPixel (x, y) == oldColor)  
            setPixel (fill, x, y); 
            floodFill8 (x+1, y, fillColor, oldColor) 
            floodFill8 (x, y+1, fillColor, oldColor) 
            floodFill8 (x-1, y, fillColor, oldColor) 
            floodFill8 (x, y-1, fillColor, oldColor) 
            floodFill8 (x+1, y+1, fillColor, oldColor) 
            floodFill8 (x-1, y+1, fillColor, oldColor) 
            floodFill8 (x-1, y-1, fillColor, oldColor) 
            floodFill8 (x+1, y-1, fillColor, oldColor) 
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Lecture No.10   Mathematics Fundamentals 
 
 
Matrices and Simple Matrix Operations 
In many fields matrices are used to represent objects and operations on those objects. In 
computer graphics matrices are heavily used especially their major role is in case of 
transformations (we will discuss in very next lecture), but not only transformation there 
are many areas where we use matrices and we will see in what way matrices help us. 
Anyhow today we are going to discuss matrix and their operation so that we will not face 
any problem using matrices in coming lectures and in later lectures. Today we will cover 
following topics:  

What a Matrix is?  
Dimensions of a Matrix  
Elements of a Matrix  
Matrix Addition 
Zero Matrix 
Matrix Negation 
Matrix Subtraction 
Scalar multiplication of a matrix 
The transpose of a matrix 
 

Definition of Matrix 
A matrix is a collection of numbers arranged into a fixed number of rows and columns. 
Usually the numbers are real numbers. In general, matrices can contain complex numbers 
but we won't see those here. Here is an example of a matrix with three rows and three 
columns:  

 
The top row is row 1. The leftmost column is column 1. This matrix is a 3x3 matrix 
because it has three rows and three columns. In describing matrices, the format is:  
rows X columns  
Each number that makes up a matrix is called an element of the matrix. The elements in a 
matrix have specific locations.  

The upper left corner of the matrix is row 1 column 1. In the above matrix the element at 
row 1 column 1 is the value 1. The element at row 2 columns 3 is the value 4.6.  

 
Matrix Dimensions 
The numbers of rows and columns of a matrix are called its dimensions. Here is a matrix 
with three rows and two columns:  
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Sometimes the dimensions are written off to the side of the matrix, as in the above matrix. 
But this is just a little reminder and not actually part of the matrix. Here is a matrix with 
different dimensions. It has two rows and three columns. This is a different "data type" 
than the previous matrix. 

 

 
 
Question: What do you suppose a square matrix is? Here is an example: 

 
 
Answer: The number of rows == the number of columns 
 
Square Matrix 
In a square matrix the number of rows equals the number of columns. In computer 
graphics, square matrices are used for transformations.  
 
A column matrix consists of a single column. It is a N x 1 matrix. These notes, and most 
computer graphics texts, use column matrices to represent geometrical vectors. At left is a 
4 x 1 column matrix. A row matrix consists of a single row. 
 
A column matrix is also called column vector and call a row matrix a row vector.  
 
Question: What are square matrices used for? 
Answer: Square matrices are used (in computer graphics) to represent geometric 
transformations. 
 
Names for Matrices 
Try to remember that matrix starts from rows never from columns so if order of matrix is 
3*2 that means there are three rows and two columns. A matrix can be given a name. In 
printed text, the name for a matrix is usually a capital letter in bold face, like A or M. 
Sometimes as a reminder the dimensions are written to the right of the letter, as in B3x3.  
The elements of a matrix also have names, usually a lowercase letter the same as the 
matrix name, with the position of the element written as a subscript. So, for example, the 
3x3 matrix A might be written as:  
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Sometimes you write A = [aij] to say that the elements of matrix A are named aij.  
Question: (Thought Question:) If two matrices contain the same numbers as elements, are 
the two matrices equal to each other?  
Answer: No, to be equal, two matrices must have the same dimensions, and must have the 
same values in the same positions.  
 
Matrix Equality 
For two matrices to be equal, they must have  
The same dimensions.  
Corresponding elements must be equal.  
In other words, say that An x m = [aij] and that Bp x q = [bij].  
Then A = B if and only if n=p, m=q, and aij=bij for all i and j in range.  
 

 
 
Here are two matrices which are not equal even though they have the same elements.  
 

 
 
Matrix Addition 
If two matrices have the same number of rows and same number of columns, then the 
matrix sum can be computed:  
 
If A is an MxN matrix, and B is also an MxN matrix, then their sum is an MxN matrix 
formed by adding corresponding elements of A and B  
Here is an example of this:  
 

 
 
Of course, in most practical situations the elements of the matrices are real numbers with 
decimal fractions, not the small integers often used in examples.  
 
Question: What 3x2 matrix could be added to a second 3x2 matrix without changing that 
second matrix?  
 
Answer: The 3x2 matrix that has all its elements zero. 
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Zero Matrix 
A zero matrix is one; which has all its elements zero. Here is a 3x3 zero matrix:  

 
The name of a zero matrix is a boldface zero: 0, although sometimes people forget to 
make it bold face. Here is an interesting problem:  

 
 
Question: Form the above sum. No electronic calculators allowed! 
Answer: Of course, the sum is the same as the non-zero matrix. 
 
Rules for Matrix Addition 
You should be happy with the following rules of matrix addition. In each rule, the 
matrices are assumed to all have the same dimensions.  
A + B = B + A  
A + 0 = 0 + A = A  
0 + 0 = 0  
These look the same as some rules for addition of real numbers. (Warning!! Not all rules 
for matrix math look the same as for real number math.)  
The first rule says that matrix addition is commutative. This is because ordinary addition 
is being done on the corresponding elements of the two matrices, and ordinary (real) 
addition is commutative:  

 
 
Question: Do you think that (A + B) + C = A + (B + C)  
Answer: Yes — this is another rule that works like real number math.  
 
Practice with Matrix Addition 
Here is another matrix addition problem. Mentally form the sum (or use a scrap of paper):  
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Hint: this problem is not as tedious as it might at first seem.  
Question: What is the sum? 
Answer: Each element of the 3x3 result is 10. 
 
Multiplication of a Matrix by a Scalar 
A matrix can be multiplied by a scalar (by a real number) as follows:  
To multiply a matrix by a scalar, multiply each element of the matrix by the scalar.  
Here is an example of this. (In this example, the variable a is a scalar.)  

 
 
Question: Show the result if the scalar a in the above is the value -1. 
Answer: Each element in the result is the negative of the original, as seen below. 
 
Negative of a Matrix 
The negation of a matrix is formed by negating each element of the matrix:  

-A = -1A 
So, for example:  

 
 
It will not surprise you that A + (-A)  = 0   
Question: Look at the above fact. Can you think of a way to define matrix subtraction?  
Answer: It seems like subtraction could be defined as adding a negation of a matrix.  
 
Matrix Subtraction 
If A and B have the same number of rows and columns, then A - B is defined as A + (-B). 
Usually you think of this as:  
To form A - B, from each element of A subtract the corresponding element of B.  
Here is a partly finished example:  
 

 
 
Notice in particular the elements in the first row of the answer. The way the result was 
calculated for the elements in row 1 column 2 is sometimes confusion.  
Question: Mentally fill in the two question marks. 
Answer: 
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Transpose 
The transpose of a matrix is a new matrix whose rows are the columns of the original 
(which makes its columns the rows of the original). Here is a matrix and its transpose:  

 
The superscript "T" means "transpose". Another way to look at the transpose is that the 
element at row r column c if the original is placed at row c column r of the transpose. We 
will usually work with square matrices, and it is usually square matrices that will be 
transposed. However, non-square matrices can be transposed, as well:  

 
 
Question: What is the transpose of: 

 
Answer: 

 
 
 
A Rule for Transpose 
If a transposed matrix is itself transposed, you get the original back:  
 

 
 
This illustrates the rule (AT)T = A.  
Question: What is the transpose of: 

 
Answer: 
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The transpose of a row matrix is a column matrix. And the transpose of a column matrix 
is a row matrix.  
 
Rule Summary 
Here are some rules that cover what has been discussed. You should check that they seem 
reasonable, rather than memorize them. For each rule the matrices have the same number 
of rows and columns.  

A + 0 = A  A + B = B + A  0 + 0 = 0  

A + (B + C) = (A + B) + C (ab)A = a(bA)  a(A + B) = aB + aA  

a0 = 0  (-1)A = -A  A - A= 0  

(AT)T = A 0T = 0  

In the above, a and b are scalars (real numbers). A and B are matrices, and 0 is the zero 
matrix of appropriate dimension.  
Question: If A = B and B = C, then does A = C? 
Answer: Yes 
 
Vectors 
Another important mathematical concept used in graphics is the Vector. If P1 = (x1, y1, z1) 
is the starting point and P2 = (x2, y2, z2) is the ending point, then the vector V = (x2 – x1, 
y2 – y1, z2 – z1) 

 
 
and if P2 = (x2, y2, z2) is the starting point and P1 = (x1, y1, z1) is the ending point, then 
the vector V = (x1 – x2, y1 – y2, z1 – z2) 
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This just defines length and direction, but not position. 

 
Vector Projections 

Projection of v onto the x-axis 
 
 
 

 
 
 
 
 

 
 
 
 
 
Projection of v onto the xz plane 

 
 
 
 
 
 
 
 
 
 
2D Magnitude and Direction 
The magnitude (length) of a vector: 
   |V| = sqrt ( Vx

2 + Vy
2 ) 

 
The equation is derived from the Pythagorean theorem. 
The direction of a vector: 
    tan α = Vy / Vx 
    α = tan-1 (Vy / Vx) 
Where α is angular displacement from the x-axis. 
 
3D Magnitude and Direction 
3D magnitude is a simple extension of 2D 
  |V| = sqrt( Vx

2 + Vy
2 + Vz

2 ) 
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3D direction is a bit harder than in 2D. Particularly it needs 2 angles to fully describe 
direction. Latitude/ longitude is a real-world example. 
 
Direction Cosines are often used: 

• α, β, and γ are the positive angles that the vector makes with each positive 
coordinate axes x, y, and z, respectively 

   cos α = Vx / |V| 
   cos β = Vy / |V| 
   cos γ = Vz / |V| 
 
Vector Normalization 
“Normalizing” a vector means shrinking or stretching it so its magnitude is 1. A simple 
way is normalize by dividing by its magnitude: 
 
  V = (1, 2, 3) 
 |V| = sqrt( 12 + 22 + 32) = sqrt(14) + 3.74 
Vnorm = V / |V| = (1, 2, 3) / 3.74 = 
         (1 / 3.74, 2 / 3.74, 3 / 3.74) = (.27, .53, .80) 
 
|Vnorm| = sqrt( .272 + .532 + .802) = sqrt( .9 ) = .95 
 
Note that the last calculation doesn’t come out to exactly 1.  This is because of the error 
introduced by using only 2 decimal places in the calculations above. 
  
Vector Addition 
Equation:  
V3 = V1 + V2 = (V1x + V2x , V1y + V2y , V1z + V2z) 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Vector Subtraction 
 
Equation:  
V3 = V1 - V2 = (V1x - V2x , V1y - V2y , V1z - V2z) 
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Dot Product 
The dot product of 2 vectors is a scalar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V1 . V2 = (V1x V2x) + (V1y V2y ) + (V1z V2z ) 
Or, perhaps more importantly for graphics: 

V1 . V2 = |V1|  |V2|  cos(θ) 
where θ is the angle between the 2 vectors and θ is in the range 0 ≤ θ ≤ Π  

 
Why is dot product important for graphics? 
It is zero if and only if the 2 vectors are perpendicular cos (90) = 0 
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The Dot Product computation can be simplified when it is known that the vectors are unit 
vectors 
 V1 . V2 = cos(θ) 
because |V1|  and |V2|  are both 1 
 
Saves 6 squares, 4 additions, and 2 sqrts. 
 
Cross Product 
The cross product of 2 vectors is a vector 
V1 x V2 = ( V1y V2z   -   V1z V2y , 
         V1z V2x    -   V1x V2z , 
         V1x V2y    -   V1y V2x ) 
 
Note that if you are big into linear algebra there is also a way to do the cross product 
calculation using matrices and determinants 
 
Again, just as with the dot product, there is a more graphical definition: 
V1 x V2 = u |V1|  |V2| sin (θ) 
 
where θ is the angle between the 2 vectors and θ is in the range 0 ≤ θ ≤ Π and u is the unit 
vector that is perpendicular to both vectors 
 
Why u?  
  |V1|  |V2|  sin(θ) produces a scalar and the  result needs to be a vector. 
 
 
 
 
 
 
 
The direction of u is determined by the right hand rule. 
The perpendicular definition leaves an ambiguity in terms of the direction of u 
Note that you can’t take the cross product of 2 vectors that are parallel to each other 
Sin (0) = sin (180) = 0 à produces the vector (0, 0, 0)  
 
Forming Coordinate Systems 
Cross products are great for forming coordinate system frames (3 vectors that are 
perpendicular to each other) from 2 random vectors. 

1) Cross V1 and V2 to form V3. 
V3 is now perpendicular to both V1 and V2 

2) Cross V2 and V3 to form V4 
V4 is now perpendicular to both V2 and V3 
Then V2, V4, and V3 form your new frame 
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V1 and V2 are in the new xy plane 
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LLeeccttuurree  NNoo..1111      2D Transformations I  

 
In the previous lectures so far we have discussed output primitive as well as filling 
primitives. With the help of them we can draw an attractive 2D drawing but that will be 
static whereas in most of the cases we require moving pictures for example games, 
animation, and different model; where we show certain objects moving or rotating or 
changing their size. 
 
Therefore, changes in orientation that is displacement, rotation or change in size is called 
geometric transformation. Here, we have certain basic transformations and some special 
transformation. We start with basic transformation. 
 
Basic Transformations 
 

Translation 
Rotation 
Scaling 

 
Above are three basic transformations. Where translation is independent of others 
whereas rotation and scaling depends on translation in most of cases. We will see how in 
their respective sections but here we will start with translation. 
 

Translation 
A translation is displacement from original 
place. This displacement happens to be 
along a straight line; where two distances 
involves one is along x-axis that is tx and 
second is along y-axis that is ty. The same 
is shown in the figure also we can express 
it with following equation as well as by 
matrix:  
 
x′ = x + tx ,   y′ = y + ty 
 
Here (tx, ty) is translation vector or shift 
vector. We can express above equations as a single matrix equation by using column 
vectors to represent coordinate positions and the translation vector: 
 
    P′ = P + T  
 
Where P =      P′=   T =  
 
 
Translation is a rigid-body transformation that moves objects without deformation. That 
is, every point on the object is translated by the same amount.  
 
A straight line can be translated by applying the above transformation equation to each of 
the line endpoints and redrawing the line between the new coordinates. Similarly a 
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polygon can be translated by applying the above transformation equation to each vertices 
of the polygon and redrawing the polygon with new coordinates. Similarly curved objects 
can be translated. For example to translate circle or ellipse, we translate the center point 
and redraw the same using new center point. 
 
Rotation 
A two dimensional rotation is applied to an object by repositioning it along a circular path 
in the xy plane. To rotate a point, its coordinates and rotation angle is required. Rotation 
is performed around a fixed point called pivot point. In start we will assume pivot point to 
be the origin or in other words we will find rotation equations for the rotation of object 
with respect to origin, however later we will see if we change our pivot point what should 
be done with the same equations. 
 
Another thing is to be noted that for a positive angle the rotation will be anti-clockwise 
where for negative angle rotation will be clockwise. 
 
Now for the rotation around the origin 
as shown in the above figure we 
required original position/ coordinates 
which in our case is P(x,y) and rotation 
angle θ. Now using polar coordinates 
assume point is already making angle Ф 
from origin and distance of point from 
origin is r, therefore we can represent x 
and y in the form: 
 
x = r cosФ and y = r sinФ 
 
Now if we want to rotate point by an angle θ, we have new angle that is (Ф+ θ), therefore 
now point P′(x′,y′) can be represented as: 
 
x′ = r cos(Ф + θ) = r cosФ cosθ – r sinФ sinθ 
and 
y′ = r sin(Ф + θ) = r cosФ sinθ + r sinФ cosθ  
 
Now replacing r cosФ = x and  r sinФ = y in above equations we get: 
 
x′ = x cosθ – y sinθ and  y′= x sinθ + y cosθ 
 
Again we can represent above equations with the help of column vectors: 
 
   P′= R . P 
Where  
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When coordinate positions are represented as row vectors instead of column vectors, the 
matrix product in rotation equation is transposed so that the transformed row coordinate 
vector [x′,y′] is calculated as:  
 
 P′ T  = (R . P)T 
  = PT . RT 

Where PT and the other transpose matrix can be obtained by interchanging rows and 
columns. Also, for rotation matrix, the transpose is obtained by simply changing the sign 
of the sine terms. 
 
Rotation about an Arbitrary Pivot Point: 
As we discussed above that pivot point may be 
any point as shown in the above figure, 
however for the sake of simplicity we assume 
above that pivot point is at origin. 
 
Anyhow, the situation can be dealt easily as 
we have equations of rotation with respect to 
origin. We can simply involve another 
transformation already read that is translation 
so simply translate pivot point to origin. By 
translation, now points will make angle with 
origin, therefore apply the same rotation equations and what next? Simply retranslate the 
pivot point to its original position that is if we subtract xr,yr now add them therefore we 
get following equations: 
 
x′ = xr + (x - xr) cosθ – (y - yr) sinθ  
y′ = yr + (x - xr) sinθ  – (y - yr) cosθ  
 
As it is discussed in translation rotation is also rigid-body transformation that moves the 
object along a circular path. Now if we want to rotate a point we already achieved it. But 
what if we want to move a line along its one end point very simple treat that end point as 
pivot point and perform rotation on the other end point as discussed above. Similarly we 
can rotate any polygon with taking some pivot point and recalculating vertices and then 
redrawing the polygon. 
 
Scaling 
A scaling transformation changes the size of an object. Scaling may be in any terms 
means either increasing the original size or decreasing the original size. An exemplary 
scaling is shown in the above figure 
where scaling factors used Sx=3 and 
Sy=2. So, what are these scaling factors 
and how they work very simple, simply 
we multiply each coordinate with its 
respective scaling factor. 
 
Therefore, scaling with respect to origin 
is achieved by multiplying x coordinate 
with factor Sx and y coordinate with 

Sx=3 
Sy=2
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factor Sy. Therefore, following equations can be expressed: 
 
  x′ = x.Sx   

y′ = y.Sy 
In matrix form it can be expressed as: 
  
   P′ = S.P 
 

 
 
Now we may have different values for scaling factor. Therefore, as it is multiplying factor 
therefore, if we have scaling factor > 1 then the object size will be increased than original 
size; whereas; in reverse case that is scaling factor < 1 the object size will be decreased 
than original size and obviously there will be no change occur in size for scaling factor 
equal 1. 
 
Two variations are possible in scaling that is having scaling factors to be kept same that is 
to keep original shape; which is called uniform scaling having Sx factor equal Sy factor. 
Other possibility is to keep Sx and Sy factor unequal that is called differential scaling and 
that will alter the original shape that is a square will no more remain square.  
 
Now above equation of scaling can be applied to any line, circle and polygon etc. 
However, as in case of line and polygon we will scale ending points or vertices then 
redraw the object but in circle or ellipse we will scale the radius.  
 
Now coming to the point when scaling with respect to any point other then origin, then 
same methodology will work that is to apply translation before scaling and retranslation 
after scaling. So here if we consider fixed/ pivot point (xf,yf), then following equations 
will be achieved: 
 
 
x′ = xf + (x - xf)Sx 
y′ = yf + (y - yf)Sy  
 
These can be rewritten as: 
 
x′ = x. Sx + xf (1 – Sx) 
y′ = y. Sy  + yf (1 – Sy)  
 
Where the terms xf (1 – Sx) and yf (1 – Sy) are constant for all points in the object. 
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LLeeccttuurree  NNoo..1122      2D Transformations II  
    
 
Before starting our next lecture just recall equations of three basic transformations i.e. 
translation, rotation and scaling: 
 
 Translation: P′= P + T  
 
 Rotation:  P′= R. P 
 
 Scaling: P′= S. P 
 
In many cases of computer graphics applications we require sequence of transformations. 
For example in animation on each next move we may have object to be translated than 
scaled. Similarly in games an object in a particular moment may have to be rotated as 
well as translated. That means we have to perform sequence of matrix operations but the 
matrix we have seen in the previous lecture have order which restrict them to be operated 
in sequence. However, with slight reformulated we can bring them into the form where 
they can easily be operated in any sequence thus efficiency can be achieved.  
 
Homogeneous Coordinates 
 

Again considering our previous lecture all the three basic transformations covered in 
that lecture can be expressed by following equation: 

  P′= M1.P + M2 
 

With coordinate positions P and P’ represented as column vectors. Matrix M1 is a 2 
by 2 array containing multiplicative factors, and M2 is a two-element column 
matrix containing translation terms. For translation, M1 is a the identity matrix, For 
rotation or scaling, M2 contains the translational terms associated with the pivot 
point or scaling fixed point. To produce a sequence of transformations with these 
equations, such as scaling followed by rotation then translation, we must calculate 
the transformed coordinate’s one step at a time. First, coordinate positions are 
scaled, then these scaled coordinates are rotated, and finally the rotated coordinates 
are translated. 

 
Now the question is can we find a way to eliminate the matrix addition associated with 
translation? Yes, we can but for that M1 will have to be rewritten as a 3x3 matrix and also 
the coordinate positions will have to be expressed as a  homogeneous coordinate triple:  
 
  (x, y) as (xh, yh, h) where 
 
  x =     xh       ,   y =     yh    
   h          h  
We can choose the h as any non-zero value. However, a convenient choice is 1, thus (x, 
y) has homogeneous coordinates as (x, y, 1). Expressing positions in homogeneous 
coordinates allows us to represent all geometric transformation equations as matrix 
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multiplications. Coordinates are represented with three-element column vectors, and 
transformation operations are written as 3 by 3 matrices. 
  
Translation with Homogeneous Coordinates 
The translation can now be expressed using homogeneous coordinates as:  
 

 
Abbreviated as: 
     P′ =   T (tx, ty)  .  P 
 
Rotation with Homogeneous Coordinates 
The rotation can now be expressed using homogeneous coordinates as:  
 

 
 
Abbreviated as: 
   P′ =   R (θ)  .  P 
 
Scaling with Homogeneous Coordinates 
The scaling can now be expressed using homogeneous coordinates as:  

 
 
Abbreviated as: 
     P′   =   S (Sx, Sy)  .  P 
Matrix representations are standard methods for implementing transformations in 
graphics systems. In many systems, rotation and scaling functions produce 
transformations with respect to the coordinate origin as expressed in the equation above. 
Rotations and scaling relative to other reference positions are then handled as a 
succession of transformation operations. 
 
Composite Transformations 

As in the previous section we achieved homogenous matrices for each of the basic 
transformation, we can find a matrix for any sequence of transformation as a 
composite transformation matrix by calculating the matrix product of the individual 
transformations. 
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Translations 
If two successive translations vectors (tx1, ty1) and (tx2, ty2) are applied to a 

coordinate position P, the final transformed location P is calculated as 
 
P′ = T(tx2,ty2) . {T(tx1,ty1) . P} 
  = {T(tx2,ty2) . T(tx1,ty1)} . P 
 
where P and P′ are represented as homogeneous-coordinate column vectors. The 

composite transformation matrix for this sequence of translations is 
 

 
or 

T(tx2,ty2) . T(tx1,ty1) = T(tx1 + tx2 , ty1 + ty2) 
 
Which means that two successive translations are additive. Hence, 
 

 
 
Composite Rotations 
Two successive Rotations applied to a point P produce the transformed position 
 
   P′ = R(θ2) . {R(θ1) . P} 
    = {R(θ2) . R(θ1)} . P 
By multiplying the two rotation matrices, we can verify that two successive rotations are 
additive: 
 
   R(θ2) . R(θ1) = R(θ1 + θ2) 
so that the final rotated coordinates can be calculated with the composite rotation matrix 
as 
   P′ = R(θ1 + θ2) . P 
 
Composite Scaling 
Concatenating transformation matrices for two successive scaling operations produces the 
following composite scaling matrix: 
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  or 
   S (sx2,sy2).S(sx1,sy1) = S(sx1.sx2, sy1.sy2) 
The resulting matrix in the case indicates that successive scaling operations are 
multiplicative. That is, if we were to triple the size of an object twice in succession, the 
final size would be nine times that of the original. 
 
General Pivot Point Rotation 
 
With a graphics package that only provides a rotate function for revolving object about 
the coordinate origin, we can generate rotations about any selected pivot point (xr, yr) by 
performing the following sequence of translate-rotate-translate operations: 

 
Translate the object so that the pivot-point positions is moved to the coordinate origin 
Rotate the object about the coordinate origin 
Translate the object so that the pivot point is returned to its original position 

 

 

 
 
which can be expressed in the form 
 
T(xr , yr) . R(θ) . T(-xr ,-yr) = R(xr, yr , θ) 
 
where T(-xr , -yr) = T-1(xr , yr). 
 
General Fixed Point Scaling 
Following figure is showing a transformation sequence to produce scaling with respect to 
a selected fixed point (xf, yf) using a scaling function that can only scale relative to the 
coordinate origin. 
 

Translate object so that the fixed point coincides with the coordinate origin 
Scale the object with respect to the coordinate origin 
Use the inverse translation of step 1 to return the object to its original position 

 
Concatenating the matrices for these three operations produces the required scaling 
matrix. 
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T(xf,yf).S(sx,sy).T(-xf,-yf) = S(xf,yf , sx,sy) 
 
This transformation is automatically generated on systems that provide a scale function 
that accepts coordinates for the fixed point. 
 
Concatenation Properties 
Matrix multiplication is associative. For any three matrices A, B and C, the matrix 
product A. B. C can b3e performed by first multiplying A and B or by first multiplying B 
and C: 
 

A . B . C = (A . B) . C = A . (B . C) 
Therefore, we can evaluate matrix products using a left-to-right or a right-to-left 
associative grouping. On the other hand, transformation products may not be 
commutative. The matrix product A. B is not equal to B. A, in general. This means that if 
we want to translate and rotate an object, we must be careful about the order in which the 
composite matrix is evaluated as show in following figure.  
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Reversing the order in which a sequence of transformations is performed may affect the 
transformed position of an object. In above figure an object is first translated, and then 
rotated. Whereas, in this figure an object is rotated first, then translated. 

 
 

 
For some special cases, such as a sequence of transformations all of same kind, the 
multiplication of transformation matrices is commutative. As an example, two successive 
rotations could be performed in either order and the final position would be the same. 
This commutative property holds also for two successive translations or two successive 
scalings. Another commutative pair of operation is rotation and uniform scaling (Sx = Sy). 
 
General Composite Transformations and Computational Efficiency 

A general two-dimensional transformation, representing a combination of translations, 
rotations, and scaling, can be expressed as 

 

 
 
The four elements rsij are the multiplicative rotation-scaling terms in the transformation 
that involve only rotating angles and scaling factors. Elements trsx and trsy are the 
translational terms containing combinations of translation distances, pivot-point and 
fixed-point coordinates, and rotation angles and scaling parameters. For example, if an 
object is to be scaled and rotated about its centroid coordinates (xc, yc) and then 
translated, the values for the elements of the composite transformation matrix are 
 
T (tx,ty) . R(xc,yc, θ) . S(xc,yc,sx,sy) 
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Although matrix given before above matrix requires nine multiplications and six 
additions, the explicit calculations for the transformed coordinates are 
 
x’ = x.rsxx + y.rsxy + trsx 
y’ = x.rsyx + y.rsyy + trsy 
 
Thus, we only need to perform four multiplications and four additions to transform 
coordinate positions. This is the maximum number of computations required for any 
transformation sequence, once the individual matrices have been concatenated and the 
elements of the composite matrix evaluated. Without concatenation, the individual 
transformations would be applied one at a time and the number of calculations could be 
significantly increased. An efficient implementation for the transformation operations, 
therefore, is to formulate transformation matrices, concatenate any transformation 
sequence, and calculate transformed coordinates using above equations. 
 
Other Transformations 
Basic transformations such as translation, rotation, and scaling are included in most 
graphics packages. Some packages provide a few additional transformations that are 
useful in certain applications. Two such transformations are reflection and shear. 
 

Reflection 
A reflection is a transformation that produces a mirror image of an object. The 

mirror image for a two-dimensional reflection is generated relative to an axis of 
reflection by rotating the object 180o about the reflection axis. We can choose an 
axis of reflection in the xy plane or perpendicular to the xy plane. When the 
reflection axis is a line in the xy plane; the rotation path about this axis is in a 
plane perpendicular to the xy plane. For reflection axes that are perpendicular to 
the xy plane, the rotation path in the xy plane. Following are examples of some 
common reflections. 

 
Reflection about the line y=0, the x-axis, relative to axis of reflection can be 

achieved by rotating the object about axis of reflection by 180o. 

 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
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010
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The transformation matrix is 

 
 
Similarly in case of reflection about y-axis the transformation matrix will be, also 

the reflection is shown in following figure: 
 

 
 

 
 

Shear 
A transformation that distorts the shape of an object such that the transformed 

shape appears as if the object were composed of internal layers that had been 
caused to slide over each other is called a shear. Two common shearing 
transformations are those that shift coordinate x values and those that shift y 
values. 

 
An x direction shear relative to the x axis is produced with the transformation 

matrix 
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which transforms coordinate position as 
 x′ = x + shx . y 
 y′ = y  

 
Any real number can be assigned to the shear parameter shx. A coordinate position (x,y) is 
then shifted horizontally by an amount proportional to its distance (y value) from the x 
axis (y=0). Setting  shx to 2, for example, changes the square in following figure into a 
parallelogram. Negative values for shx shift coordinate positions to the left. 

 

 
Similarly y-direction shear relative to the y-axis is produced with the transformation 
matrix 

 
and coordinate positions transformed as 
x′ = x 
y′ = shy . x + y  
 
Another similar transformation may be in x and y direction shear, where matrix will be  

 
and coordinate positions transformed as 
 
x′ = x + shx . y  
y′ = shy . x + y
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Lecture No.13   Drawing Example 
 
Let us now learn some of the implementation techniques. So far we already have done 
with learning drawing primitives including output primitives as well as filling primitives. 
Also we have studied transformations. So we should be in position to make use of them in 
two-dimensional drawing. Though most of you will think that they can draw two-
dimensional drawing very easily yet it may not be true due to lack of knowledge of some 
implementation techniques, which are very useful in drawing as well as in transformation. 
So we will cover this with some examples. 
 
Drawing Table 
First of all we are going to draw a very simple drawing that is a “table”. Yes, a simple 
rectangular table with four legs. So, in order to draw such table we have to draw “table 
top” plus four legs connecting four edges of the rectangle. 
 
Design 
Here we will first design the table like an ordinary student. So, what we will do we will 
see the location of the table. For example assume that our screen has dimensions 640*480 
and initially we want to draw table right in the middle of the center. Also, another factor 
is important that is y axis travels from top to bottom. That is y=0 will be the top edge of 
the screen and 480 will be the lower edge of the screen. Another thing is the dimension of 
the table we want to draw. Therefore, we have table that has width 20, length 14 and 
height 10.  
 
Therefore, we have to find out four vertices that make the corners of the table. So, first of 
all consider x coordinate.  Left edge of the table will be 10 less from the center of the 
screen that is 320. Therefore, x1 and x4 values will be 310. Similarly right edge of the 
table will be 10 plus center of the screen. Therefore, x2 and x3 values will be 330. 
Similarly, top edge of the table will be 10 less from the center of the screen that is 240. 
Therefore, y1 and y2 values will be 233 and y3 and y4, which are lying on the lower 
edge, will be 247. Finally, last parameter is required to define the length of legs. Having 
length of legs we have to simply draw vertical lines of that length starting from each 
corner respectively. Therefore, following code will be required to draw such a table: 
 
  void translate(int tx, int ty) 
  { 
   xc+=tx; 
   yc+=ty; 
   x1+=tx; 
   x2+=tx; 
   x3+=tx; 
   x4+=tx; 
   y1+=ty; 
   y2+=ty; 
   y3+=ty; 
   y4+=ty; 
  } 
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  void rotate (float angle) 
  { 
   int tempx=x1; 
   x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle); 
   y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle); 
   tempx=x2; 
   x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle); 
   y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle); 
   tempx=x3; 
   x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle); 
   y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle); 
   tempx=x4; 
   x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle); 
   y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle); 
  } 
 
  void scale(int sx, int sy) 
  { 
   x1=xc+(x1-xc)*sx; 
   x2=xc+(x2-xc)*sx; 
   x3=xc+(x3-xc)*sx; 
   x4=xc+(x4-xc)*sx; 
   y1=yc+(y1-yc)*sy; 
   y2=yc+(y2-yc)*sy; 
   y3=yc+(y3-yc)*sy; 
   y4=yc+(y4-yc)*sy; 
   legLength*=sy; 
  } 
    

x1=310, x2=330, x3=330, x4=310; 
 y1=233, y2=233, y3=247, y4=247; 
 legLength=10; 
 
So, what I want that you should observe the issue. Now consider first of all translation. In 
translation you have to translate all the points one by one and redraw the picture. 
Instruction to translate the table will be of the form: 
 

Now in this design drawing is pretty simple. We have to draw 4 lines between corner 
points. That is from (x1, y1) to (x2, y2), from (x2, y2) to (x3, y3), from (x3, y3) to 
(x4, y4) and from (x4, y4) to (x1, y1). That will suffice our table top. Next simply 
draw four lines each starting from one of the corner of the table in the vertical 
direction having length 10. Now let us see the simple code of drawing such table: 

 
 //Table Top  

line (x1, y1, x2, y2); 
 line (x2, y2, x3, y3); 
 line (x3, y3, x4, y4); 
 line (x4, y4, x1, y1); 
 //Table Legs 
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 line (x1, y1, x1, y1+legLength); 
 line (x2, y2, x2, y2+legLength); 
 line (x3, y3, x3, y3+legLength); 
 line (x4, y4, x4, y4+legLength); 
 
 Now is not that easy to draw table in the same manner? We will discuss the problem after 
take a bit look at basic transformations (translation, rotation, scaling). The code is: 
 

void translate(int tx, int ty) 
 { 
  xc+=tx; 
  yc+=ty; 
  x1+=tx; 
  x2+=tx; 
  x3+=tx; 
  x4+=tx; 
  y1+=ty; 
  y2+=ty; 
  y3+=ty; 
  y4+=ty; 
 } 
 
Now seeing the code you can easily understand the idea. In translation we have to 
translate all points one by one and then redrawing the table at new calculated points. Later 
you will see in the other method that translation will only involve one line. 
 
Anyhow next we will move to other transformation (rotation). Having pivot point at the 
center of the screen, we have to perform translation in three steps. That is translation then 
rotation and then translation. So take a look at the code: 
 
 void rotate (float angle) 
 { 
  int tempx=x1; 
  x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle); 
  y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle); 
  tempx=x2; 
  x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle); 
  y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle); 
  tempx=x3; 
  x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle); 
  y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle); 
  tempx=x4; 
  x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle); 
  y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle); 
 } 
 
So, here calculations required each time and for each pixel; whereas; you will observe 
that we can make that rotation pretty simple. A similar problem is lying in the case of 
scaling that is to perform three steps; translation then scaling and then translation. So look 
at the code given below: 
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 void scale(int sx, int sy) 
 { 
  x1=xc+(x1-xc)*sx; 
  x2=xc+(x2-xc)*sx; 
  x3=xc+(x3-xc)*sx; 
  x4=xc+(x4-xc)*sx; 
  y1=yc+(y1-yc)*sy; 
  y2=yc+(y2-yc)*sy; 
  y3=yc+(y3-yc)*sy; 
  y4=yc+(y4-yc)*sy; 
  legLength*=sy; 
 } 
 
Therefore, same heavy calculations involves in scaling. So, here we will conclude our 
first method and will start next method so that we can judge how calculations become 
simple. Now having all discussion on table drawing, let us now consider the complete 
implementation of class Table: 
 
/******************************************************************** 
Table is designed without considering pivot point simply taking points according to the 
requirement. 
 
Therefore, translation of table involves translation of all points. 
 
Scaling and Rotation will be done after translation. 
********************************************************************/ 
 
#include <graphics.h> 
#include <iostream.h> 
#include <conio.h> 
#include <math.h> 
 
float round(float x) 
{ 
 return x+0.5; 
} 
 
class Table 
{ 
 private: 
  int xc, yc;//Center of the figure 
  int xp, yp;//Pivot point for this figure 
  int x1, x2, x3, x4; 
  int y1, y2, y3, y4; 
  int legLength; 
 
 public: 
  Table() 
  { 
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   xc=320, yc=240;//Center of the figure 
   xp=0; yp=0;//Pivot point for this figure 
   x1=310, x2=330, x3=330, x4=310; 
   y1=233, y2=233, y3=247, y4=247; 
   legLength=10; 
  } 
 
  void translate(int tx, int ty) 
  { 
   xc+=tx; 
   yc+=ty; 
   x1+=tx; 
   x2+=tx; 
   x3+=tx; 
   x4+=tx; 
   y1+=ty; 
   y2+=ty; 
   y3+=ty; 
   y4+=ty; 
  } 
 
  void rotate (float angle) 
  { 
   int tempx=x1; 
   x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle); 
   y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle); 
   tempx=x2; 
   x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle); 
   y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle); 
   tempx=x3; 
   x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle); 
   y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle); 
   tempx=x4; 
   x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle); 
   y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle); 
  } 
 
  void scale(int sx, int sy) 
  { 
   x1=xc+(x1-xc)*sx; 
   x2=xc+(x2-xc)*sx; 
   x3=xc+(x3-xc)*sx; 
   x4=xc+(x4-xc)*sx; 
   y1=yc+(y1-yc)*sy; 
   y2=yc+(y2-yc)*sy; 
   y3=yc+(y3-yc)*sy; 
   y4=yc+(y4-yc)*sy; 
   legLength*=sy; 
  } 
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  void draw() 
  { 
   line (x1, y1, x2, y2); 
   line (x2, y2, x3, y3); 
   line (x3, y3, x4, y4); 
   line (x4, y4, x1, y1); 
   line (x1, y1, x1, y1+legLength); 
   line (x2, y2, x2, y2+legLength); 
   line (x3, y3, x3, y3+legLength); 
   line (x4, y4, x4, y4+legLength); 
  } 
}; 
 
 
void main() 
{ 
 clrscr(); 
 int gdriver = DETECT, gmode, errorcode; 
 initgraph(&gdriver, &gmode, "c:\\tc\\bgi"); 
 Table table; 
 table.draw(); 
 setcolor(CYAN); 
 table.translate(15, 25); 
 table.draw(); 
 table.translate(50, 75); 
 table.scale(3,2); 
 table.draw(); 
 table.translate(-100, 75); 
 table.rotate(3.14/4); 
 table.draw(); 
 getch(); 
 closegraph(); 
} 
 
------------------------------------------------------------------------------------------------------------
--------------------- 
 
Second Method 
 
Well now we will design our table by considering pivot point. That is we will decide our 
pivot point and next all points will be taken according to that pivot point. Similarly you 
will see that this consideration will do a little effect on drawing portion of the code; 
otherwise all other things will become simpler. 
 
Table Design 
So let us start with designing the table, that is to calculate parameters of the table. That is 
4 corners plus length of legs. First of all we assume that our pivot point is lying on the 
center of the screen and initially that is (0, 0). So having pivot point we will calculate 
other points with respect to that point. 
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So having length 20 units, left edge of the table will be ten digits away from the pivot 
point and away on the left side; therefore; x1 and x4 will be –10; and similarly right edge 
of the table will be ten digits away from the pivot point on the right side. Therefore, x2 
and x3 will be 10 (yes, positive ten). 
 
Now consider the top and lower edges of the table they will be 7 points away from the 
pivot point in each direction; therefore value of y on the upper edge will be –7 and on the 
lower edge it will be 7 (yes, positive seven). Now finally y1, y2 will be –7 and y3, y4 will 
be 7. Well, length of the leg will be simple ten. Therefore, now take a look at the 
parameters in this design: 
 
  xc=320, yc=240;//Center of the figure 
  xp=0; yp=0;//Pivot point for this figure 
  x1=-10, x2=10, x3=10, x4=-10; 
  y1=-7, y2=-7, y3=7, y4=7; 
  legLength=10; 
 
Table Drawing 
So, points x1, x2, x3, and x4 are not having the value at which they will appear on the 
screen rather they are at the relative distance from the pivot point. Here, we are also using 
xc, yc that is center on the screen that will keep pivot point align. Now having vertices 
defined in this fashion our drawing method will be differ from the older one. That is 
while drawing lines we will add center of the screen and pivot point in each vertex. That 
will take us to the exact position of the screen. Let us look at the drawing code: 
 int xc=this->xc+xp; 
 int yc=this->yc+yp; 
 line (xc+x1, yc+y1, xc+x2, yc+y2); 
 line (xc+x2, yc+y2, xc+x3, yc+y3); 
 line (xc+x3, yc+y3, xc+x4, yc+y4); 

line (xc+x4, yc+y4, xc+x1, yc+y1); 
 line (xc+x1, yc+y1, xc+x1, yc+y1+legLength); 
 line (xc+x2, yc+y2, xc+x2, yc+y2+legLength); 
 line (xc+x3, yc+y3, xc+x3, yc+y3+legLength); 
 line (xc+x4, yc+y4, xc+x4, yc+y4+legLength); 
 
So, in the above code first we have added xp to xc in order to reduce some of the 
calculations required in each line drawing command. Next, we have added that calculated 
figure to all line drawing commands in order to draw them exactly at the position where it 
should be appear in the screen. 
 
Now having a bit difficulty while drawing there are many more facilities that we will 
enjoy in especially transformation. 
 
Table Transformation 
So, first of all consider Translation. In this technique translation is quite simple that is 
simply add translation vector in the pivot point. All other points will be calculated 
accordingly. Now look at the very simple code of translation: 
 void translate(int tx, int ty) 
 { 
  xp+=tx; 
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  yp+=ty; 
 } 
So how simple add tx to xp and ty to yp. Similarly next consider rotation that is again 
very simple; no need of translation. Let us look at the code:  
 void rotate (float angle) 
 { 
  int tempx=x1; 
  x1=tempx*cos(angle)-y1*sin(angle); 
  y1=tempx*sin(angle)+y1*cos(angle); 
  tempx=x2; 
  x2=tempx*cos(angle)-y2*sin(angle); 
  y2=tempx*sin(angle)+y2*cos(angle); 
  tempx=x3; 
  x3=tempx*cos(angle)-y3*sin(angle); 
  y3=tempx*sin(angle)+y3*cos(angle); 
  tempx=x4; 
  x4=tempx*cos(angle)-y4*sin(angle); 
  y4=tempx*sin(angle)+y4*cos(angle); 
 } 
 
So, here you can check that there is no extra calculation simply rotated points are 
calculated using formula that is used to rotate a point around the origin. Now similarly 
given below you can see calculations of scaling. 
 
 void scale(int sx, int sy) 
 { 
  x1=x1*sx; 
  x2=x2*sx; 
  x3=x3*sx; 
  x4=x4*sx; 
  y1=y1*sy; 
  y2=y2*sy; 
  y3=y3*sy; 
  y4=y4*sy;  
  legLength=legLength*sy; 
 } 
 
So very simple calculation is done again that is to multiply scaling factor with old vertices 
and new vertices will be obtained. 
 
So, now we look at the class Table in which table is designed considering pivot point and 
taking all other points accordingly. 
                                                                                                                                                                        
/******************************************************************** 
Table is designed with considering pivot point and taking all other 
points with respect to that pivot point. 
 
Therefore, translation of table involves translation of only pivot 
point, all other points will change respectively. 
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Scaling and Rotation will be done directly no translation or other 
transformation is required. 
********************************************************************/ 
 
 
#include <graphics.h> 
#include <iostream.h> 
#include <conio.h> 
#include <math.h> 
 
float round(float x) 
{ 
 return x+0.5; 
} 
 
class Table 
{ 
 private: 
  int xc, yc;//Center of the figure 
  int xp, yp;//Pivot point for this figure 
  int x1, x2, x3, x4; 
  int y1, y2, y3, y4; 
  int legLength; 
  int sfx, sfy;   //Scaling factor 
 public: 
 Table() 
 { 
  xc=320, yc=240;//Center of the figure 
  xp=0; yp=0;//Pivot point for this figure 
  x1=-10, x2=10, x3=10, x4=-10; 
  y1=-7, y2=-7, y3=7, y4=7; 
  legLength=10; 
  sfx=1, sfy=1; 
 } 
 
 void translate(int tx, int ty) 
 { 
  xp+=tx; 
  yp+=ty; 
 } 
 
 void rotate (float angle) 
 { 
  int tempx=x1; 
  x1=tempx*cos(angle)-y1*sin(angle); 
  y1=tempx*sin(angle)+y1*cos(angle); 
  tempx=x2; 
  x2=tempx*cos(angle)-y2*sin(angle); 
  y2=tempx*sin(angle)+y2*cos(angle); 
  tempx=x3; 
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  x3=tempx*cos(angle)-y3*sin(angle); 
  y3=tempx*sin(angle)+y3*cos(angle); 
  tempx=x4; 
  x4=tempx*cos(angle)-y4*sin(angle); 
  y4=tempx*sin(angle)+y4*cos(angle); 
 } 
 void scale(int sx, int sy) 
 { 
  x1=x1*sx; 
  x2=x2*sx; 
  x3=x3*sx; 
  x4=x4*sx; 
  y1=y1*sy; 
  y2=y2*sy; 
  y3=y3*sy; 
  y4=y4*sy; 
  legLength=legLength*sy; 
 } 
 void draw() 
 { 
  int xc=this->xc+xp; 
  int yc=this->yc+yp; 
  line (xc+x1, yc+y1, xc+x2, yc+y2); 
  line (xc+x2, yc+y2, xc+x3, yc+y3); 
  line (xc+x3, yc+y3, xc+x4, yc+y4); 
  line (xc+x4, yc+y4, xc+x1, yc+y1); 
  line (xc+x1, yc+y1, xc+x1, yc+y1+legLength); 
  line (xc+x2, yc+y2, xc+x2, yc+y2+legLength); 
  line (xc+x3, yc+y3, xc+x3, yc+y3+legLength); 
  line (xc+x4, yc+y4, xc+x4, yc+y4+legLength); 
 }}; 
void main() 
{ 
 clrscr(); 
 int gdriver = DETECT, gmode, errorcode; 
 initgraph(&gdriver, &gmode, "c:\\tc\\bgi"); 
 Table table; 
 table.draw(); 
 setcolor(CYAN); 
 table.translate(15, 25); 
 table.draw(); 
 table.translate(50, 0); 
 table.scale(3,2); 
 table.draw(); 
 table.translate(-100, 0); 
 table.rotate(3.14/4); 
 table.draw(); 
 getch(); 
 closegraph(); 
} 
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Lecture No.14   Clipping-I 

 
Concept 
It is desirable to restrict the effect of graphics primitives to a sub-region of the canvas, to 
protect other portions of the canvas. All primitives are clipped to the boundaries of this 
clipping rectangle; that is, primitives lying outside the clip rectangle are not drawn.  

The default clipping rectangle is the full canvas (the screen), and it is obvious that we 
cannot see any graphics primitives outside the screen. 
A simple example of line clipping can illustrate this idea: 
 
This is a simple example of line clipping: the display window is the canvas and also the 
default clipping rectangle, thus all line segments inside the canvas are drawn. 
 
The red box is the clipping rectangle we will use later, and the dotted line is the extension 
of the four edges of the clipping rectangle. 
 

 
 

 
Point Clipping 
Assuming a rectangular clip window, point clipping is easy. we save the point if: 
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xmin <= x <=xmax  
ymin <= y <= ymax  
 
Line Clipping 
This section treats clipping of lines against rectangles. Although there are specialized 
algorithms for rectangle and polygon clipping, it is important to note that other graphic 
primitives can be clipped by repeated application of the line clipper.  
 
Clipping Individual Points 
Before we discuss clipping lines, let's look at the simpler problem of clipping individual 
points.  
If the x coordinate boundaries of the clipping rectangle are Xmin and Xmax, and the y 
coordinate boundaries are Ymin and Ymax, then the following inequalities must be 
satisfied for a point at (X, Y) to be inside the clipping rectangle:  
            Xmin < X < Xmax 
 
        and  
 
         Ymin < Y < Ymax 
       
If any of the four inequalities does not hold, the point is outside the clipping rectangle. 
Trivial Accept - save a line with both endpoints inside all clipping boundaries.  
Trivial Reject - discard a line with both endpoints outside the clipping boundaries.  
For all other lines - compute intersections of line with clipping boundaries.  
 
Parametric representation of a line:  
 
x = x1 + u (x2 - x1)  
y = y1 + u (y2 - y1), and 0 <= u <= 1.  
If the value of u for an intersection with a clipping edge is outside the range 0 to 1, then 
the line does not enter the interior of the window at that boundary. If the value of u is 
within this range, then the line does enter the interior of the window at that boundary. 
 
Solve Simultaneous Equations  
To clip a line, we need to consider only its endpoints, not its infinitely many interior 
points. If both endpoints of a line lie inside the clip rectangle (eg AB, refer to the first 
example ), the entire line lies inside the clip rectangle and can be trivially accepted. If one 
endpoint lies inside and one outside(eg CD), the line intersects the clip rectangle and we 
must compute the intersection point. If both endpoints are outside the clip rectaangle, the 
line may or may not intersect with the clip rectangle (EF, GH, and IJ), and we need to 
perform further calculations to determine whether there are any intersections. 
The brute-force approach to clipping a line that cannot be trivially accepted is to intersect 
that line with each of the four clip-rectangle edges to see whether any intersection points 
lie on those edges; if so, the line cuts the clip rectangle and is partially inside. For each 
line and clip-rectangle edge, we therefore take the two mathematically infinite lines that 
contain them and intersect them. Next, we test whether this intersection point is "interior" 
-- that is, whether it lies within both the clip rectangle edge and the line; if so, there is an 
intersection with the clip rectangle. In the first example, intersection points G' and H' are 
interior, but I' and J' are not. 
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The Cohen-Sutherland Line-Clipping Algorithm 
The more efficient Cohen-Sutherland Algorithm performs initial tests on a line to 
determine whether intersection calculations can be avoided.  
Steps for Cohen-Sutherland algorithm 
End-points pairs of the line are checked for trivial acceptance or trivial reject using 
outcode.  
If not trivial-acceptance or trivial-reject, the line is divided into two segments at a clip 
edge.  
Line is iteratively clipped by testing trivial-acceptance or trivial-rejected, and divided into 
two segments until completely inside or trivial-rejected.  
Trivial acceptance/reject test 
To perform trivial accept and reject tests, we extend the 
edges of the clip rectangle to divide the plane of the clip 
rectangle into nine regions. Each region is assigned a 4-
bit code determined by where the region lies with 
respect to the outside halfplanes of the clip-rectangle 
edges. Each bit in the outcode is set to either 1 (true) or 
0 (false); the 4 bits in the code correspond to the 
following conditions: 
Bit 1: outside halfplane of top edge, above top edge Y > 
Ymax  
Bit 2: outside halfplane of bottom edge, below bottom 
edge Y < Ymin  
Bit 3: outside halfplane of right edge, to the right of right edge X > Xmax  
Bit 4: outside halfplane of left edge, to the left of left edge X < Xmin  
Conclusion 
In summary, the Cohen-Sutherland algorithm is efficient when out-code testing can be 
done cheaply (for example, by doing bit-wise operations in assembly language) and 
trivial acceptance or rejection is applicable to the majority of line segments. (For 
example, large windows - everything is inside, or small windows - everything is outside). 
 
Liang-Barsky Algorithm 
Faster line clippers have been developed that are based on analysis of the parametric 
equation of a line segment, which we can write in the form: 
 
 x = x1 + u ∆x 
 y = y1 + u ∆y, where 0 <= u <= 1 
 
Where ∆x = x2 - x1 and ∆y = y2 - y1. Using these parametric equations, Cryus and Beck 
developed an algorithm that is generally more efficient than the Cohen-Sutherland 
algorithm. Later, Liang and Barsky independently devised an even faster parametric line-
clipping algorithm. Following the Liang-Barsky approach, we first write the point-
clipping in a parametric way: 
  

xmin <= x1 + u ∆x <= xmax 
 ymin <= y1 + u ∆y <= ymax  
 
of these four inequalities can be expressed as 
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u * pk <= qk, for k = 1, 2, 3, 4  
 
Where parameters p and q are defined as: 
 
 p1 = -∆x, q1 = x1 - xmin 

 p2 = -∆x, q2 = xmax  - x1 
 p3 = -∆y, q3 = y1 - ymin 
 p4 = -∆y, q4 = ymax  - y1 
 
Any line that is parallel to one of the clipping boundaries has pk = 0 for the value of k 
corresponding to that boundary (k = 1, 2, 3, 4 correspond to the left, bottom, and top 
boundaries, respectively). If, for that value of k, we also find qk >= 0, the line is inside the 
parallel clipping boundary. 
 
When pk < 0, the infinite extension of the line proceeds from the outside to the inside of 
the infitite extension of the particular clipping boundary. If pk > 0, the line proceeds from 
the inside to the outside. For a nonzero value of pk = 0, we can calculate the value of u 
that corresponds to the point where the infinitely extended line intersects the extension of 
boundary k as: 
   
u = qk / pk  
 
For each line, we can calculate values for parameters u1 and u2 that defines that part of the 
line that lies within the clip rectangle. The value of u1 is determined by looking at the 
rectangle edges for which the line proceeds from the outer side to the inner side. (p < 0). 
For these edges we calculate rk = qk / pk. 
 
The value of u1 is taken as the largest of the set consisting of o and the various values of r. 
Conversely, the value of u2 is determined by examining the boundaries for which the line 
proceeds from inside to outside (p > o). A value of rk is calculated for each of these 
boundaries and the value of u2 is the minimum of the set consisting of 1 and the 
calculated r values. If u1 > u2, the line is completely outside the clip window and it can be 
rejected. Otherwise, the end points of the clipped line are calculated from the two values 
of parameter u. 
 
This algorithm is presented in the following procedure. Line intersection parameters are 
initialized to the values u1 = 0 and u2 = 1. For each clipping boundary, the appropriate 
values for p and q are calculated and used by the function clipTest to determine whether 
the line can be rejected or whether the intersection parameters are to be adjusted. 
 
When p < 0, the parameter r is used to update u1; when p < 0, the parameter r is used to 
update u2. 
 
If updating u1 or u2 results in u1 > u2, we reject the line. 
 
Otherwise, we update the appropriate u parameter only if the new value results in a 
shortening of the line. 
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When p = 0 and q < 0, we can discard the line since it is parallel to and outside of this 
boundary.  
 
If the line has not been rejected after all four values of p and q have been tested, the 
endpoints of the clipped line are determined from values of u1 and u2. 
 
 
Conclusion 
 
In general, the Liang-Barsky algorithm is more efficient than the Cohen Sutherland 
algorithm, since intersection calculations are reduced. Each update of parameters u1 and 
u2 requires only one division; and window intersections of the line are computed only 
once, when the final values of u1 and u2 have computed. In contrast, the Cohen-
Sutherland algorithm can repeatedly calculate intersections along a line path, even though 
the line may be completely outside the clip window, and, each intersection calculation 
requires both a division and a multiplication. Both the Cohen Sutherland and the Liang 
Barsky algorithms can be extended to three-dimensional clipping. 
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Lecture No.15   Clipping-II 

 
Polygon Clipping 
A polygon is usually defined by a sequence of vertices and edges. If the polygons are un-
filled, line-clipping techniques are sufficient however, if the polygons are filled, the 
process in more complicated. A polygon may be fragmented into several polygons in the 
clipping process, and the original colour associated with each one. The Sutherland-
Hodgeman clipping algorithm clips any polygon against a convex clip polygon. The 
Weiler-Atherton clipping algorithm will clip any polygon against any clip polygon. The 
polygons may even have holes.  
An algorithm that clips a polygon must deal with many different cases. The case is 
particularly note worthy in that the concave polygon is clipped into two separate 
polygons. All in all, the task of clipping seems rather complex. Each edge of the polygon 
must be tested against each edge of the clip rectangle; new edges must be added, and 
existing edges must be discarded, retained, or divided. Multiple polygons may result from 
clipping a single polygon. We need an organized way to deal with all these cases. 
The following example illustrates a simple case of polygon clipping. 

 
Given below are some examples to elaborate further. 
 



15-Clipping-II                                                                                                                                                VU        
 

 
© Copyright Virtual University of Pakistan 

 

144

 
 
Polygon clipping - disjoint polygons. 
 

 
Polygon clipping - disjoint polygons. 
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Polygon clipping - open polygons. 
 

 
Polygon clipping - open polygons. 
 



15-Clipping-II                                                                                                                                                VU        
 

 
© Copyright Virtual University of Pakistan 

 

146

 
Polygon clipping - open polygons. 
 
Sutherland and Hodgman's polygon-clipping algorithm 
Sutherland and Hodgman's polygon-clipping algorithm uses a divide-and-conquer 
strategy: It solves a series of simple and identical problems that, when combined, solve 
the overall problem. The simple problem is to clip a polygon against a single infinite clip 
edge. Four clip edges, each defining one boundary of the clip rectangle, successively clip 
a polygon against a clip rectangle. 
 
Note the difference between this strategy for a polygon and the Cohen-Sutherland 
algorithm for clipping a line: The polygon clipper clips against four edges in succession, 
whereas the line clipper tests outcode to see which edge is crossed, and clips only when 
necessary. 
 
Steps of Sutherland-Hodgman's polygon-clipping algorithm 

• Polygons can be clipped against each edge of the window one at a time. 
Windows/edge intersections, if any, are easy to find since the X or Y coordinates 
are already known.  

• Vertices which are kept after clipping against one window edge are saved for 
clipping against the remaining edges.  

• Note that the number of vertices usually changes and will often increase.  
• We are using the Divide and Conquer approach.  

Here is a STEP-BY-STEP example of polygon clipping. 
 
 
Four Cases of polygon clipping against one edge 
The clip boundary determines a visible and invisible region. The edges from vertex i to 
vertex i+1 can be one of four types: 
Case 1 : Wholly inside visible region - save endpoint  
Case 2 : Exit visible region - save the intersection  
Case 3 : Wholly outside visible region - save nothing  
Case 4 : Enter visible region - save intersection and endpoint  
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Because clipping against one edge is independent of all others, it is possible to arrange the 
clipping stages in a pipeline. The input polygon is clipped against one edge and any 
points that are kept are passed on as input to the next stage of the pipeline. In this way 
four polygons can be at different stages of the clipping process simultaneously. This is 
often implemented in hardware. 
 

Example No # 1 Clipping a Polygon 

 
Original polygon 
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Clip Left 

 
Clip Right 
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Clip Bottom 

 
Clip Top 
 

Example No #2 Clipping a Rectangle 

If Clipping Rectangle is denoted by dashed lines and Line is defined 
by using points P1 and P2 
Case i 
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For each boundary b in [ L(Left), R(Right), T(Top), B(Bottom) ] 
If P1 outside and P2 inside. 
Output: 
intersection Point (P1’) 
Point P2 
 
Case ii 
        

 
For each boundary b in [ L(Left), R(Right), T(Top), B(Bottom) ] 
If P1 inside and P2 inside 
Output: 
   Point P2 
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Case iii 

        
 
 
For each boundary b in [ L(Left), R(Right), T(Top), B(Bottom) ] 
If P1 outside and P2 outside 
Do nothing 
Case iv 

 

        
  
 
For each boundary b in [ L(Left), R(Right), T(Top), B(Bottom) ] 
If P1 inside and P2 outside (We are going from P1 to P2) 
 Output: 
Point of intersection (P2’) only. 
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Pipeline Clipping Approach 
An array, s records the most recent point that was clipped for each clip-window boundary. 
The main routine passes each vertex p to the clipPoint routine for clipping against the 
first window boundary. If the line defined by endpoints p and s (boundary) crosses this 
window boundary, the intersection is calculated and passed to the next clipping stage. If p 
is inside the window, it is passed to the next clipping stage. Any point that survives 
clipping against all window boundaries is then entered into the output array of points. The 
array firstPoint stores for each window boundary the first point flipped against that 
boundary. After all polygon vertices have been processed, a closing routine clips lines 
defined by the first and last points clipped against each boundary. 
 
Shortcoming of Sutherlands -Hodgeman Algorithm 
Convex polygons are correctly clipped by the Sutherland-Hodegeman algorithm, but 
concave polygons may be displayed with extraneous lines. This occurs when the clipped 
polygon should have two or more separate sections. But since there is only one output 
vertex list, the last vertex in the list is always joined to the first vertex. There are several 
things we could do to correct display concave polygons. For one, we could split the 
concave polygon into two or more convex polygons and process each convex polygon 
separately. 
 
Another approach to check the final vertex list for multiple vertex points along any clip 
window boundary and correctly join pairs of vertices. Finally, we could use a more 
general polygon clipper, such as wither the Weiler-Atherton algorithm or the Weiler 
algorithm described in the next section. 
 
Weiler-Atherton Polygon Clipping 
 
In this technique, the vertex-processing procedures for window boundaries are modified 
so that concave polygons are displayed correctly. This clipping procedure was developed 
as a method for identifying visible surfaces, and so it can be applied with arbitrary 
polygon-clipping regions. 
 
The basic idea in this algorithm is that instead of always proceeding around the polygon 
edges as vertices are processed, we sometimes want to follow the window boundaries. 
Which path we follow depends on the polygon-processing direction(clockwise or 
counterclockwise) and whether the pair of polygon vertices currently being processed 
represents an outside-to-inside pair or an inside-to-outside pair. For clockwise processing 
of polygon vertices, we use the following rules: 
 
 For an outside-top inside pair of vertices, follow the polygon boundary 
 For an inside-to-outside pair of vertices, follow the window boundary in a clockwise 

direction 
 
In following figure, the processing direction in the Wieler-Atherton algorithm and the 
resulting clipped polygon is shown for a rectangular clipping window. 
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Lecture No.16   3D Concepts 

 
Welcome! You are about to embark on a journey into the wondrous world of three-
dimensional computer graphics. Before we take the plunge into esoteric 3D jargon and 
mathematical principles (as we will in the next lectures), let’s have a look at what the 
buzzword “3D” actually means. 
We have heard the term “3D” applied to everything from games to the World Wide Web 
to Microsoft’s new look for Windows XP. The term 3D is often confusing because games 
(and other applications) which claim to be 3D, are not really 3D. In a 3D medium, each of 
our eyes views the scene from slightly different angles. This is the way we perceive the 
real world. Obviously, the flat monitors most of us use when playing 3D games 3D 
applications can’t do this.  However, some Virtual Reality (VR) glasses have this 
capability by using a separate TV-like screen for each eye. These VR glasses may 
become common place some years from now, but today, they are not the norm. Thus, for 
present-day usage, we can define “3D to mean “something using a three-dimensional 
coordinate system.” 
 
A three-dimensional coordinate system is just a fancy term for a system that measures 
objects with width, height, and depth (just like the real world). Similarly, 2-dimensional 
coordinate systems measure objects with width and height --- ignoring depth properties 
(so unlike the real world). 
 

 
 
 
 
 
 
 
 
 



16-3D Concepts                                                                                                                                             VU      
 

 
© Copyright Virtual University of Pakistan 

 

155

 
Shadow of a 3D object on paper 
16.1 Coordinate Systems 
Coordinate systems are the measured frames of reference within which geometry is 
defined, manipulated and viewed. In this system, you have a well-known point that serves 
as the origin (reference point), and three lines(axes) that pass through this point and are 
orthogonal to each other ( at right angles – 90 degrees).  
 
With the Cartesian coordinate system, you can define any point in space by saying how 
far along each of the three axes you need to travel in order to reach the point if you start at 
the origin. 
 
Following are three types of the coordinate systems. 
a) 1-D Coordinate Systems: 
 

 
This system has the following characteristics: 

• Direction and magnitude along a single axis, with reference to an origin 

• Locations are defined by a single coordinate 

• Can define points, segments, lines, rays 

• Can have multiple origins (frames of reference) and transform coordinates among 
them 
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b) 2-D Coordinate Systems: 

 

• Direction and magnitude along two axes, with reference to an origin 

• Locations are defined by x, y coordinate pairs 

• Can define points, segments, lines, rays, curves, polygons, (any planar geometry) 

• Can have multiple origins (frames of reference and transform coordinates among 
them 

c) 3-D Coordinate Systems: 

 

• 3D Cartesian coordinate systems 

• Direction and magnitude along three axes, with reference to an origin 

• Locations are defined by x, y, z triples 

• Can define cubes, cones, spheres, etc., (volumes in space) in addition to all one- 
and two-dimensional entities 

• Can have multiple origins (frames of reference) and transform coordinates among 
them 
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16.2 Left-handed versus Right-handed 

 

• Determines orientation of axes and direction of rotations  

• Thumb = pos x, Index up = pos y, Middle out = pos z  

• Most world and object axes tend to be right handed  

• Left handed axes often are used for cameras  

a) Right Handed Rule: 
“Right Hand Rule” for rotations: grasp axis with right hand with thumb oriented in 
positive direction, fingers will then curl in direction of positive rotation for that axis. 

 

Right handed Cartesian coordinate system describes the relationship of the X,Y, and Z 
in the following manner: 
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• X is positive to the right of the origin, and negative to the left. 

• Y is positive above the origin, and negative below it. 

• Z is negative beyond the origin, and positive behind it. 

 

 

 

 

 

 

 

 

 

 

 

b) Left Handed Rule: 
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Left handed Cartesian coordinate system describes the relationship of the X, Y and Z 
in the following manner: 

• X is positive to the right of the origin, and negative to the left. 

• Y is positive above the origin, and negative below it. 

• Z is positive beyond the origin, and negative behind it. 

Defining 3D points in mathematical notations 
3D points can be described using simple mathematical notations 

P = (X, Y, Z) 

Thus the origin of the Coordinate system is located at point (0,0,0), while five units to 
the right of that position might be located at point (5,0,0). 

 

 

Y-up versus Z-up: 

 

 

• z-up typically used by designers  

• y-up typically used by animators  

• orientation by profession supposedly derives from past work habits 

• often handled differently when moving from application to application 



16-3D Concepts                                                                                                                                             VU      
 

 
© Copyright Virtual University of Pakistan 

 

160

 

16.3 Global and Local Coordinate Systems: 

 

 

• Local coordinate systems can be defined with respect to global coordinate system 

• Locations can be relative to any of these coordinate systems 

• Locations can be translated or "transformed" from one coordinate system to 
another. 

16.4 Multiple Frames of Reference in a 3-D Scene: 

 

• In fact, there usually are multiple coordinate systems within any 3-D screen 
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• Application data will be transformed among the various coordinate systems, 
depending on what's to be accomplished during program execution 

• Individual coordinate systems often are hierarchically linked within the scene 

16.5 Defining points in C language structure 
 You can now define any point in the 3D by saying how far east, up, and north it is 
from your origin. The center of your computer screen ? it would be at a point such as 
“1.5 feet east, 4.0 feet up, 7.2 feet north.” Obviously, you will want a data structure to 
represent these points. An example of such a structure is shown in this code snippet: 

typedef struct _POINT3D 
{ 
 float x; 

float y; 
float z; 

}POINT3D; 
 
POINT3D screenCenter = {1.5, 4.0, 7.2}; 
 

16.6 The Polar Coordinate System 
Cartesian systems are not the only ones we can use. We could have also described the 
object position in this way: “starting at the origin, looking east, rotate 38 degrees 
northward, 65 degrees upward, and travel 7.47 feet along this line. “As you can see, this 
is less intuitive in a real world setting. And if you try to work out the math, it is harder to 
manipulate (when we get to the sections that move points around). Because such polar 
coordinates are difficult to control, they are generally not used in 3D graphics. 
16.7 Using Multiple Coordinate Systems 
As we start working with 3D objects, you may find that it is more efficient to work with 
groups of points instead of individual single points. For example, if you want to model 
your computer, you may want to store it in a structure such as that shown in this code 
snippet: 
typedef struct _CPU{ 

 
POINT3D center; // the center of the CPU, in World coordinates 
POINT3D coord[8];  // the 8 corners of the CPU box relative to the center point 

 
}CPU; 
 
In next lectures we will learn how we can show 3D point on 2D computer screen. 
16.8 Defining Geometry in 3-D 
Here are some definitions of the technical names that will be used in 3D lectures. 
Modeling: is the process of describing an object or scene so that we can construct an 
image of it. 
Points & Polygons:  
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• Points:  three-dimensional locations (or coordinate triples)  

 

• Vectors: - have direction and magnitude; can also be thought of as displacement  

 

• Polygons: - sequences of  “correctly” co-planar points; or an initial point and a 
sequence of vectors 

 

 

Primitives 

Primitives are the fundamental geometric entities within a given data structure. 
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• We have already touched on point, vector and polygon primitives  

 

 

• Regular Polygon Primitives - square, triangle, circle, n-polygon, etc. 

 

• Polygon strips or meshes 

• Meshes provide a more economical description than multiple individual polygons 
 
For example, 100 individual triangles, each requiring 3 vertices, would require  
100 x 3 or 300 vertex definitions to be stored in the 3-D database. 
 
By contrast, triangle strips require n + 2 vertex definitions for any n number or 
triangles in the strip. Hence, a 100 triangle strip requires only 102 unique vertex 
definitions. 

• Meshes also provide continuity across surfaces which is important for shading 
calculations  

 

• 3D primitives in a polygonal database 
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3D shapes are represented by polygonal meshes that define or approximate geometric 
surfaces.  

 

• With curved surfaces, the accuracy of the approximation is directly proportional to the 
number of polygons used in the representation. 

• More polygons (when well used) yield a better approximation.  

• But more polygons also exact greater computational overhead, thereby degrading 
interactive performance, increasing render times, etc. 

Rendering - The process of computing a two dimensional image using a combination of 
a three-dimensional database, scene characteristics, and viewing transformations. Various 
algorithms can be employed for rendering, depending on the needs of the application. 

Tessellation - The subdivision of an entity or surface into one or more non-overlapping 
primitives. Typically, renderers decompose surfaces into triangles as part of the rendering 
process. 

Sampling - The process of selecting a representative but finite number of values along a 
continuous function sufficient to render a reasonable approximation of the function for 
the task at hand. 

Level of Detail (LOD) - To improve rendering efficiency when dynamically viewing a 
scene, more or less detailed versions of a model may be swapped in and out of the scene 
database depending on the importance (usually determined by image size) of the object in 
the current view. 
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Polygons and rendering 

 

• Clockwise versus counterclockwise  

 

Surface normal - a vector that is perpendicular to a surface and “outward” facing 

• Surface normals are used to determine visibility and in the calculation of shading 
values (among other things) 

 

• Convex versus concave  

• A shape is convex if any two points within the shape can be connected 
with a straight line that never goes out of the shape. If not, the shape is 
concave. 

• Concave polygons can cause problems during rendering (e.g. tears, etc., in 
apparent surface). 
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• Polygon meshes and shared vertices  

 

• Polygons consisting of non-co-planar vertices can cause problems when rendering 
(e.g. visible tearing of the surface, etc.) 

• With quad meshes, for example, vertices within polygons can be inadvertently 
transformed into non-co-planer positions during modeling or animation 
transformations. 

• With triangle meshes, all polygons are triangles and therefore all vertices within 
any given polygon will be coplanar. 

With polygonal databases: 

• Explicit, low-level descriptions of geometry tend to be employed 

• Object database files can become very large relative to more economical, higher 
order descriptions. 

• Organic forms or free-form surfaces can be difficult to model. 

16.9 Surface models  

Here is brief over view of surface models: 
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• Surfaces can be constructed from mathematical descriptions 

• Resolution independent - surfaces can be tessellated at rendering with an 
appropriate level of approximation for current display devices and/or viewing 
parameters 

• Tessellation can be adaptive to the local degree of curvature of a surface. 

 

 

• Primitives  

 

• Free-form surfaces can be built from curves 

• Construction history, while also used in polygonal modeling, can be particularly 
useful with curve and surface modeling techniques.  
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• Parameterization  

 

• Curve direction and surface construction  

 

 

• Surface parameterization (u, v, w)  are used 

o For placing texture maps, etc.  

o For locating trimming curves, etc.  
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Metaballs (blobby surfaces)  

• Potential functions (usually radially symmetric Gaussian functions) are used to 
define surfaces surrounding points 

 

Lighting Effects 

 

 

Texture Mapping: 

The texture mapping is of the following types that we will be studying in our coming 
lectures on 3D: 
1. Perfect Mapping: 
2. Affine Mapping 
3. Area Subdivision 
4. Scan-line Subdivision 
5. Parabolic Mapping 
6. Hyperbolic Mapping 
7. Constant-Z Mapping
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Lecture No.17   3D Transformations I 

 
Definition of a 3D Point 

A point is similar to its 2D counterpart; we simply add an extra component, Z, for the 3rd 
axis: 

 

Points are now represented with 3 numbers: <x, y, z>. This particular method of 
representing 3D space is the "left-handed" coordinate system. In the left-handed system 
the x axis increases going to the right, the y axis increases going up, and the z axis 
increases going into the page/screen. The right-handed system is the same but with the z-
axis pointing in the opposite direction. 

Distance between Two 3D Points 

The distance between two points <Ax,Ay,Az> and <Bx,By,Bz> can be found by again 
using the Pythagoras theorem: 
dx = Ax-Bx  
dy = Ay-By  
dz = Az-Bz  
distance = sqrt(dx*dx + dy*dy + dz*dz) 
Definition of a 3D Vector 

Like it's 2D counterpart, a vector can be thought of in two ways: either a point at <x,y,z> 
or a line going from the origin <0,0,0> to the point <x,y,z>. 

3D Vector addition and subtraction is virtually identical to the 2D case. You can add a 3D 
vector <vx,vy,vz> to a 3D point <x,y,z> to get the new point <x',y',z'> like so: 
x' = x + vx  
y' = y + vy  
z' = z + vz 
Vectors themselves can be added by adding each of their components, or they can be 
multiplied (scaled) by multiplying each component by some constant k (where k <> 0). 
Scaling a vector by 2 (say) will still cause the vector to point in the same direction, but it 
will now be twice as long. Of course you can also divide the vector by k (where k <> 0) 
to get a similar result. 

To calculate the length of a vector we simply calculate the distance between the origin 
and the point at <x, y, z>: 
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Length = | <x,y,z> - <0,0,0> |  
       = sqrt( (x-0)*(x-0) + (y-0)*(y-0) + (z-0)*(z-0) )  
       = sqrt(x*x + y*y + z*z) 
Unit Vector 

Often in 3D computer graphics you need to convert a vector to a unit vector, ie a vector 
that points in the same direction but has a length of 1.  

This is done by simply dividing each component by the length: 
Let <x,y,z> be our vector, length = sqrt(x*x + y*y + z*z) 
Unit vector   =   <x,y,z>   =   |   x    ,         y    ,         z    | 
                           length          | length    length    length |  
(Where length = |<x,y,z>|) 

Note that if the vector is already a unit vector then the length will be 1, and the new 
values will be the same as the old. 

Definition of a Line 

As in 2D, we can represent a line by it's endpoints (P1 and P2) or by the parametric 
equation:  
P = P1 + k * (P2-P1) 
Where k is some scalar value between 0 and 1 

Transformations: 
 A static set of 3D points or other geometric shapes on screen is not very 
interesting. You could just use a paint program to produce one of these. To make your 
program interesting, you will want a dynamic landscape on the screen. You want the 
points to move in the world coordinate system, and you even want the point-of-view 
(POV) to move. In short, you want to model the real world. The process of moving points 
in space is called transformation, and can be divided into translation, rotation and other 
kind of transformations. 
 
 
Translation 
 Translation is used to move a point, or a set of points, linearly in space, for 
example, you may want to move a point “3 meters east, -2 meters up, and 4 meters 
north.” Looking at this textual description, you might think that this looks very much like 
a Point3D, and you would be close. But the above does not require one critical piece of 
information: it does not reference the origin. The above only encapsulates direction and 
distance, not an absolute point in space. This called a vector and can be represented in a 
structure identical to Point3D: 
 
 struct Vector3D 
  float x;  distance along x axes 
  float y;  distance along y axes 
  float z;  distance along z axes 

end struct 
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Vector Addition 
 You translate a point by adding a vector to it; you add points and vectors by 
adding the components piecewise: 
 
Point3D point = {0, 0, 0} 
Vector3D vector = {10, -3, 2.5 } 
 
Adding vector to point 
 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 
 
Point will be now at the absolute point < 10,-3 2.5>. you could move it again: 
 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 
 
And point would now be at the absolute point <20, -6, 5>.  
 
In pure mathematical sense, you cannot add two points together – such an operation 
makes no sense (what is Lahore plus Karachi?). However, you can subtract a point from 
another in order to uncover the vector that would have to be added to the first to translate 
it into the second: 
 
 
Point3D p1,p2 
Vector3D v; 
 
Set p1 and p2 to the desired points 
v.x = p2.x – p1.x 
v.y = p2.y – p1.y 
v.z = p2.z – p1.z 
 
Now you can add v to p1, you would translate it into the point p2. 
 
The following lists the operations you can do between points and vectors: 
 
point – point  => vector 
point + point = point - ( - point) => vector 
vector – vector => vector 
vector + vector => vector 
point – vector = point + (-vector) => point 
point + vector => point 
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Multiplying: Scalar Multiplication 
 
Multiplying a vector by a scalar ( a number with no units), and could be coded with:  
  
 Vector.x  =  Vector.x  * scalarValue 
 Vector.y  =  Vector.y  * scalarValue 
 Vector.z  =  Vector.z  * scalarValue 
 
If you had a vector with a length of 4 and multiplied it by 2.5, you would end up with a 
vector of length 10 that points in the same direction the original vector pointed.  If you 
multiplied by -2.5 instead, you would still end up with a vector of length 10; but now it 
would be pointing in the opposite direction of the original vector. 
 
Multiplying: Vector Multiplication 
 
You can multiply with vectors two other ways; both involve multiplying a vector by a 
vector. 
 
Dot Product 
 
The dot product of two vectors is defined by the formula: 
Vector A, B  
 
 
 
A * B = A.x * B.x + A.y * B.y + A.z * B.z 
 
The result of a dot product is a number and has units of A’s units times B’s units. Thus, if 
you calculate the dot product for two vectors that both use feet for units, your answer will 
be in square feet. However, in 3D graphics we usually ignore the units and just treat it 
like a scalar. 
Consider the following definition of the dot product that is used by physicists (instead of 
mathematicians): 
 
A * B = |A| * |B| * cos(theta) 
 
Where theta is the angle between the two vectors 
 
Remember that |v| represents the length of vector V and is a non-negative number; we can 
replace the vector lengths above and end up with: 
 
K = |A| * |B| (therefore k > = 0) 
 
A * B = K * cos (theta) 
 
Therefore: 
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A * B => cos(theta) 
 
Where “=>” means “directly correlates to.” Now, if you remember, the cos(theta) 
function has the following properties: 
 
cos(theta)  > 0 iff theta is less than 90 degrees or greater than 270 degrees 
cos(theta) < iff theta is greater than 90 degrees and less than 270 degrees 
cos(theta) = 0 iff theta is 90 degrees or 270 degrees 
 
We can extend this to the dot product of two vectors, since it directly correlates to the 
angle between the two vectors: 
 
A*B  > 0 iff the angle between them is less than 90 or greater than 270 degrees 
A*B  < 0 iff the angle between them is greater than 90 and less than 270 degrees 
A*B  = 0 iff the angle between them is 90 or 270 degrees (they are orthogonal). 
 
Use of Dot Product 
 Assume you have a point of view at < px,py,pz>. It is looking along the vector 
<vx,vy,vz>, and you have a point in space <x,y,z> you want to know if the point–of-view 
can possible see the point, of if the point is “behind “ the POV, as shown in figure. 
 

 
 
Point3D pov; 
Vector3D povDir; 
Point3D test; 
Vector3D vTest 
float dotProduct; 
vTest.x = pov.x – test.x; 
vTest.y = pov.y – test.y; 
vTest.z = pov.z – test.z; 
 

Direction of View 
<vx,vy,vz> 

Point of View 
<px,py,pz> 

Test vector 
<tx, ty, tz> 

Point 
<x, y, z> 
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dotProduct == vTest.x*povDir.x  + vTest.y*povDir.y + vTest.z * povDir.z; 
 
if(dotProduct > 0) 
 point is “in front of “ POV 
else if (dotProduct < 0) 
 point is “behind” POV 
else 
 point is orthogonal to the POV direction 
 
Cross Product 
Another kind of multiplication that you can do with vectors is called the cross product 
this is defined as: 
Vector A, B 
 
A X B = < A.y * B.z – A.z * B.y, A.z * B.x – A.x * B.z, A.x * B.y – A.y * B.x >  
 
For physicists: 
 
|A x B| = |A| * |B| sin(theta) 
 
Where theta is the angle between the two vectors. 
 
The above formula for A x B came from the determinate of order 3 of the matrix: 
 
|  X   Y   Z | 
|A.x A.y A.z| 
|B.x B.y B.z| 
 
Transformations 
The process of moving points in space is called transformation.   
Types of Transformation 
There are various types of transformations as we have seen in case of 2D transformations. 
These include: 

a) Translation 
b) Rotation 
c) Scaling 
d) Reflection 
e) Shearing 

 
Translation 
Translation is used to move a point, or a set of points, linearly in space. Since now we are 
talking about 3D, therefore each point has 3 coordinates i.e. x, y and z. similarly, the 
translation distances can also be specified in any of the 3 dimensions. These Translation 
Distances are given by tx, ty and tz. 
For any point P(x,y,z) after translation we have P′(x′,y′,z′) where  

x′ = x + tx ,    
y′ = y + ty ,  
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z′ = z + tz  
and (tx, ty , tz) is Translation vector 

 
Now this can be expressed as a single matrix equation: 
    P′ = P + T 
 
Where:  

  
3D Translation Example 
We may want to move a point “3 meters east, -2 meters up, and 4 meters north.” What 
would be done in such event? 
Steps for Translation 
Given a point in 3D and a translation vector, it can be translated as follows: 
 

Point3D point = (0, 0, 0) 
Vector3D vector = (10, -3, 2.5) 

Adding vector to point 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 

And finally we have translated point. 
 
Homogeneous Coordinates 
Analogous to their 2D Counterpart, the homogeneous coordinates for 3D translation can 
be expressed as : 
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Abbreviated as: 
   P’ = T (tx, ty, tz).  P 
On solving the RHS of the matrix equation, we get: 
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Which shows that each of the 3 coordinates gets translated by the corresponding 
translation distance. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z
y
x

P
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

'
'
'

'
z
y
x

P
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

t
t
t

T



18-3D Transformations II                                                                                                                              VU       
 

 
© Copyright Virtual University of Pakistan 

 

177

 
Lecture No.18   3D Transformations II 

 
Rotation 
Rotation is the process of moving a point in space in a non-linear manner. More 
particularly, it involves moving the point from one position on a sphere whose center is at 
the origin to another position on the sphere. Why would you want to do something like 
this? As we will show in later section, allowing the point of view to move around is only 
an illusion – projection requires that the POV be at the origin. When the user thinks the 
POV is moving, you are actually translating all your points in the opposite direction; and 
when the user thinks the POV is looking down a new vector, you are actually rotating all 
the points in the opposite direction; and when the user thinks the POV is looking down a 
new vector, you are actually rotating all the points in the opposite direction.  
 
Normalization: Note that this process of moving your points so that your POV is at the 
origin looking down the +Z axis is called normalization. 
 
Rotation a point requires that you know  
the coordinates for the point, and  
That you know the rotation angles.  
 
You need to know three different angles: how far to rotate around the X axis( YZ 
rotation, or “pitch”); how far to rotate around the Y axis (XZ plane, or “yaw”); and how 
far to rotate around the Z axis (XY rotation, or “roll”). Conceptually, you do the three 
rotations separately. First, you rotate around one axis, followed by another, then the last. 
The order of rotations is important when you cascade rotations; we will rotate first around 
the Z axis, then around the X axis, and finally around the Y axis. 
 
To show how the rotation formulas are derived, let’s rotate the point <x,y,z> around the Z 
axis with an angle of θ degrees.  
ROLL:- 

 
If you look closely, you should note that when we rotate around the Z axis, the Z element 
of the point does not change. In fact, we can just ignore the Z – we already know what it 
will be after the rotation. If we ignore the Z element, then we have the same case as if we 
were rotating the two-dimensional point <x,y> through the angle θ. 
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This is the way to rotate a 2-D point. For simplicity, consider the pivot at origin and rotate 
point P (x,y) where x = r cosФ and y = r sinФ 
If rotated by θ then: 
x′  = r cos(Ф + θ) 
 = r cosФ cosθ – r sinФ sinθ 
and 
y′  = r sin(Ф + θ) 
 = r cosФ sinθ + r sinФ cosθ 
 

 
 
Replacing r cosФ with x and r sinФ with y, we have:  
x′ = x cosθ – y sinθ 
and 
y′ = x sinθ + y cosθ 
and  
z′ = z (as it does not change when rotating around z-axis) 
 

 
Now for rotation around other axes, cyclic permutation helps 
form the equations for yaw and pitch as well: 
 
In the above equations replacing x with y and y with z gives 
equations for rotation around x-axis. Now in the modified 
equations if we replace y with z and z with x then we get the 
equations for rotation around y-axis. 
 

X Y

Z
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Rotation about x-axis (i.e. in yz plane): 
x′  = x 
y′  = y cosθ – z sinθ 
z′  = y sinθ + z cosθ 
 
Rotation about y-axis (i.e. in xz plane): 
x′  = z sinθ +  x cosθ 
y ′  = y 
z′  = z cosθ – x sinθ 
 
 
 
Using Matrices to create 3D 
A matrix is usually defined as a two-dimensional array of numbers. However, I think you 
will find it much more useful to think of a matrix as an array of vectors. When we talk 
about vectors, what it really mean is an ordered set of numbers ( a tuple in mathematics 
terms). We can use 3D graphics vectors and points interchangeably for this, since they are 
both 3-tuples ( or triples). 
 
In general we work with “square” matrices. This means that the number of vectors in the 
matrix is the same as the number of elements in the vectors that comprise it. 
Mathematically, we show a matrix as a 2-D array of numbers surrounded by vertical 
lines. For example: 
 
|x1 y1 z1| 
|x2 y2 z2| 
|x3 y3 z3| 
 
we designate this as a 3*3 matrix ( the first 3 is the number of rows, and the second 3 is 
the number of columns).  
The “rows” of the matrix are the horizontal vectors that make it up; in this case, <x1, 
y1,z1>, <x2,y2,z2>, and <x3,y3,z3>. In mathematics, we call the vertical vectors 
“columns.” In this case they are < x1,x2,x3>, <y1,y2,y3> and <z1,z2,z3>. 
The most important thing we do with a matrix is to multiply it by a vector or another 
matrix. We follow one simple rule when multiplying something by a matrix: multiply 
each column by a multiplicand and store this as an element in the result. Now as I said 
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earlier, you can consider each column to be a vector, so when we multiply by a matrix, 
we are just doing a bunch of vector multiplies. So which vector multiply do you use-the 
dot product, or the crosss product? You use the dot product.  
We also follow on simple rule when multiplying a matrix by something: mubliply each ro 
by the multiplier. Again, rows are just vectors, and the type of ultiplicaiton is the dot 
product. 
Let’s look at some examples. First, let’s assume that I have a matrix M, and I want to 
multiply it by a point < x,y,z>, the first ting I know is that the vector rows of the matrix 
must contain three elements (in other words, three columns). Why ? because I have to 
multiply those rows by my point using a dot product, and to do that, the two vectors must 
have the same number of element. Since I am going to get dot product for each row in M, 
I will end up with a tuple that has one element for each row in M. as I stated earlier, we 
work almost exclusively with square matrices, since I must have three columns, M will 
also have three rows. Lets see: 
          |1 0 0| 
< x,y,z> * |0 1 0| ={<x,y,z>*< 1,0,0> ,<x,y,z><0,1,0>,<x,y,z> *<0,0,1>}={ x,y,z} 
       |0 0 1|  
 
 
 
Using Matrices for Rotation 
 
Roll (rotate about the Z axis): 
 

 
 
 
 
 
 

Pitch (rotate about the X axis): 
 
 
 
 
 
 
 
Yaw (rotate about the Y axis): 
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Example: 
To show this happening, let's manually rotate the point <2,0,0> 45 degrees clockwise 
about the z axis. 

 
Now you can take an object and apply a sequence of transformations to it to make it do 
whatever you want. All you need to do is figure out the sequence of transformations 
needed and then apply the sequence to each of the points in the model. 
As an example, let's say you want to rotate an object sitting at a certain point p around its 
z axis. You would perform the following sequence of transformations to achieve this: 

 
The first transformation moves a point such that it is situated about the world origin 
instead of being situated about the point p. The next one rotates it (remember, you can 
only rotate about the origin, not arbitrary points in space). Finally, after the point is 
rotated, you want to move it back so that it is situated about p. The final translation 
accomplishes this. 
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Rotation w.r.t. Arbitrary Axis: 
If an object is required to be rotated with respect to a line acting as an axis of rotation, 
arbitrarily, then the problem is addressed using multiple transformations. Let us assume 
that such an arbitrary axis is parallel to one of the coordinate axes, say x-axis. 

 
The first step in such case would be to translate the object such that the arbitrary axis 
coincides with the x-axis. 
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The next step would be to rotate the object w.r.t. x-axis through angle θ.  

 
Then the object is translated such that the arbitrary axis gets back to its original position. 

  
And thus the job is done. 
An interesting usage of compound transformations:- 
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Now, if the arbitrary axis is not parallel to any of the coordinate axes, then the problem is 
slightly more difficult. It only adds to the number of steps required to get the job done.  
Let P1, P2 be the line arbitrary axis. 
 

 
 
In the first step, the translation takes place that coincides the point P1 to the origin. Points 
after this step are P1’ and P2’. 
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Now the arbitrary axis is rotated such that the point P2’ rotates to become P2’’ and lies on 
the z-axis. 
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In the next step the object of interest is rotated around z-axis. 
 
 
 
 
 

 
Now the object of interest is rotated about origin such that the arbitrary axis is poised like 
in above figure. Point P2’’ gets back to its previous position P2’. 
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Finally the translation takes place to position the arbitrary axis back to its original 
position. 
 
Scaling  
Coordinate transformations for scaling relative to the origin are 
 X` = X . Sx 
 Y` = Y. Sy 
 Z` =  Z. Sz 
Scaling an object with transformation changes the size of the object and reposition the 
object relative to the coordinate origin. If the transformation parameters are not all equal, 
relative dimensions in the object are changed.  
 
Uniform Scaling : We preserve the original shape of an object with a uniform scaling ( 
Sx = Sy = Sz) 
 
Differential Scaling : We do not preserve the original shape of an object with a 
differential scaling ( Sx <> Sy <> Sz) 
 
 
Scaling relative to the coordinate Origin: 
 
 Scaling transformation of a position P = (x, y, z) relative to the coordinate origin 
can be written as 
 
 
 
 
 
 
 
 
Scaling with respect to a selected fixed position: 
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Scaling with respect to a selected fixed position (Xf,Yf,Zf) can be represented with the 
following transformation sequence: 
 
Translate the fixed point to the origin. 
Scale the object relative to the coordinate origin 
Translate the fixed point back to its original position 
 
For these three transformations we can have composite transformation matrix by 
multiplying three matrices into one 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Reflection 
A three-dimensional reflection can be performed relative to a selected reflection axis or 
with respect to a selected reflection plane. In general, three-dimensional reflection 
matrices are set up similarly to those for two dimensions. Reflections relative to a given 
axis are equivalent to 180 degree rotations. 
 
The matrix representation for this reflection of points relative to the X axis 
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The matrix representation for this reflection of points relative to the Y axis 
 
  
 
 
 
 
 
The matrix representation for this reflection of points relative to the xy plane is  
 
 
 
 
 
 
 
 
Shears 
Shearing transformations can be used to modify object shapes.  
As an example of three-dimensional shearing, the following transformation produces a  
z-axis shear: 
 
 
 
 
 
 
 
 
 
Parameters a and b can be assigned and real values. The effect of this transformation 
matrix is to alter x and y- coordinate values by an amount that is proportional to the z 
value, while leaving the z coordinate unchanged. 
  
y-axis Shear 
 
 
 
 
 
 
x-axis Shear 
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Lecture No.19   Projections 

 
For centuries, artists, engineers, designers, drafters, and architects have been facing 
difficulties and constraints imposed by the problem of representing a three-dimensional 
object or scene in a two-dimensional medium -- the problem of projection. The 
implementers of a computer graphics system face the same challenge. 
 
Projection can be defined as a mapping of point P(x,y,z) onto its image P`(x`,y`,z`) in the 
projection plane or view plane, which constitutes the display surface. The mapping is 
determined by a projection line called the projector that passes through P and intersects 
the view plane. 

 
There are two basic methods of projection  
 
Parallel Projection 
Perspective Projection 
 
These methods are used to solve the basic problems of pictorial representations 
 
We characterize each method and introduce the mathematical description of the 
projection process respectively. 
Taxonomy of Projection 
We can construct different projections according to the view that is desired. 
Following figure provides taxonomy of the families of perspective and parallel 
projections. Some projections have names – cavalier, cabinet, isometric, and so on. Other 
projections qualify the main type of projection – one principal vanishing–point 
perspective and so forth. 
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Parallel Projection 
Parallel projection methods are used by drafters and engineers to create working drawings 
of an object which preserves its scale and shape. The complete representation of these 
details often requires two or more views (projections) of the object onto different view 
planes. 
In parallel projection, image points are found as the intersection of the view plane with a 
projector drawn from the object point and having a fixed direction. The direction of 
projection is the prescribed direction for all projections. Orthographic projections are 
characterized by the fact that the direction of projection is perpendicular to the view 
plane. When the direction of projection is parallel to any of the principal axes, this 
produces the front, top, and side views of mechanical drawings (also referred to as multi 
view drawings).  
Axonometric projections are orthographic projections in which the direction of projection 
is not parallel to any of the three principal axes. Non orthographic parallel projections 
are called oblique parallel projection. 
 
Mathematical Description of a Parallel Projection 
Projection rays (projectors) emanate from a Center of Projection (COP) and intersect 
Projection Plane (PP). The COP for parallel projectors is at infinity. The length of a line 
on the projection plane is the same as the "true Length". 
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There are two different types of parallel projections: 
Orthographic 
Oblique 
1) Orthographic Projection 
If the direction of projection is perpendicular to the projection plane then it is an 
orthographic projection.  
 

 
Look at the parallel projection of a point (x, y, z). (Note the left handed coordinate 
system). The projection plane is at z = 0. x, y are the orthographic projection values and 
xp, yp are the oblique projection values (at angle a with the projection plane) 
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Look at orthographic projection: it is simple, just discard the z coordinates. Engineering 
drawings frequently use front, side, top orthographic views of an object. 
Axonometric orthographic projection 
Orthographic projections that show more than one side of an object are called 
axonometric orthographic projections. 
Here are three orthographic views of an object. 

 
There are three axonometric projections 
isometric 
Dimetric 
Trimetric 
1) Isometric 
The most common axonometric projection is an isometric projection where the 
projection plane intersects each coordinate axis in the model coordinate system at an 
equal distance or the direction of projection makes equal angles with all of the three 
principal axes 
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The projection plane intersects the x, y, z axes at equal distances and the projection plane 
Normal makes an equal angle with the three axes.  
To form an orthographic projection xp = x, yp= y , zp = 0. To form different types e.g., 
Isometric, just manipulate object with 3D transformations. 
2) Dimetric 
The direction of projection makes equal angles with exactly two of the principal axes 
3) Trimetric 
The direction of projection makes unequal angles with the three principal axes 
Oblique Projection 
If the direction of projection is not perpendicular to the projection plane then it is an 
oblique projection.  

 
The projectors are not perpendicular to the projection plane but are parallel from the 
object to the projection plane. 
Transformation equations for an orthographic parallel projection are straightforward. If 
the view plane is placed at position Zvp along the Z axis, Then any point (x,y,z) in 
viewing coordinates is transformed to projection coordinates as: 
 Xp = x 
 Yp = y 
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Where the original Z-coordinate value is preserved for the depth information needed in 
depth cueing and visible-surface determination procedures. 
 An oblique projection is obtained by projecting points along parallel lines that are 
not perpendicular to the projection plane. In some applications packages, an oblique 
projection vector is specified with two angles, alpha and phi, as shown in the figure. Point 
(x,y,z) is projected to position(Xp,Yp) on the view plane. Orthographic projection 
coordinates on the plane are (x,y). The oblique projection line from (x,y,z) to (Xp,Yp) 
makes an angle alpha with the line on the projection plane that joins (Xp,Yp) and (x, y). 
This line, of length L, is at an angle phi with the horizontal direction in the projection 
plane. We can express the projection coordinates in terms of x, y, L, and phi as 

 
cos(phi) = Xp – x / L 
sin(phi) = Yp – y / L 
Xp = x + L cos(phi) 
Yp = y + L sin(phi) 
Length L depends on the angle alpha and the z coordinate of the point to be projected: 
 tan (alpha) = z / L 
Thus, 
 L = z * 1/ tan (alpha)  
 L = z * L1 
Where L1 is the inverse of tan(alpha), which is also the value of L when z = 1, we can 
then write the oblique projection equations. 
Xp = x + z (L1 cos(phi) ) 
Yp = y + z (L1 sin(phi) ) 
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The transformation matrix for producing any parallel projection onto the xy plane can be 
written as 

 
Now if Alpha = 90° (projection line is perpendicular to Projection Plane) then  
tan (Alpha) = infinity => L1 = 0, so have an orthographic projection. 
Two special cases of oblique projection 
Cavalier 
Cabinet 
1) Cavalier 
Alpha = 45°, tan (Alpha) = 1 => L1 = 1 this is a Cavalier projection such that all lines 
perpendicular to the projection plane are projected with no change in length. 

 
 
 
 
 
 
 
2) Cabinet 
tan (Alpha) = 2, Alpha= 63.40°, L1 = 1 / 2 
Lines which are perpendicular to the projection plane are projected at 1 / 2 length. This is 
a Cabinet projection 
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Lecture No.20   Perspective Projection 

 
Now that you have a structure that can store a three dimensional point (Point3D), how do 
you calculate the corresponding screen pixel? First, let’s look at what you are modeling. 
Following figure shows how it would look. 
 

 
This is a mathematical task as pictured. However, we can make it much simpler if we 
impose the following requirements:  

the point of View (POV) must lie on the Z axis, and  
the screen plane must be parallel to the X-Y plane,  
with the left and right edges of the screen parallel to the Y axis, and 
the top and bottom edges of the screen parallel to the X axis,  
for your view to come out correctly, you will also want the Z axis to pass through 
the middle of the screen.  
Why?  
The POV represents the viewer’s eye, and we presume that the viewer will be 
behind the center of the screen. 

Note: We will use Left hand rule to describe 3D coordinate system. 
Two common approaches are used with this;  
1. The first approach is where the POV is at some point (0, 0, -z) and the screen lies on 
the X-Y plane, graphically, this looks like figure given below: 
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2. The second approach is where the POV lies at the origin, and the screen lies on a plane 
at some +z coordinate, as shown in figure given below: 

 
As we will see later, this second approach is much more convenient when we add features 
making it possible for the POV to move around the 3D world or for objects to move 
around in the world. 
Calculating the screen pixel that correlates to a 3D point is now a matter of simple 
geometry. From a viewpoint above the screen and POV (looking at the X-Z plane), the 
geometry appears like the one shown in figure below: 
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In geometric terms, we say that the triangle from A to B to S is similar to the triangle 
from A to C to P because the three angles that make up the triangles are the same: the 
angle from AB to AS is the same as the angle from AC to AP, the two right angles are 
both 90 degrees, and therefore the remaining two angles are the same ( the sum of the 
angles in a triangle is always 180 degrees). What also holds true from similar triangles is 
that the ratio of two sides holds between the similar triangles; this means that the ratio of 
BS to AB is the same as the ratio of CP to AC. But we know what AB is-it is Screen.z! 
and we know what AC is-it is point.z! and we know what CP is-it is point.x! Therefore: 
|BS| / |AB| = |CP| / |AC| 
|BS| = |AB| * |CP| / |AC| 
|BS| = Screen.z * point.x / point.z 
 
Screen.z is the distance d from the point of view at origin or the scaling factor. 
Notice that |BS| is the length of the line segment that goes from B to S in world units. But 
we normally address the screen with the point (0,0) at the top left, with +X pixels moving 
to the right, and +Y pixels moving down—and not from the middle of the screen. And we 
draw to the screen in pixel units – not our world units (unless, of course, 1.0 in your 
world represents one pixel). 
 
There is a final transformation that the points must go through in the transformation 
process. This transformation maps 3D points defined with respect to the view origin (in 
view space) and turns them into 2D points that can be drawn on the display. After 
transforming and clipping the polygons that make up the scene such that they are visible 
on the screen, the final step is to move them into 2D coordinates, since in order to 
actually draw things on the screen you need to have absolute x, y coordinates on the 
screen to draw. 
The way this used to be done was without matrices, just as an explicit projection 
calculation. The point (x,y,z) would be mapped to (x′, y′) using the following equations 
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Where xCenter and yCenter were half of the width and height of the screen respectively, 
these days more complex equations are used, especially since there is now the need to 
make provisions for z-buffering. While you want x and y to still behave the same way, 
you don't want to use a value as arbitrary as scale. 
Instead, a better value to use in the calculation of the projection matrix is the horizontal 
field of view (fov). The horizontal fov will be hard coded, and the code chooses a vertical 
field of view that will keep the aspect ratio of the screen. This makes sense: You couldn't 
get away with using the same field of view for both horizontal and vertical directions 
unless the screen was square; it would end up looking vertically squashed. 
Finally, you also want to scale the z values appropriately. In future, We'll teach you about 
z-buffering, but for right now just make note of an important feature: They let you clip 
out certain values of z-range. Given the two variables znear and zfar, nothing in front of znear 
will be drawn, nor will anything behind zfar. To make the z-buffer work swimmingly on 
all ranges of znear and zfar, you need to scale the valid z values to the range of 0.0 to 1.0. 
 
The Perspective Projection Matrix   
The aspect ratio of screen, width and height is calculated as 

 

With these parameters, the following projection matrix can be made: 

 

Just for a sanity check, check out the result of this matrix multiplication: 
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This is almost the result wanted, but there is more work to be done. Remember that in 
order to extract the Cartesian (x,y,z) coordinates from the vector, the homogenous w 
component must be 1.0. Since, after the multiplication, it's set to z (which can be any 
value), all four components need to be divided by z to normalize it (and have the 
homogeneity factor equal 1). This gives the following Cartesian coordinate: 

 
 
As you can see, this is exactly what was wanted. The width and height are still scaled by 
values as in the above equation and they are still divided by z. The visible x and y pixels 
are mapped to [−1,1], so before rasterization Application multiplies and adds the number 
by xCenter or yCenter. This, in essence, maps the coordinates from [−1,1] to [0,width] 
and [0,height]. 

 

With this last piece of the puzzle, it is now possible to create the entire transformation 
pipeline. When you want to render a scene, you set up a world matrix (to transform an 
object's local coordinate points into world space), a view matrix (to transform world 
coordinate points into a space relative to the viewer), and a projection matrix (to take 
those viewer-relative points and project them onto a 2D surface so that they can be drawn 
on the screen). You then multiply the world, view, and projection matrices together (in 
that order) to get a total matrix that transforms points from object space to screen space. 

 
To draw a triangle, for example, you would take its local space points defining its three 
corners and multiply them by the transformation matrix. Then you have to remember to 
divide through by the w component. The points are now in screen space and can be filled 
in using a 2D raster algorithm. Drawing multiple objects is a snap, too. For each object in 
the scene all you need to do is change the world matrix and reconstruct the total 
transformation matrix. 
The Perspective Projection Matrix Used by Microsoft Direct3D  
The projection matrix is typically a scale and perspective projection. The projection 
transformation converts the viewing frustum into a cuboid shape. Because the near end of 
the viewing frustum is smaller than the far end, this has the effect of expanding objects 
that are near to the camera; this is how perspective is applied to the scene. 
The Viewing Frustum   
A viewing frustum is 3-D volume in a scene positioned relative to the viewport's camera. 
The shape of the volume affects how models are projected from camera space onto the 
screen. The most common type of projection, a perspective projection, is responsible for 
making objects near the camera appear bigger than objects in the distance. For 
perspective viewing, the viewing frustum can be visualized as a pyramid, with the camera 
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positioned at the tip. This pyramid is intersected by a front and back clipping plane. The 
volume within the pyramid between the front and back clipping planes is the viewing 
frustum. Objects are visible only when they are in this volume. 

 

If you imagine that you are standing in a dark room and looking through a square 
window, you are visualizing a viewing frustum. In this analogy, the near clipping plane is 
the window, and the back clipping plane is whatever finally interrupts your view—the 
skyscraper across the street, the mountains in the distance, or nothing at all. You can see 
everything inside the truncated pyramid that starts at the window and ends with whatever 
interrupts your view, and you can see nothing else. 

The viewing frustum is defined by fov (field of view) and by the distances of the front and 
back clipping planes, specified in z-coordinates. 

 
In this illustration, the variable D is the distance from the camera to the origin of the 
space that was defined in the last part of the geometry pipeline—the viewing 
transformation. This is the space around which you arrange the limits of your viewing 
frustum. For information about how this D variable is used to build the projection matrix 
The Matrix 
In the viewing frustum, the distance between the camera and the origin of the viewing 
transformation space is defined arbitrarily as D, so the projection matrix looks like: 
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The viewing matrix translates the camera to the origin by translating in the z direction by 
- D. The translation matrix is as follows: 

 
Multiplying the translation matrix by the projection matrix (T*P) gives the composite 
projection matrix. It looks like: 

 
The following illustration shows how the perspective transformation converts a viewing 
frustum into a new coordinate space. Notice that the frustum becomes cuboid and also 
that the origin moves from the upper-right corner of the scene to the center. 
 

 
 
In the perspective transformation, the limits of the x- and y-directions are -1 and 1. The 
limits of the z-direction are 0 for the front plane and 1 for the back plane. 
This matrix translates and scales objects based on a specified distance from the camera to 
the near clipping plane, but it doesn't consider the field of view (fov), and the z-values that 
it produces for objects in the distance can be nearly identical, making depth comparisons 
difficult. The following matrix addresses these issues, and it adjusts vertices to account 
for the aspect ratio of the viewport, making it a good choice for the perspective 
projection. 
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In this matrix, Zn is the z-value of the near clipping plane. The variables w, h, and Q have 
the following meanings. Note that fovw and fovh represent the viewport's horizontal and 
vertical fields of view, in radians. 

 
For your application, using field-of-view angles to define the x- and y-scaling coefficients 
might not be as convenient as using the viewport's horizontal and vertical dimensions (in 
camera space). As the math works out, the following two formulas for w and h use the 
viewport's dimensions, and are equivalent to the preceding formulas. 

 
In these formulas, Zn represents the position of the near clipping plane, and the Vw and Vh 
variables represent the width and height of the viewport, in camera space.  
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Lecture No.21   Triangles and Planes 

Triangles  

Triangles are to 3D graphics what pixels are to 2D graphics. Every PC hardware 
accelerator under the sun uses triangles as the fundamental drawing primitive (well … 
scan line aligned trapezoids actually, but that's a hardware implementation issue). When 
you draw a polygon, hardware devices really draw a fan of triangles. Triangles "flesh out" 
a 3D object, connecting them together to form a skin or mesh that defines the boundary 
surface of an object. Triangles, like polygons, generally have an orientation associated 
with them, to help in normal calculations. The ordering of the vertices goes clockwise 
around the triangle. Figure below shows what a clockwise ordered triangle would look 
like. 

 
Figure: Three points in space, and the triangle connecting them  
When defining a mesh of triangles that define the boundary of a solid, you set it up so that 
all of the triangles along the skin are ordered clockwise when viewed from the outside. 

It is impossible to see triangles that face away from you. (You can find this out by 
computing the triangle's plane normal and performing a dot product with a vector from 
the camera location to a location on the plane.) 

Now let's move on to the code. To help facilitate using the multiple types, I'll implement 
triangles structure. I only define constructors and keep the access public. 
struct tri 
    { 
     
        type v[3]; // Array access useful for loops 
     
        tri() 
        { 
            // nothing 
        } 
     
        tri( type v0, type v1, type v2 ) 
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        { 
            v[0] = v0; 
            v[1] = v1; 
            v[2] = v2; 
        } 
    }; 
Strips and Fans 

Lists of triangles are generally represented in one of three ways. The first is an explicit 
list or array of triangles, where every three elements represent a new triangle. However, 
there are two additional representations, designed to save bandwidth while sending 
triangles to dedicated hardware to draw them. They are called triangle strips and triangle 
fans. 

Triangle fans, conceptually, look like the folding fans you see in Asian souvenir shops. 
They are a list of triangles that all share a common point. The first three elements indicate 
the first triangle. Then each new element is combined with the first element and the 
current last element to form a new triangle. Note that an N-sided polygon can be 
represented efficiently using a triangle fan 

Figure below illustrates what I'm talking about. 

 
Figure: A list of points composing a triangle fan  
Triangles in a triangle strip, instead of sharing a common element with all other triangles 
like a fan, only share elements with the triangle immediately preceding them. The first 
three elements define the first triangle. Then each subsequent element is combined with 
the two elements before it, in clockwise order, to create a new triangle. See Figure below 
for an explanation of strips. 
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Figure: A list of points composing a triangle strip  
 
Planes 

The next primitive to discuss is the plane. Planes are to 3D what lines are in 2D; they're 
n–1 dimensional hyperplanes that can help you accomplish various tasks. Planes are 
defined as infinitely large, infinitely thin slices of space, like big pieces of paper. 
Triangles that make up your model each exist in their own plane. When you have a plane 
that represents a slice of 3D space, you can perform operations like classification of 
points and polygons and clipping. 

So how do you represent planes? Well it is best to build a structure from the equation that 
defines a plane in 3D. The implicit equation for a plane is: 

 
What do these numbers represent? The triplet <a,b,c> represents what is called the 
normal of the plane. A normal is a unit vector that, conceptually speaking, sticks directly 
out of a plane. A stronger mathematical definition would be that the normal is a vector 
that is perpendicular to all of the points that lie in the plane. 

The d component in the equation represents the distance from the plane to the origin. The 
distance is computed by tracing a line towards the plane until you hit it. Finally the triplet 
<x,y,z> is any point that satisfies the equation. The set of all points <x,y,z> that solve the 
equation is exactly all the points that lie in the plane. 

All of the pictures I'm showing you will be of the top-down variety, and the 3D planes 
will be on edge, appearing as 2D lines. This makes figure drawing much easier. 

Following are two examples of planes. The first has the normal pointing away from the 
origin, which causes d to be negative (try some sample values for yourself if this doesn't 
make sense). The second has the normal pointing towards the origin, so d is positive. Of 
course, if the plane goes through the origin, d is zero (the distance from the plane to the 
origin is zero). Figures 1 and Figure 2 provide some insight into this relation. 
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Figure 1: d is negative when the normal faces away from the origin  

 
Figure 2: d is positive when it faces towards the origin  
It's important to notice that technically the normal <a,b,c> does not have to be unit-length 
for it to have a valid plane equation. But since things end up nicer if the normal is unit-
length. 

Constructing a plane given three points that lie in the plane is a simple task. You just 
perform a cross product between the two vectors made up by the three points  

<point2 − point0> 

<point1 − point0> 

and find a normal for the plane. After generating the normal and making it unit length, 
finding the d value for the plane is just a matter of storing the negative dot product of the 
normal with any of the points. This holds because it essentially solves the plane equation 
above for d. Of course plugging a point in the plane equation will make it equal 0, and 
this constructor has three of them. Following has the code to construct a plane from three 
points. 

To calculate a plane from 3 given points we first calculate the normal. If we imagine the 3 
points form three edges in the plane then we can take two of the edges and calculate the 
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cross-product between them. The resulting directional vector will be the normal, and then 
we can plug any of the 3 known points into the plane equation to solve for k. For points 
p1,p2 and p3 we get: 
normal = (p1-p2) x (p3-p2)  
k = normal * p1 
 

 
 
Note that it is extremely important to keep track of which direction your points are stored 
in. Let's take 3 points stored in clockwise direction in the x/y plane: 

 

The normal to the plane these 3 points define is: 
 
normal = (p1-p2) x (p3-p2)  
       = (0,-1,0) x (1,-1,0)  
       = <(-1)*0 - 0*(-1), 0*1 - 0*0, 0*(-1) - (-1)*1>  
       = <0,0,1> 
ie the z axis. If we were to store the points counter-clockwise the normal calculated would 
be <0,0,-1>, which is still the z axis but in the "opposite" direction. It's important to keep 
track of these things since we often need plane equations to be correct in order to 
determine which side of a polygon an object (such as the view point) is on. 
Constructing a plane from three points on the plane:  
 
   Normal vector = n 
       n = cross product ( (b-a),(c-a) ) 
       Normalize(n); find a unit vector 
        
 d = - dot product(n,a) 
If you already have a normal and also have a point on the plane, the first step can be 
skipped. 
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Constructing a plane from a normal and a point on the plane:  
 
       Normalize(n); find a unit vector 
        d = - dot product(n,a) 
 
This brings up an important point. If you have an n-sided polygon, nothing discussed up 
to this point is forcing all of the points to be coplanar. However, problems can crop up if 
some of the points in the polygon aren't coplanar. For example, when I discuss back-face 
culling in a moment, you may misidentify what is actually behind the polygon, since there 
won't be a plane that clearly defines what is in front of and what is behind the plane. That 
is one of the advantages of using triangles to represent geometry—three points define a 
plane exactly. 
Defining Locality with Relation to a Plane 
One of the most important operations planes let you perform is defining the location of a 
point with respect to a plane. If you drop a point into the equation, it can be classified into 
three cases: in front of the plane, in back of the plane, or coplanar with the plane. Front is 
defined as the side of the plane the normal sticks out of. 
Here, once again, precision will rear its ugly head. Instead of doing things the theoretical 
way, having the planes infinitely thin, I'm going to give them a certain thickness of (you 
guessed it) epsilon. 
How do you orient a point in relation to a plane? Well, simply plug x, y, and z into the 
equation, and see what you get on the right side. If you get zero (or a number close 
enough to zero by plus or minus epsilon), then the point satisfied the equation and lies on 
the plane. Points like this can be called coplanar. If the number is greater than zero, then 
you know that you would have to travel farther along the origin following the path of the 
normal than you would need to go to reach the plane, so the point must be in front of the 
plane. If the number is negative, it must be behind the plane. Note that the first three 
terms of the equation simplify to the dot product of the input vector and the plane normal. 
Figure below has a visual representation of this operation. 

 
Figure: Classifying points with respect to a plane  
Once you have code to classify a point, classifying other primitives, like polygons, 
becomes pretty trivial, as shown below. The one issue is there are now four possible 
definition states when the element being tested isn't infinitesimally small. The element 
may be entirely in front of the plane, entirely in back, or perfectly coplanar. It may also be 
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partially in front and partially in back. I'll refer to this state as splitting the plane. It's just a 
term; the element isn't actually splitting anything. 
Back-face Culling 
Now that you know how to define a point with respect to a plane, you can perform back-
face culling, one of the most fundamental optimization techniques of 3D graphics. 
Let's suppose you have a triangle whose elements are ordered in such a fashion that when 
viewing the triangle from the front, the elements appear in clockwise order. Back-face 
culling allows you to take triangles defined with this method and use the plane equation 
to discard triangles that are facing away. Conceptually, any closed mesh, a cube for 
example, will have some triangles facing you and some facing away. You know for a fact 
that you'll never be able to see a polygon that faces away from you; they are always 
hidden by triangles facing towards you. This, of course, doesn't hold if you're allowed to 
view the cube from its inside, but this shouldn't be allowed to happen if you want to really 
optimize your engine. 
Rather than perform the work necessary to draw all of the triangles on the screen, you can 
use the plane equation to find out if a triangle is facing towards the camera, and discard it 
if it is not. How is this achieved? Given the three points of the triangle, you can define a 
plane that the triangle sits in. Since you know the elements of the triangle are listed in 
clockwise order, you also know that if you pass the elements in order to the plane 
constructor, the normal to the plane will be on the front side of the triangle. If you then 
think of the location of the camera as a point, all you need to do is perform a point-plane 
test. If the point of the camera is in front of the plane, then the triangle is visible and 
should be drawn. 
There's an optimization to be had. Since you know three points that lie in the plane (the 
three points of the triangle) you only need to hold onto the normal of the plane, not the 
entire plane equation. To perform the back-face cull, just subtract one of the triangle's 
points from the camera location and perform a dot product with the resultant vector and 
the normal. If the result of the dot product is greater than zero, then the view point was in 
front of the triangle. Figure below can help explain the point. 

 
Figure: A visual example of back-face culling  
In practice, 3D accelerators can actually perform back-face culling by themselves, so as 
the triangle rates of cards increase, the amount of manual back-face culling that is 
performed has steadily decreased. However, the information is useful for custom 3D 
engines that don't plan on using the facilities of direct hardware acceleration. 
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Intersection between a Line and a Plane 
This occurs at the point which satisfies both the line and the plane equations.  
Line equation: p = org + u * dir                             (1) 
Plane equation: p * normal - k = 0.                          (2) 
Substituting (1) into (2) and rearranging we get: 
(org + u * dir) * normal - k = 0  
ie  u * dir * normal = k - org * normal 
ie  u = (k - org * normal) / (dir * normal) 
If (d * normal) = 0 then the line runs parrallel to the plane and no intersection occurs. The 
exact point at which intersection does occur can be found by plugging u back into the line 
equation in (1). 
 
Clipping Lines 
One thing that you'll need is the ability to take two points (a and b) that are on different 
sides of a plane defining a line segment, and find the point making the intersection of the 
line with the plane. 
This is easy enough to do. Think of this parametrically. Point a can be thought of as the 
point at time 0 and point b as the point at time 1, and the point of intersection you want to 
find is somewhere between those two. 
Take the dot product of a and b. Using them and the inverse of the plane's d parameter, 
you can find the scale value (which is a value between 0 and 1 that defines the parametric 
location of the particle when it intersects the plane). Armed with that, you just use the 
scale value, plugging it into the linear parametric equation to find the intersection 
location. Figure 5.17 shows this happening visually, and Listing 5.20 has the code. 

 
Figure 5.17: Finding the intersection of a plane and a line  
Listing 5.20: plane3::Split  
 
inline const point3 plane3::Split( const point3 &a, const point3 &b ) const 
    { 
        float aDot = (a * n); 
        float bDot = (b * n); 
     
        float scale = ( -d - aDot) / ( bDot - aDot ); 
            return a + (scale * (b - a)); 
    } 
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Lecture No.22   Triangle Rasterization 

 
Introduction 
  
High performance triangle rasterization is a very important topic in Computer Graphics in 
today’s world.   
Triangles are the foundation of modern real time graphics, and are by far the most popular 
rendering primitive.  Most computer games released in the last few years are almost 
completely dependent on triangle rasterization performance. Recently the focus of 
graphics performance optimization is beginning to shift to bandwidth requirements as 
well as transformation and lighting.  Nevertheless, rasterization performance is still a 
factor, and this lecture will provide most of the basics of high performance triangle 
rasterization. Also, it will go into detail about two often neglected rendering quality 
improvements, sub-pixel and sub-texel accuracy.  Also, smooth shading and texture 
mapping techniques will be described. 
 
Solid Fill Triangle Rendering   
  
The first step in triangle rasterization is to be able to render a solid filled triangle.  All 
triangle drawing routines should fill the same pixels on the screen so it makes sense to 
start with the simplest example and work up.  The goal is to draw a filled triangle by 
plotting pixels on the screen given three vertex points. 
The first step is to sort the triangle vertices by y.  Label the top vertex (x0 ,y0), the middle 
vertex (x1 ,y1), and the bottom vertex (x2 ,y2).  Now the triangle fill can be thought of as 
two separate routines, filling the top half (the region between y0 and y1) and filling the 
bottom half (the region between y1 and y2).  Each of the fill routines consists of filling the 
triangle region one scanline at a time, using the DDA algorithm to find the x values of the 
beginning and the end of each pixel span to draw.   The top half will uses DDA to find the 
x values on edge01 and edge02. The bottom half uses DDA to find the x values on edge12 
and edge02.   
  
  
Sub-pixel Accuracy 
  
The afore mentioned rasterization technique is works well when vertex coordinates are 
integers, but there are some subtle changes that should be made to the DDA algorithm 
when the vertex coordinates do not fall on integer bounds.  In essence, sub-pixel accuracy 
is a way of accounting for the fractional components of the vertex positions in the triangle 
rasterizer.  The changes that need to be made are mainly used to prevent jumpiness when 
there are amounts of motion that are smaller than a pixel.  The edges of the triangle reflect 
the fractional change, and without sub-pixel accuracy, the entire triangle would jump 
down a pixel at a time.  Also, the calculations performed for sub-pixel accuracy allow for 
quicker edge anti-aliasing. 
  
The idea of sub-pixel accuracy is to pre-step the x coordinate of each of the edge DDAs 
an amount corresponding to the fractional component of the y position of the vertex.  For 
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notation sake we denote the upper vertex of an edge as xa,ya and the lower vertex as xb,yb. 
For each edge the starting x coordinate for the DDA algorithm xs is obtained by a prestep 
amount xprestep to the original x coordinate of the vertex: 

The pre step amount ‘xf’ for x, is calculated by multiplying ∂x/∂y by the fix up distance, yf 
.  This fix up distance is just the distance of ya to the next lowest scan line.  For 
clarification purposes, here is some pseudo code for the sub-pixel accurate DDA, which 
can be used to find endpoints for the pixel spans in our triangle rasterizer.  This technique 
can be used to draw sub-pixel accurate lines also. 
  
SubPixDDA( float xa, float ya, float xb, float yb) 
  { 
  int yai,ybi, /*scanline range to draw*/ 
      y;     /*iterator for scanline*/ 
  
  float xp,    /*prestep in x */ 
        x,    /*current x position*/ 
   yf,    /*fractional distance in y */ 
        dxdy;  /*amount to change x by per scanline (1/slope) */ 
  
  
  dxdy=(xb-xa)/(yb-ya); /*perform slope calculation using true */ 
/*vertex positions*/ 
  yai=ceiling(ya); 
  ybi=ceiling(yb); 
   
  yf=yai-ya; 
  xp=(dxdy*yf); 
  x=xa+xp; 
  
  for(y=yai;y<ybi;y++) /*iterate over scanlines*/ 
 { 
 /*do scanline stuff using x,y */  
x+=dxdy; 
 } 
  } 
  
Smooth Shaded Triangle Rasterization 
  
So far we have described a method for solid filled triangle rasterization, but there are a 
variety of other fill types that are use.  Smooth shaded triangles can be used to 
approximate the effects of lighting over a surface.  They can be used for light falloff, or 
can be used to give the appearance to a curved surface.  
The idea behind smooth shading is to linearly interpolate the vertex colors over the 
triangle being drawn.  Luckily for us, we already have the tool to do this, DDA.   In fact, 
drawing smooth shaded polygons is not much more difficult than drawing solid filled 
ones.  The vertex colors must be interpolated along each edge of the triangle using DDA.  
This gives us a separate pair of colors for the beginning and end of each pixel span for 
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each scan line.  The last step that needs to be performed is to use DDA to interpolate the 
colors across each pixel span.   
  
To do smooth shading with RGB color, you must use separate DDA interpolation routines 
for the red, green, and blue components of the color.   Also note that inside the smooth 
shading routine r, g, and b must be represented as a type with a fractional component 
(type float is a good choice).  To avoid visual artifacts it is recommended that you use the 
sub-texel accuracy technique that is described further on in these notes. 
  
Texture Mapped Triangle Rasterization 
 

  
Another common triangle fill method is called texture mapping.  Texture mapping is a 
technique for interpolating an image over the triangle being rasterized.  The image being 
interpolated is known as a texture map, and each pixel in the texture map is known as a 
texel.  Because it allows for the use of images to represent a surface on an object, it has 
the potential to greatly reduce the number of triangles needed to represent an object.   In 
addition to this, texture mapping can also be used to simulate the effects of complex 
lighting conditions on an object.  
  
This section describes bilinear texture mapping, which is the simplest technique to 
implement.  In order to perform bilinear texture mapping, each vertex contains a u, v 
texture coordinate.  This specifies the location in the texture map that this vertex 
corresponds to.  Given these texture coordinates, texture mapping isn’t much more 
difficult than smooth shading.   The texture coordinates u, v are interpolated over the 
triangle using DDA just like the r, g, and b values are in smooth shading.  The difference 
is that the resulting u, v location for every pixel is used to lookup a color value in the 
texture map image for the pixel to be drawn. 
  
However, there is the problem how to deal with the fractional component of the u, v 
values; looking up color values in the texture map requires integer coordinates.  
  
One technique is to round the u, v values to the nearest integer.  This is the quickest 
approach, but produces a blocky looking triangle image when the texture map is small in 
comparison to the triangle size.  Most software based texture mapping routines used in 
computer games take use this approach because of the speed advantages.  However, the 
majority of hardware based texture mapping routines has an option to do bilinear 
sampling.  Bilinear sampling uses the fractional component of the u, v coordinate to 
perform a weighted average of 4 adjacent texel colors.  The fractional components of u, v 
are used to find the distance of u, v from the texels themselves.  This distance is used as 
the weighting, and the formula for the pixel color to be drawn cbilin_samp is: 
  
Here is some pseudocode to do this: 
  
color BilinearSampling(float u, float v, color texMap[256][256]) 
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  { 
  color c00,c01,c10,c11; 
  int u0,u1,v0,v1;  
  float ufrac,vfrac; 
   
  u0=floor(u); 
  u1=ceiling(u); 
  v0=floor(u); 
  v1=ceiling(u); 
  ufrac=u-u0; 
  vfrac=v=v0; 
  
  c00=texMap[u0][v0]; 
  c01=texMap[u0][v1]; 
  c10=texMap[u1][v0]; 
  c11=texMap[u1][v1]; 
     
  return(     vfrac * (ufrac*c11 + (1-ufrac)*c01) + 
          (1-vfrac) * (ufrac*c10 + (1-ufrac)*c00) ); 
  
  } 
  
 
Sub-Texel Accuracy 
  
The disparity between integer screen pixel locations and the mathematical equations for 
the triangle also causes problems for texture mapping, and smooth shading.  Any value 
that is interpolated over the triangle such as r, g, and b for smooth shading and u and v for 
texture mapping must take into account the fractional component of the vertex 
information.  Taking these fractional quantities into account is called sub-texel accuracy, 
for the reason that it is used most commonly with texture mapping.  In actuality, sub-texel 
accuracy can be applied to any quantity interpolated over the triangle.  Without sub-texel 
accuracy, the texture will visibly jump around by a pixel when the triangle undergoes 
small amounts of motion.   
  
The sub-texel accurate DDA interpolators for texture mapping are very similar to the sub-
pixel accurate DDA routine presented earlier.  For each edge of the triangle, the sub-texel 
DDA for the interpolated values is identical to the sub-pixel DDA, when u or v is 
substituted for x.   However, for each scan line, the beginning and end x locations of the 
pixel span have fractional components which need to be accounted for.  To interpolate the 
texels coordinates correctly over the pixel span for each scan line, a subtexel accurate 
pixel span DDA is required.  Luckily for us, this formulation is also virtually identical to 
the sub-pixel DDA. All that need to be done is to substitute u or v for x in the original, 
and substitute x for y in the original. 
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Flat Filling Triangles 

 
Drawing triangle (or in general convex polygon, but as we discussed we will use only 
triangles) is very simple. The basic idea of the line triangle drawing algorithm is as 
follows. 
For each scan line (horizontal line on the screen), find the points of intersection with the 
edges of the triangle. Then, draw a horizontal line between intersections and do this for 
all scan lines. 
But how can we find these points quickly? 
Using linear interpolation! 
 
We have 3 vertices and we want to find coordinates of all points belonging to segments 
determined by these vertices. 
Assume we have segment given by points:  
(xa,ya) and (xb,yb).  
Our task is to find points: (xc,ya+1), (xd,ya+2), ... , (xm,yb-1), (xn,yb). 
Notice that xa changes to xb in (yb-ya) steps.  
 
 
We also have:  
xa=xa+0*(xb-xa)/(yb-ya), 
 
Xb = xa + ( yb-ya ) * ( xb-xa ) / ( yb-ya )  
and, in general, xi = xa + ( yi – ya ) * delta ,  
 
where delta=(xb-xa)/(yb-ya). 
 
The general function for linear interpolation is: 
 
f(X) = A + X * ( (B-A) / steps) where we slide from A to B in steps steps 
 
Here is pseudo code for a triangle filling algorithm. 
 
The coordinates of vertices are (A. x,A. y), (B. x,B. y), (C. x,C. y); we assume that A. y 
<= B. y <= C. y (you should sort them first)  
 
dx1,dx2,dx3 are deltas used in interpolation  
 
Horizontal line draws horizontal segment with coordinates  
(S. x, Y), (E. x, Y)  
 
S. x, E. x are left and right x-coordinates of the segment we have to draw  
 
S = A means that S. x = A. x; S. y = A. y; 
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if (B.y - A.y > 0)  dx1 = (B.x-A.x) / (B.y-A.y)  
else dx1=0; 
 
if (C.y - A.y > 0)  dx2=(C.x-A.x)/(C.y-A.y)  
else dx2=0; 
 
if (C.y-B.y > 0) dx3=(C.x-B.x)/(C.y-B.y)  
else dx3=0; 
 
S = E = A 
 
if(dx1 > dx2) 
 { 
 for( ; S.y<=B.y; S.y++, E.y++, S.x+=dx2, E.x += dx1) 
  horizontal line (S.x,E.x,S.y, E.x,color); 
 E=B; 
 for(;S.y<=C.y;S.y++,E.y++,S.x+=dx2,E.x+=dx3) 
  horizontal line(S.x,E.x,S.y, E.x,color); 
} 
else 
{ 
 for(;S.y<=B.y;S.y++,E.y++,S.x+=dx1,E.x+=dx2) 
  horizontal line(S.x,E.x,S.y, E.x,color); 
 S=B; 
 for(;S.y<=C.y;S.y++,E.y++,S.x+=dx3,E.x+=dx2) 
  horizontal line(S.x,E.x,S.y, E.x,color); 
} 
 
I ought to explain what is the comparision dx1 > dx2 for. It's optimization trick: in the 
horizontal line routine, we don't need to compare the x's (S.x is always less than or equal 
to E.x).  
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Gouraud Shading 
 

 
 
The idea of gouraud and flat triangle is nearly the same. Gouraud takes only three 
parameters more (the color value of each of the vertices), and the routine just interpolates 
among them drawing a beautiful, shaded triangle.  
You can use 256-colors mode, in which vertices' colors are simply indices to palette or hi-
color mode (recommended).  
 
Flat triangle interpolated only one value (x in connection with y), 256 colors gouraud 
needs three (x related to y, color related to y, and color related to x), hi-color gouraud 
needs seven (x related to y, red, green and blue components of color related to y, and 
color related to x (also three components))  
 
Drawing a gouraud triangle, we add only two parts to the flat triangle routine. The 
horizline routine gets a bit more complicated due to the interpolation of the color value 
related to x but the main routine itself remains nearly the same.  
 
We'll give you a full gouraud routine because good pseudo code is better than the best 
description: 
the coordinates of vertices are (A.x,A.y), (B.x,B.y), (C.x,C.y) we assume that 
A.y<=B.y<=C.y (you should sort them first)  
vertex A has color (A.r,A.g,A.b), B (B.r,B.g,B.b), C (C.r,C.g,C.b), where X.r is color's 
red component, X.g is color's green component and X.b is color's blue component  
dx1,dx2,dx3 are deltas used in interpolation of x-coordinate  
dr1,dr2,dr3, dg1,dg2,dg3, db1,db2,db3 are deltas used in interpolation of color's 
components  
putpixel(P) plots a pixel with coordinates (P.x,P.y) and color (P.r,P.g,P.b)  
S=A means that S.x=A.x; S.y=A.y; S.r=A.r; S.g=A.g; S.b=A.b;  
 
Drawing triangle: 
 
if (B.y-A.y > 0) { 
  dx1=(B.x-A.x)/(B.y-A.y); 
  dr1=(B.r-A.r)/(B.y-A.y); 
  dg1=(B.g-A.g)/(B.y-A.y); 
  db1=(B.b-A.b)/(B.y-A.y); 
 } else  
  dx1=dr1=dg1=db1=0; 
 
 if (C.y-A.y > 0) { 
  dx2=(C.x-A.x)/(C.y-A.y); 
  dr2=(C.r-A.r)/(C.y-A.y); 
  dg2=(C.g-A.g)/(C.y-A.y); 
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  db2=(C.b-A.b)/(C.y-A.y); 
 } else  
  dx2=dr2=dg2=db2=0; 
 
 if (C.y-B.y > 0) { 
  dx3=(C.x-B.x)/(C.y-B.y); 
  dr3=(C.r-B.r)/(C.y-B.y); 
  dg3=(C.g-B.g)/(C.y-B.y); 
  db3=(C.b-B.b)/(C.y-B.y); 
 } else  
  dx3=dr3=dg3=db3=0; 
 
 S=E=A; 
 if(dx1 > dx2) { 
  for(;S.y<=B.y;S.y++,E.y++) { 
   if(E.x-S.x > 0) { 
    dr=(E.r-S.r)/(E.x-S.x); 
    dg=(E.g-S.g)/(E.x-S.x); 
    db=(E.b-S.b)/(E.x-S.x); 
   } else  
    dr=dg=db=0; 
   P=S; 
   for(;P.x < E.x;P.x++) { 
    putpixel(P); 
    P.r+=dr; P.g+=dg; P.b+=db; 
   } 
   S.x+=dx2; S.r+=dr2; S.g+=dg2; S.b+=db2; 
   E.x+=dx1; E.r+=dr1; E.g+=dg1; E.b+=db1; 
  } 
 
  E=B; 
  for(;S.y<=C.y;S.y++,E.y++) { 
   if(E.x-S.x > 0) { 
    dr=(E.r-S.r)/(E.x-S.x); 
    dg=(E.g-S.g)/(E.x-S.x); 
    db=(E.b-S.b)/(E.x-S.x); 
   } else  
    dr=dg=db=0; 
   P=S; 
   for(;P.x < E.x;P.x++) { 
    putpixel(P); 
    P.r+=dr; P.g+=dg; P.b+=db; 
   } 
   S.x+=dx2; S.r+=dr2; S.g+=dg2; S.b+=db2; 
   E.x+=dx3; E.r+=dr3; E.g+=dg3; E.b+=db3; 
  } 
 } else { 
  for(;S.y<=B.y;S.y++,E.y++) { 
   if(E.x-S.x > 0) { 
    dr=(E.r-S.r)/(E.x-S.x); 
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    dg=(E.g-S.g)/(E.x-S.x); 
    db=(E.b-S.b)/(E.x-S.x); 
   } else  
    dr=dg=db=0; 
 
   P=S; 
   for(;P.x < E.x;P.x++) { 
    putpixel(P); 
    P.r+=dr; P.g+=dg; P.b+=db; 
   } 
   S.x+=dx1; S.r+=dr1; S.g+=dg1; S.b+=db1; 
   E.x+=dx2; E.r+=dr2; E.g+=dg2; E.b+=db2; 
  } 
 
  S=B; 
  for(;S.y<=C.y;S.y++,E.y++) { 
   if(E.x-S.x > 0) { 
    dr=(E.r-S.r)/(E.x-S.x); 
    dg=(E.g-S.g)/(E.x-S.x); 
    db=(E.b-S.b)/(E.x-S.x); 
   } else  
    dr=dg=db=0; 
 
   P=S; 
   for(;P.x < E.x;P.x++) { 
    putpixel(P); 
    P.r+=dr; P.g+=dg; P.b+=db; 
   } 
   S.x+=dx3; S.r+=dr3; S.g+=dg3; S.b+=db3; 
   E.x+=dx2; E.r+=dr2; E.g+=dg2; E.b+=db2; 
  } 
 } 
 
I hope you are familiar with idea of interpolation now.  
 
Textured Triangles 

 
We can also apply any bitmap on triangle for filling it. 
I'll show you the idea of linear (or 'classical') texture mapping (without perspective 
correction). Linear mapping works pretty well (read: fast) in some scenes, but perspective 
correction is in some way needed in most 3D systems.  
Again we're using the idea of interpolation: now we'll code a texture triangle filler. And 
again the idea is perfectly the same, only two more values to interpolate, that is five 
values total. In texture mapping, we interpolate x, u, and v related to y, and u and v 
related to x (u and v are coordinates in the 2D bitmap space). The situation is maybe 
easier to understand by looking at the following picture:  
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The left triangle is the triangle which is drawn onto the screen. There's a single scanline 
(one call to the horizline routine) pointed out as an example. The triangle on the right is 
the same triangle in the bitmap space, and there's the same scanline drawn from another 
point of view into it, too. So we need just to interpolate, interpolate, and once more 
interpolate in texture filler - an easy job if you've understood the idea of gouraud filler.  
An optimization trick: the color deltas in gouraud and (u,v) coordinate deltas in texture 
remain constant, so we need to calculate them only once per polygon. Let's take the u 
delta in linear texturing as an example. Assume, that dx2<=dx3 (we are using the same 
symbols like in flat and gouraud filler). As we know, we need to interpolate S.u to E.u in 
the horizline routine in (S.x-E.x) steps. We are in the need of a u delta (du) which would 
be the same for the whole polygon. So instead of calculating in each scanline this:  
 
du = (E.u-S.u) / (E.x-S.x),  
we do like this in the setup part of the polygon routine: We know that  
S.x = Ax + (B.y - A.y) * dx1, 
S.u = A.u + (B.y-A.y) * du1,  
E.x = B.x = A.x + (B.y-A.y) * dx2,  
E.u = B.u = A.u + (B.y-A.y) * du2,  
When 
y = B.y (when y is the y-coordinate of the second vertex).  
When we place the values of the variables S.u,E.u,S.x and E.x (above) to the u delta 
statement,  
 
du = (E.u-S.u) / (E.x-S.x),  
 
we get the following statement as a result:  
 
       [A.u+(B.y-A.y)*du2] - [A.u+(B.y-A.y)*du1] 
  du = ----------------------------------------- 
       [A.x+(B.y-A.y)*dx2] - [A.x+(B.y-A.y)*dx1] 
 
       (B.y-A.y)*(A.u-A.u+du2-du1) 
  du = --------------------------- 
       (B.y-A.y)*(A.x-A.x+dx2-dx1) 
 
        du2-du1 
  du = ------- 
        dx2-dx1 
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                          outerUdelta2-outerUdelta1 
  innerUdelta = -------------------------------- 
                         outerXdelta2-outerXdelta1 
Nice! But what if dx2 = dx1? This of course means that the polygon is just one line, so du 
doesn't need any specific value; zero does the job very well.  
Note! I find it hard to get good results using fixed point math because of inadequate 
precision. 
 
Environmental Mapping 
 

 
 
As I said in 'shading' part, the way demos do environment mapping is very simple. Take 
the X and Y components of your pseudo-normal vectors (perpendicular to vertices), and 
use them to index your texture map!  
 
Your formulae would be:  
U = N.x * 128 + 127  
V = N.y * 128 + 127 (assuming 256x256 texture maps).  
Or in general  
U = N.x * (width / 2) + (width / 2) - 1  
V = N.y * (height / 2) + (height / 2) - 1  
 

 
 
Using texturing and shading at the same time is quite straightforward to implement: the 
basic idea being that we just interpolate the values of both texture and shade and blend 
them in a suitable ratio (alpha-blending).  
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Lecture No.23   Lighting I 

 
 
MATHEMATICS OF COLOR IN COMPUTER GRAPHICS 
 
It is important to understand how color is represented in computer graphics so that we can 
manipulate it effectively. A color is usually represented in the graphics pipeline by a 
three-element vector representing the intensities of the red, green, and blue components, 
or for a more complex object, by a four-element vector containing an additional value 
called the alpha component that represents the opacity of the color. Thus we can talk 
about rgb or rgba colors and mean a color that's made up of either three or four elements. 
There are many different ways of representing the intensity of a particular color element. 
Colors can also be represented as floating point values in the range [0,1].  
Nowadays every PC we can buy has hardware that can render images with thousands or 
millions of individual colors. Rather than have an array with thousands of color entries, 
the images instead contain explicit color values for each pixel. A 16-bit display is named 
since each pixel in a 16-bit image is taken up by 16 bits (2 bytes): 5 bits of red 
information, 6 bits of green information, and 5 bits of blue information. Incidentally, the 
extra bit (and therefore twice as much color resolution) is given to green because our eyes 
are more sensitive to green. A 24-bit display, of course, uses 24 bits, or 3 bytes per pixel, 
for color information. This gives 1 byte, or 256 distinct values each, for red, green, and 
blue. This is generally called true color, because 2563 (16.7 million) colors is about as 
much as your eyes can discern, so more color resolution really isn't necessary, at least for 
computer monitors. 

Finally, there is 32-bit color, something seen on most new graphics cards. Many 3D 
accelerators keep 8 extra bits per pixel around to store transparency information, which is 
generally referred to as the alpha channel, and therefore take up 4 bytes, or 32 bits, of 
storage per pixel. Rather than re-implementing the display logic on 2D displays that don't 
need alpha information, these 8 bits are usually just wasted. 
Representing Color 
Before we can go about giving color to anything in a scene, we need to know how to 
represent color! Usually we use the same red, green, and blue (rgb) channels discussed 
above, but for this there will also be a fourth component called alpha. The alpha 
component stores transparency information about a surface. Practically we will use two 
structures to ease the color duties: color3 and color4. They both use floating-point values 
for their components; color3 has red, green, and blue, while color4 has the additional 
fourth component of alpha in there. 

Colors aren't like points—they have a fixed range. Each component can be anywhere 
between 0.0 and 1.0 (zero contribution of the channel or complete contribution). If 
performing operations on colors, such as adding them together, the components may rise 
above 1.0 or below 0.0.  
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The code for color4 appears below. 
The color4 structure  
 
   struct color4 
    { 
        union { 
            struct 
            { 
                float r, g, b, a; // Red, Green, and Blue color data 
            }; 
            float c[4]; 
        }; 
     
        color4(){} 
     
        color4( float inR, float inG, float inB, float inA ) : 
            r( inR ), g( inG ), b( inB ), a( inA ) 
        { 
        } 
     
        color4( const color3& in, float alpha = 1.f ) 
        { 
            r = in.r; 
            g = in.g; 
            b = in.b; 
            a = alpha; 
        } 
     
        color4( unsigned long color ) 
        { 
            b = (float)(color&255) / 255.f; 
            color >>= 8; 
            g = (float)(color&255) / 255.f; 
            color >>= 8; 
            r = (float)(color&255) / 255.f; 
            color >>= 8; 
            a = (float)(color&255) / 255.f; 
        } 
     
        unsigned long MakeDWord() 
        { 
            unsigned long iA = (int)(a * 255.f ) << 24; 
            unsigned long iR = (int)(r * 255.f ) << 16; 
            unsigned long iG = (int)(g * 255.f ) << 8; 
            unsigned long iB = (int)(b * 255.f ); 
            return iA | iR | iG | iB; 
        } 
     
        // if any of the values are >1, cap them. 
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        void Saturation() 
 
        { 
            if( r > 1 ) 
                r = 1.f; 
            if( g > 1 ) 
                g = 1.f; 
            if( b > 1 ) 
                b = 1.f; 
            if( a > 1 ) 
                a = 1.f; 
            if( r < 0.f ) 
                r = 0.f; 
            if( g < 0.f ) 
                g = 0.f; 
            if( b < 0.f ) 
                b = 0.f; 
            if( a < 0.f ) 
                a = 0.f; 
        } 
     
}; 
 
We should also point out that when dealing with colors, particularly with some of the 
subtleties that we'll be getting into with lights and shades, we should understand the 
gamut of the target device. This is where our beautiful clean mathematics meets the real 
world. The gamut of a device is simply the physical range of colors the device can 
display. Typically, a high-quality display has a better gamut than a cheap one. A good 
printer has a gamut that is significantly different from that of a monitor. If we are 
interested in getting some color images for printing, we shall have to do some 
manipulation on the color values to make the printed image look like the one our program 
generated on the screen. We should also be aware that there are color spaces other than 
the RGB color space. HSV (hue, saturation, and value) is one that's typically used by 
printers, for example. 
 
WHY WE MIGHT WANT 128-BIT COLOR 
 
In one of the early magazines articles of Mike Abrash  [ABRASH 1992], he tells a story 
about going from a 256-color palette to hardware that supported 256 levels for each RGB 
color–16 million colors! What would we do with all those colors? He goes on to tell of a 
story by Sheldon Linker at the eighth Annual Computer Graphics Show on how the folks 
at the Jet Propulsion Lab back in the 1970s had a printer that could print over 50 million 
distinct colors. As a test, they printed out words on paper where the background color was 
only one color index from the word's color. To their surprise, it was easy to discern the 
words—the human eye is very sensitive to color graduations and edge detection. The JPL 
team then did the same tests on color monitors and discovered that only about 16 million 
colors could be distinguished. It seems that the eye is (not too surprisingly) better at 
perceiving detail from reflected light (such as from a printed page) than from emissive 
light (such as from a CRT). The moral is that the eye is a lot more perceptive than you 
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might think. Twenty four-bits of color really is not that much range, particularly if we are 
performing multiple passes. Round-off error can and will show up if we aren't careful! 
 
An example of the various gamuts is shown in the figure below. The CIE diagrams are 
the traditional way of displaying perceived color space, which, we should note, is very 
different from the linear color space used by today's graphics hardware. The colored area 
is the gamut of the human eye. The gamut of printers and monitors are subsets of this 
gamut. 
 

 
 
Figure 1: The 1931 CIE diagram shows the gamut of the eye and the lesser gamut of 
output devices. 
 
 
Multiplying Color Values 
 
First we need to be aware of how to treat colors. The calculation of the color of a 
particular pixel depends, for example, on the surface's material properties that we've 
programmed in, the color of the ambient light (lighting model), the color of any light 
shining on the surface (perhaps of the angle of the light to the surface), the angle of the 
surface to the viewpoint, the color of any fog or other scattering material that's between 
the surface and the viewpoint, etc. No matter how you are calculating the color of the 
pixel, it all comes down to color calculations, at least on current hardware, on rgb or 
rgba vectors where the individual color elements are limited to the [0,1] range. 
Operations on colors are done piecewise–that is, even though we represent colors as rgb 
vectors, they aren't really vectors in the mathematical sense. Vector multiplication is 
different from the operation we perform to multiply color. We'll use the  symbol to 
indicate such piecewise multiplication. 
Colors are multiplied to describe the interaction between a surface and a light source. The 
colors of each are multiplied together to estimate the reflected light color–this is the color 
of the light that this particular light reflects off this surface. The problem with the 



23-Lighting I                                                                                                                                                 VU       
 

 
© Copyright Virtual University of Pakistan 

 

228

standard rgb model is just that we're simulating the entire visible spectrum by three colors 
with a limited range. 
Let's start with a simple example of using reflected colors. Later on we will discuss on 
lighting, we'll discover how to calculate the intensity of a light source, but for now, just 
assume that we've calculated the intensity of a light, and it's a value called id. This 
intensity of our light is represented by, say, a nice lime green color. 
 
Thus 
 

 
Let's say we shine this light on a nice magenta surface given by cs. 
 

 
 
So, to calculate the color contribution of this surface from this particular light, we 
perform a piecewise multiplication of the color values. 
 

 
 
Note: Piecewise multiplication is denoted by  that is element-by-element 
multiplication, used in color operations, where the vector just represents a convenient 
notation for an array of scalars that are operated on simultaneously but independently. 
 
This gives us the dark plum color shown in figure below. We should note that since the 
surface has no green component, that no matter what value we used for the light color, 
there would never be any green component from the resulting calculation. Thus a pure 
green light would provide no contribution to the intensity of a surface if that surface 
contained a zero value for its green intensity. Thus it's possible to illuminate a surface 
with a bright light and get little or no illumination from that light. We should also note 
that using anything other than a full-bright white light [1,1,1] will involve multiplication 
of values less than one, which means that using a single light source will only illuminate a 
surface to a maximum intensity of its color value, never more. This same problem also 
happens when a texture is modulated by a surface color. The color of the surface will be 
multiplied by the colors in the texture. If the surface color is anything other than full 
white, the texture will become darker. Multiple texture passes can make a surface very 
dark very quickly. 
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Figure 2: Multiplying (modulating) color values results in a color equal to or less than 
(darker) the original two. 
 
Given that using a colored light in a scene makes the scene darker, how do we make the 
scene brighter? There are a few ways of doing this. Given that color multiplication will 
never result in a brighter color, it's offset a bit since we end up summing all the light 
contributions together, which, as we'll see in the next section, brings with it its own 
problems. But if we are just interested in increasing the brightness on one particular light 
or texture, one way is to use the API (Library routines e.g. OpenGL or DirectX) to 
artificially brighten the source–this is typically done with texture preprocessing. Or, we 
can artificially brighten the source, be it a light or a texture, by adjusting the values after 
we modulate them. 
 
Dealing with Saturated Colors 
 
On the other hand, what if we have too much contribution to a color? While the colors of 
lights are modulated by the color of the surface, each light source that illuminates the 
surface is added to the final color. All these colors are summed up to calculate the final 
color. Let's look at such a problem. We'll start with summing the reflected colors off a 
surface from two lights. The first light is an orange color and has rgb values 
[1.0,0.49,0.0], and the second light is a nice light green with rgb values [0.0,1.0,0.49]. 
Summing these two colors yields [1.0, 1.49, 0.49], which we can't display because of the 
values larger than one figure below shows. 
 

 
Figure 3: Adding colors can result in colors that are outside the displayable range. 
 
So, what can be done when color values exceed the range that the hardware can display? 
It turns out that there are three common approaches [HALL 1990].  
Clamping the color values is implemented in hardware, so for shaders (technology used in 
today computer graphics for lighting and shading), it's the default, and it just means that 
we clamp any values outside the [0,1] range. Unfortunately, this results in a shift in the 
color.  
The second most common approach is to scale the colors by the largest component. This 
maintains the color but reduces the overall intensity of the color. 
The third is to try to maintain the intensity of the color by shifting (or clipping) the color 
toward pure bright white by reducing the colors that are too bright while increasing the 
other colors and maintaining the overall intensity. Since we can't see what the actual color 
for (figure above) is, let's see what color each of these methods yields (figure below). 
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Figure 4: The results of three strategies for dealing with the same oversaturated color. 
 
As we can see, we get three very different results. In terms of perceived color, the scaled 
is probably the closest though it's darker than the actual color values. If we weren't 
interested in the color but more in terms of saturation, then the clipped color is closer. 
Finally, the clamped value is what we get by default, and as you can see, the green 
component is biased down so that we lose a good sense of the "greenness" of the color we 
were trying to create. 
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Lecture No.24   Lighting II 

 
Clamping Color Values 
 
Now it's perfectly fine to end up with an oversaturated color and pass this result along to 
the graphics engine. What happens in the pipeline is an implicit clamping of the color 
values. Any value that's greater than one is clamped to one, and any less than zero are 
clamped to zero. So this has the benefit of requiring no effort on the part of the shader 
(technology that is being used today for lighting and shading supported by Graphics 
hardware) writer. Though this may make the rendering engine happy, it probably isn't 
what we want. Intuitively, we'd think that shining orange and green lights on a white 
surface would yield a strong green result. But letting the hardware clamp eradicates any 
predominant effect from the green light. Clamping is fast, but it tends to lose fidelity in 
the scene, particularly in areas where we would want and expect subtle changes as the 
light intensities interact, but end up with those interactions getting eradicated because the 
differences are all getting clamped out by the graphics hardware. 
 
Scaling Color Values by Intensity 
Instead of clamping, we might want to scale the color by dividing by the largest color 
value, thus scaling the rgb values into the [0,1] range. In the example from figure 1, the 
final color values were [1.0,1.49,0.49] meaning our largest color value was the green, at 
1.49. Using this approach, we divide each element by 1.49, yielding a scaled color of 
[0.671,1.0,0.329]. Thus any values greater than one are scaled to one, while any other 
values are also scaled by the same amount. This maintains the hue and saturation but 
loses the intensity. This might not be acceptable because the contrast with other colors is 
lost, since contrast perception is nonlinear and we're applying a linear scaling. By looking 
at the three results, we can see the large difference between the resulting colors. 
 

 
Figure 1: Adding colors can result in colors that are outside the displayable range. 
 
Shifting Color Values to Maintain Saturation 
 
One problem with clamping or scaling colors is that they get darker (lose saturation). An 
alternative to scaling is to maintain saturation by shifting color values. This technique is 
called clipping, and it's a bit more complicated than color scaling or clamping. The idea is 
to create a gray-scale vector that runs along the black-white axis of the color cube that's 
got the same brightness as the original color and then to draw a ray at right angles to this 
vector that intersects (i.e., clips) the original color's vector. We need to check to make 
sure that the grayscale vector is itself within the [0,1] range and then to check the sign of 
the ray elements to see if the color elements need to be increased or decreased. As we are 
probably wondering, this can result in adding in a color value that wasn't in the original 
color, but this is a direct result of wanting to make sure that the overall brightness is the 
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same as the original color. And, of course, everything goes to hell in a handbasket if 
we've got overly bright colors, which leave we with decisions about how to nudge the 
gray-scale vector into the [0,1] range, since that means you can't achieve the input color's 
saturation value. Then we're back to clamping or scaling again. 
 
ColorSpace Tool 
 
The ColorSpace tool is a handy tool that we can use to interactively add two colors 
together to see the effects of the various strategies for handling oversaturated colors. We 
simply use the sliders to select the rgb color values for each color. The four displays in 
Figure 5 show the composite, unmodified values of the resulting color (with no color 
square) and the clamped, clipped, and scaled color rgb values along with a color square 
illustrating those color values. 
 

 
 
Figure 2: The ColorSpace tool interface. 
 
Negative Colors and Darklights 
 
We may be wondering, if we can have color values greater than the range in intermediate 
calculations, can we have negative values? Yes, we can! They are called "darklights" after 
their description in an article [GLASSNER 1992] in Graphic Gems III. Since this is all 
just math until we pass it back to the graphics hardware, we can pretty much do anything 
we want, which is pretty much the idea behind programmable shaders (technology used 
by today graphics hardware for lighting and shading)! Darklights are nothing more than 
lights in which one or more of the color values are negative. Thus instead of contributing 
to the overall lighting in a scene, we can specify a light that diminishes the overall 
lighting in a scene. Darklights are used to eliminate bright areas when we're happy with 
all the lighting in your scene except for an overly bright area. Darklights can also be used 
to affect a scene if we want to filter out a specific rgb color. If we wanted to get a night 



24-Lighting II                                                                                                                                                VU        
 

 
© Copyright Virtual University of Pakistan 

 

233

vision effect, we could use a darklight with negative red and blue values, for example, 
which would just leave the green channel. 
 
Alpha Blending 
Up to this point, we’ve been fairly dismissive of the mysterious alpha component that 
rides along in all of the color4 structure. Now, we may finally learn its dark secrets. A lot 
of power is hidden away inside the alpha component. 

Loosely, the alpha component of the RGBA quad represents the opaqueness of a surface. 
An alpha value of 0xFF (255) means the color is completely opaque, and an alpha value 
of 0x00 (0) means the color is completely transparent. Of course, the value of the alpha 
component is fairly meaningless unless we actually activate the alpha blending step. If we 
want, we can set things up a different way, such as having 0x00(0) mean that the color is 
completely opaque. The meaning of alpha is dependent on how we set up the alpha 
blending step. 

As you rasterize primitives, each pixel that we wish to change in the frame buffer gets 
sent through the alpha blending step. That pixel is combined using blending factors to the 
pixel that is currently in the frame buffer. We can add the two pixels together, multiply 
them together, linearly combine them using the alpha component, and so forth. The name 
"alpha blending" comes from the fact that generally the blending factors used are either 
the alpha or the inverse of the alpha. 

The Alpha Blending Equation 
The equation that governs the behavior of the blending is defined as follows: 

 

Final color is the color that goes to the frame buffer after the blending operation. Source 
is the pixel we are attempting to draw to the frame buffer, generally one of the many 
pixels in a triangle we have to draw. Destination is the pixel that already exists in the 
frame buffer before we attempt to draw a new one. The source and destination blend 
factors are variables that modify how the colors are combined together. The blend factors 
are the components we have control over in the equation; we cannot modify the positions 
of any of the terms or modify the operations performed on them. 

For example, say we want an alpha blending equation to do nothing—to just draw the 
pixel from the triangle and not consider what was already there at all. An equation that 
would accomplish this would be: 

 

As we can see, the destination-blending factor is 0 and the source-blending factor is 1. 
This reduces the equation to: 

 

A second example would be if we wanted to multiply the source and destination 
components together before writing them to the frame buffer. This initially would seem 
difficult, as in the above equation they are only added together. However, the blending 
factors defined need not be constants; they can in fact be actual color components (or 
inverses thereof). The equation setup would be: 
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In this equation, the destination blend factor is set to the source color itself. Also, since 
the source blend factor is set to zero, the left-hand side of the equation drops away and we 
are left with: 

 
Code Example 
//This code will blend one image into the second 
 

struct COLOR3{ 
 BYTE b; 
 BYTE g; 
 BYTE r; 
}; 

  
 //Assume the two bitmaps have the same size 
 

COLOR3 *p1; //pointer to first bitmap; 
 COLOR3 *p2; //pointer to Second bitmap; 
  
 int k=0; 
 
 now we compute the blending factor av. 
 
 float av=(float)(alpha&255)/255;// alphaValue in floating point 
 
 
 

compute the new pixel by using the alpha blending formula. 
 

 for(int i=firstBMP.Height; i>0; i--) 
 { 
  for(int j=0; j<firstBMP.Width; j++) 
  { 
   get the red color 
   p1->r =(BYTE)(( p1->r * (av))+ p2->r*(1.0f-(av)) ); 
   get the green color 
   p1->g =(BYTE)(( p1->g * (av))+ p2->g*(1.0f-(av)) ); 
   get the blue color 
   p1->b =(BYTE)(( p1->b * (av))+ p2->b*(1.0f-(av)) ); 
 
   p1++; 
   p2++; 
  } 
 } 
 
send the new bitmap to display device 
 
BlitData(displaydeviceContext, 0,0,firstImage.Width,firstImage.Height); 
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Following images shows the result of the above code. 

 

Figure 3: First Image 

 

Figure 4: Second Image 

 

Figure 5: Blended image 
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Lecture No.25   Mathematics of Lighting and Shading Part I 
 
LIGHTS AND MATERIALS 
 
In order to understand how an object's color is determined, we'll need to understand the 
parts that come into play to create the final color. First, we need a source of illumination, 
typically in the form of a light source in our scene. A light has the properties of color (an 
rgb value) and intensity. Typically, these are multiplied to give scaled rgb values. Lights 
can also have attenuation, which means that their intensity is a function of the distance 
from the light to the surface. Lights can additionally be given other properties such as a 
shape (e.g., spotlights) and position (local or directional), but that's more in the 
implementation rather than the math of lighting effects. Given a source of illumination, 
we'll need a surface on which the light will shine. Here's where we get interesting effects.  
Two types of phenomena are important lighting calculations.  
 
The first is the interaction of light with the surface boundary, and the second is the effect 
of light as it gets absorbed, transmitted, and scattered by interacting with the actual 
material itself. Since we really only have tools for describing surfaces of objects and not 
the internal material properties, light—surface boundary interactions are the most 
common type of calculation we'll see used, though we can do some interesting 
simulations of the interaction of light with material internals. 
Materials are typically richer in their descriptions in an effort to mimic the effects seen in 
real light—material surface interactions. Materials are typically described using two to 
four separate colors in an effort to catch the nuances of real-world light—material surface 
interactions. These colors are the ambient, diffuse, specular, and emissive colors, with 
ambient and specular frequently grouped together, and emissive specified only for objects 
that generate light themselves. The reason there are different colors is to give different 
effects arising from different environmental causes. The most common lights are as 
follows: 
 
Ambient lighting:  
It is the overall color of the object due to the global ambient light level. This is the color 
of the object when there's no particular light, just the general environmental illumination. 
That is, the ambient light is an approximation for the global illumination in the 
environment, and relies upon no light in the scene. It's usually a global value that's added 
to every object in a scene.  
 
 
Diffuse lighting:  
It is the color of the object due to the effect of a particular light. The diffuse light is the 
light of the surface if the surface were perfectly matte. The diffuse light is reflected in all 
directions from the surface and depends only on the angle of the light to the surface 
normal.  
 
Specular lighting:  
 
It is the color of the highlights on the surface. The specular light mimics the shininess of a 
surface, and its intensity is a function of the light's reflection angle off the surface. 
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Emissive lighting:  
 
When we need an object to "glow" in a scene, we can do this with an emissive light. This 
is just an additional color source added to the final light of the object. Because we're 
simulating an object giving off its own light; we'd still have to add a real "light" to get an 
effect on objects in a scene. 
 
Before we get into exactly what these types of lighting are, let's put it in perspective for 
our purpose of writing shader code. Shading is simply calculating the color reflected off a 
surface (which is pretty much what shaders do). When a light reflects off a surface, the 
light colors are modulated by the surface color (typically, the diffuse or ambient surface 
color). Modulation means multiplication, and for colors, since we are using rgb values, 
this means component-by-component multiplication. So for light source l with color 
(r1,g1,b1 shining on surface s with color (rs,gs,bs, the resulting color r would be: 
 

 
 
or, multiplying it out, we get 
 

 
 
Where the resulting rgb values of the light and surface are multiplied out to get the final 
color's rgb values 
 
The final step after calculating all the lighting contributions is to add together all the 
lights to get the final color. So a shader might typically do the following: 
 

1. Calculate the overall ambient light on a surface. 
2. For each light in a scene, calculate the diffuse and specular contribution for each 

light. 
3. Calculate any emissive light for a surface. 
4. Add all these lights together to calculate the final color value. 

 
In the real world, we get some sort of interaction (reflection, etc.) when a photon interacts 
with a surface boundary. Thus we see the effects not only when we have a transparent—
opaque boundary (like airplastic), but also a transparent—transparent boundary (like air-
water). The key feature here is that we get some visual effect when a photon interacts 
with some boundary between two different materials. The conductivity of the materials 
directly affects how the photon is reflected. At the surface of a conductor (metals, etc.), 
the light is mostly reflected. For dielectrics (nonconductors), there is usually more 
penetration and transmittance of the light. For both kinds of materials, the dispersion of 
the light is a function of the roughness of the surface (Figure 1 and 2). 
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Figure 1: Light reflecting from a rough and smooth surface of a conductor. 
 

 
 
Figure 2: Light reflecting from a rough and smooth surface of a dielectric showing some 
penetration. 
 
The simplest model assumes that the roughness of the surface is so fine that light is 
dispersed equally in all directions as shown in Figure 1, though later we'll look at fixing 
this assumption. A generalization is that conductors are opaque and dielectrics are 
transparent. This gets confusing since most of the dielectric surfaces that we are interested 
in modeling are mixtures and don't fall into the simple models we've described so far. 
Consider a thick colored lacquer surface. The lacquer itself is transparent, but suspended 
in the lacquer are reflective pigment off of which light gets reflected, bounced, split, 
shifted or altered before perhaps reemerging from the surface. This can be seen in Figure 
3, where the light rays are not just reflected but bounced around a bit inside the medium 
before getting retransmitted to the outside. 
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Figure 3: Subsurface scattering typical of pigment-saturated translucent coatings. 
 
Metallic paint, brushed metal, velvet, etc. are all materials for which we need to examine 
better models to try to represent these surfaces. But with a little creativity in the 
modeling, it's possible to mimic the effect. Figure 4 shows what you get when you use 
multiple broad specular terms for multiple base colors combined with a more traditional 
shiny specular term. There's also a high-frequency normal perturbation that simulates the 
sparkle from a metallic flake pigment. As we can see, we can get something that looks 
particularly striking with a fairly simple model. 
 

 
 
Figure 4: A simple shader to simulate metallic paint: (a) shows the two-tone paint 
shading pass; (b) shows the specular sparkle shading pass; (c) shows the environment 
mapping pass; (d) shows the final composite image 
 
The traditional model gives us a specular term and a diffuse term. We have been able to 
add in texture maps to give our scenes some uniqueness, but the lighting effects have 
been very simple. Shaders allow us to be much more creative with lighting effects. As 
Figure 4 shows, with just a few additional specular terms, we can bring forth a very 
interesting look. But before we go off writing shaders, we'll need to take a look at how it 
all fits together in the graphics pipeline. And a good place to start is by examining the 
traditional lighting model.  
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Lecture No.26   Mathematics of Lighting and Shading Part II Light 

Types and Shading Models 
Light Types 
Now that we have a way to find the light hitting a surface, we're going to need some 
lights! There are three types of lights we are going to discuss. 

I. Parallel Lights (or Directional Lights) 

Parallel lights cheat a little bit. They represent light that comes from an infinitely far away 
light source. Because of this, all of the light rays that reach the object are parallel (hence 
the name). The standard use of parallel lights is to simulate the sun. While it's not 
infinitely far away, 93 million miles is good enough! 

The great thing about parallel lights is that a lot of the math goes away. The attenuation 
factor is always 1 (for point/spotlights, it generally involves divisions if not square roots). 
The incoming light vector for calculation of the diffuse reflection factor is the same for all 
considered points, whereas point lights and spotlights involve vector subtractions and a 
normalization per vertex. 

Typically, lighting is the kind of effect that is sacrificed for processing speed. Parallel 
light sources are the easiest and therefore fastest to process. If we can't afford to do the 
nicer point lights or spotlights, falling back to parallel lights can keep our frame rates at 
reasonable levels. 

II. Point Lights 

Point lights are one step better than directional lights. They represent infinitesimally small 
points that emit light. Light scatters out equally in all directions. Depending on how much 
effort we're willing to expend on the light, we can have the intensity falloff based on the 
inverse squared distance from the light, which is how real lights work. 

 

The light direction is different for each surface location (otherwise the point light would 
look just like a directional light). The equation for it is: 
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Figure 1: Point light sources 

III. Spotlights 

Spotlights are the most expensive type of light we discuss in this course and should be 
avoided if possible because it is not for real time environment. We model a spotlight not 
unlike the type we would see in a theatrical production. They are point lights, but light 
only leaves the point in a particular direction, spreading out based on the aperture of the 
light. 

Spotlights have two angles associated with them. One is the internal cone whose angle is 
generally referred to as theta (θ). Points within the internal cone receive all of the light of 
the spotlight; the attenuation is the same as it would be if point lights were used. There is 
also an angle that defines the outer cone; the angle is referred to as phi. Points outside the 
outer cone receive no light. Points outside the inner cone but inside the outer cone receive 
light, usually a linear falloff based on how close it is to the inner cone. 

 
Figure 2: A spotlight 

If we think all of this sounds mathematically expensive, we're right. Some library 
packages like OpenGL and Direct3D implements lighting for us, so we won't need to 
worry about the implementation of the math behind spotlights, but rest assured that 
they're extremely expensive and can slow down our graphics application a great deal. 
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Then again, they do provide an incredible amount of atmosphere when used correctly, so 
we will have to figure out a line between performance and aesthetics. 

 
Shading Models 
Once we've found basic lighting information, we need to know how to draw the triangles 
with the supplied information. There are currently three ways to do this; the third has just 
become a hardware feature with DirectX 9.0 In our previous lectures we have already 
studied flat and gouraud shading triangle algorithms. 

I. Lambert 

Triangles that use Lambertian shading are painted with one solid color instead of using a 
gradient. Typically each triangle is lit using that triangle's normal. The resulting object 
looks very angular and sharp. Lambertian shading was used mostly back when computers 
weren't fast enough to do Gouraud shading in real time. To light a triangle, you compute 
the lighting equations using the triangle's normal and any of the three vertices of the 
triangle. 

 
Figure 3: Flat shaded view of our polygon mesh  

II. Gouraud 

Gouraud (pronounced garrow) shading is the current de facto shading standard in 
accelerated 3D hardware. Instead of specifying one color to use for the entire triangle, 
each vertex has its own separate color. The color values are linearly interpolated across 
the triangle, creating a smooth transition between the vertex color values. To calculate the 
lighting for a vertex, we use the position of the vertex and a vertex normal. 

Of course, it's a little hard to correctly define a normal for a vertex. What people do 
instead is average the normals of all the polygons that share a certain vertex, using that as 
the vertex normal. When the object is drawn, the lighting color is found for each vertex 
(rather than each polygon), and then the colors are linearly interpolated across the object. 
This creates a slick and smooth look, like the one in Figure 4. 
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Figure 4: Gouraud shaded view of our polygon mesh  
One problem with Gouraud shading is that the triangles' intensities can never be greater 
than the intensities at the edges. So if there is a spotlight shining directly into the center of 
a large triangle, Gouraud shading will interpolate the intensities at the three dark corners, 
resulting in an incorrectly dark triangle. The internal highlighting problem usually isn't 
that bad. If there are enough triangles in the model, the interpolation done by Gouraud 
shading is usually good enough. If we really want internal highlights but only have 
Gouraud shading, we can subdivide the triangle into smaller pieces. 

III. Phong 

Phong shading is the most realistic shading model We are going to talk about, and also 
the most computationally expensive. It tries to solve several problems that arise when we 
use Gouraud shading. If we're looking for something more realistic, some authors have 
also discussed nicer shading models like Tarrence-Sparrow, but they aren't real time (at 
least not right now). First of all, Gouraud shading uses a linear gradient. Many objects in 
real life have sharp highlights, such as the shiny spot on an apple. This is difficult to 
handle with pure Gouraud shading. The way Phong does this is by interpolating the 
normal across the triangle face, not the color value, and the lighting equation is solved 
individually for each pixel. 

 
Figure 5: Phong shaded view of a polygon mesh  
Phong shading isn't technically supported in hardware. But we can now program our own 
Phong rendering engine, and many other special effects, using shaders, a hot new 
technology.
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Lecture No.27   Review II 

 

27.1 CLIPPING - Concept 

It is desirable to restrict the effect of graphics primitives to a sub-region of the canvas, to 
protect other portions of the canvas. All primitives are clipped to the boundaries of this 
clipping rectangle; that is, primitives lying outside the clip rectangle are not drawn.  

The default clipping rectangle is the full canvas (the screen), and it is obvious that we 
cannot see any graphics primitives outside the screen. 
A simple example of line clipping can illustrate this idea: 
 
This is a simple example of line clipping: the display window is the canvas and also the 
default clipping rectangle, thus all line segments inside the canvas are drawn. 
 
The red box is the clipping rectangle we will use later, and the dotted line is the extension 
of the four edges of the clipping rectangle. 
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27.2 Point Clipping 
Assuming a rectangular clip window, point clipping is easy. we save the point if: 
 

xmin <= x <=xmax  
ymin <= y <= ymax  

27.3 Line Clipping 

This section treats clipping of lines against rectangles. Although there are specialized 
algorithms for rectangle and polygon clipping, it is important to note that other graphic 
primitives can be clipped by repeated application of the line clipper.  

27.4 Cohen-Sutherland algorithm - Conclusion 

In summary, the Cohen-Sutherland algorithm is efficient when out-code testing can be 
done cheaply (for example, by doing bit-wise operations in assembly language) and 
trivial acceptance or rejection is applicable to the majority of line segments. (For 
example, large windows - everything is inside, or small windows - everything is outside). 

27.5 Liang-Barsky Algorithm - Conclusion 
 
In general, the Liang_Barsky algorithm is more efficient than the Cohen_Sutherland 
algorithm, since intersection calculations are reduced. Each update of parameters u1 and 
u2 requires only one division; and window intersections of the line are computed only 
once, when the final values of u1 and u2 have computed. In contrast, the Cohen-
Sutherland algorithm can repeatedly calculate intersections along a line path, even though 
the line may be completely outside the clip window, and, each intersection calculation 
requires both a division and a multiplication. Both the Cohen_Sutherland and the 
Liang_Barsky algorithms can be extended to three-dimensional clipping. 

27.6 Polygon Clipping 
A polygon is usually defined by a sequence of vertices and edges. If the polygons are un-
filled, line-clipping techniques are sufficient however, if the polygons are filled, the 
process in more complicated. A polygon may be fragmented into several polygons in the 
clipping process, and the original colour associated with each one. The Sutherland-
Hodgeman clipping algorithm clips any polygon against a convex clip polygon. The 
Weiler-Atherton clipping algorithm will clip any polygon against any clip polygon. The 
polygons may even have holes.  
The following example illustrates a simple case of polygon clipping. 
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27.7 Sutherland and Hodgman's polygon-clipping algorithm:- 

Sutherland and Hodgman's polygon-clipping algorithm uses a divide-and-conquer 
strategy: It solves a series of simple and identical problems that, when combined, solve 
the overall problem. The simple problem is to clip a polygon against a single infinite clip 
edge. Four clip edges, each defining one boundary of the clip rectangle, successively clip 
a polygon against a clip rectangle. 

Note the difference between this strategy for a polygon and the Cohen-Sutherland 
algorithm for clipping a line: The polygon clipper clips against four edges in succession, 
whereas the line clipper tests the outcode to see which edge is crossed, and clips only 
when necessary. 

27.8 Steps of Sutherland-Hodgman's polygon-clipping algorithm 

 Polygons can be clipped against each edge of the window one at a time. 
Windows/edge intersections, if any, are easy to find since the X or Y coordinates are 
already known.  

 Vertices which are kept after clipping against one window edge are saved for clipping 
against the remaining edges.  

 Note that the number of vertices usually changes and will often increase.  

We are using the Divide and Conquer approach. 

27.9 Shortcoming of Sutherlands -Hodgeman Algorithm 
Convex polygons are correctly clipped by the Sutherland-Hodegeman algorithm, but 
concave polygons may be displayed with extraneous lines. This occurs when the clipped 
polygon should have two or more separate sections. But since there is only one output 
vertex list, the last vertex in the list is always joined to the first vertex. There are several 
things we could do to correct display concave polygons. For one, we could split the 
concave polygon into two or more convex polygons and process each convex polygon 
separately. 
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Another approach to check the final vertex list for multiple vertex points along any clip 
window boundary and correctly join pairs of vertices. Finally, we could use a more 
general polygon clipper, such as wither the Weiler-Atherton algorithm or the Weiler 
algorithm described in the next section. 
 

27.10 Weiler-Atherton Polygon Clipping 
 
In this technique, the vertex-processing procedures for window boundaries are modified 
so that concave polygons are displayed correctly. This clipping procedure was developed 
as a method for identifying visible surfaces, and so it can be applied with arbitrary 
polygon-clipping regions. 
 
The basic idea in this algorithm is that instead of always proceeding around the polygon 
edges as vertices are processed, we sometimes want to follow the window boundaries. 
Which path we follow depends on the polygon-processing direction(clockwise or 
counterclockwise) and whether the pair of polygon vertices currently being processed 
represents an outside-to-inside pair or an inside-to-outside pair. For clockwise processing 
of polygon vertices, we use the following rules: 
 
 For an outside-top inside pair of vertices, follow the polygon boundary 
 For an inside-to-outside pair of vertices, follow the window boundary in a clockwise 

direction 
 
In following figure, the processing direction in the Wieler-Atherton algorithm and the 
resulting clipped polygon is shown for a rectangular clipping window. 
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27.11   3D Concepts 
 

27.12  Coordinate Systems 
Coordinate systems are the measured frames of reference within which geometry is 
defined, manipulated and viewed. In this system, you have a well-known point that serves 
as the origin (reference point), and three lines(axes) that pass through this point and are 
orthogonal to each other ( at right angles – 90 degrees).  
 
With the Cartesian coordinate system, you can define any point in space by saying how 
far along each of the three axes you need to travel in order to reach the point if you start at 
the origin. 
Following are three types of the coordinate systems. 

27.13 1-D Coordinate Systems: 
 

 
This system has the following characteristics: 

• Direction and magnitude along a single axis, with reference to an origin 

• Locations are defined by a single coordinate 

• Can define points, segments, lines, rays 

• Can have multiple origins (frames of reference) and transform coordinates among 
them 

 

27.14 2-D Coordinate Systems: 

 

• Direction and magnitude along two axes, with reference to an origin 

• Locations are defined by x, y coordinate pairs 

• Can define points, segments, lines, rays, curves, polygons, (any planar geometry) 

• Can have multiple origins (frames of reference and transform coordinates among 
them 
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27.15 3-D Coordinate Systems: 

 

• 3D Cartesian coordinate systems 

• Direction and magnitude along three axes, with reference to an origin 

• Locations are defined by x, y, z triples 

• Can define cubes, cones, spheres, etc., (volumes in space) in addition to all one- 
and two-dimensional entities 

• Can have multiple origins (frames of reference) and transform coordinates among 
them 

 

27.16 Left-handed versus Right-handed 

 

• Determines orientation of axes and direction of rotations  

• Thumb = pos x, Index up = pos y, Middle out = pos z  

• Most world and object axes tend to be right handed  
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• Left handed axes often are used for cameras  

27.17 Right Handed Rule: 

“Right Hand Rule” for rotations: grasp axis with right hand with thumb oriented in 
positive direction, fingers will then curl in direction of positive rotation for that 

axis.  

Right handed Cartesian coordinate system describes the relationship of the X,Y, and Z 
in the following manner: 

• X is positive to the right of the origin, and negative to the left. 

• Y is positive above the origin, and negative below it. 

• Z is negative beyond the origin, and positive behind it. 
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27.18 Left Handed Rule: 

 

Left handed Cartesian coordinate system describes the relationship of the X, Y and Z 
in the following manner: 

• X is positive to the right of the origin, and negative to the left. 

• Y is positive above the origin, and negative below it. 

• Z is positive beyond the origin, and negative behind it. 

27.19 Defining 3D points in mathematical notations 

3D points can be described using simple mathematical notations 

P = (X, Y, Z) 

Thus the origin of the Coordinate system is located at point (0,0,0), while five units to 
the right of that position might be located at point (5,0,0). 

+Z 
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+X 

+Y 

East 

North 
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Sout

Origin 
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27.20 Y-up versus Z-up: 

 

 

• z-up typically used by designers  

• y-up typically used by animators  

• orientation by profession supposedly derives from past work habits 

• often handled differently when moving from application to application 

27.21 Global and Local Coordinate Systems: 

 

 

• Local coordinate systems can be defined with respect to global coordinate system 

• Locations can be relative to any of these coordinate systems 

• Locations can be translated or "transformed" from one coordinate system to 
another. 
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27.22 Multiple Frames of Reference in a 3-D Scene: 

 

• In fact, there usually are multiple coordinate systems within any 3-D screen 

• Application data will be transformed among the various coordinate systems, 
depending on what's to be accomplished during program execution 

• Individual coordinate systems often are hierarchically linked within the scene 

27.23 The Polar Coordinate System 

Cartesian systems are not the only ones we can use. We could have also described the 
object position in this way: “starting at the origin, looking east, rotate 38 degrees 
northward, 65 degrees upward, and travel 7.47 feet along this line. “As you can see, this 
is less intuitive in a real world setting. And if you try to work out the math, it is harder to 
manipulate (when we get to the sections that move points around). Because such polar 
coordinates are difficult to control, they are generally not used in 3D graphics. 

27.24 Defining Geometry in 3-D 

Here are some definitions of the technical names that will be used in 3D lectures. 
Modeling: is the process of describing an object or scene so that we can construct an 
image of it. 
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27.25 Points & polygons:  

 

 

• Points:  three-dimensional locations (or coordinate triples)  

 

• Vectors: - have direction and magnitude; can also be thought of as displacement  

 

• Polygons: - sequences of  “correctly” co-planar points; or an initial point and a 
sequence of vectors 

 

27.26 Primitives 

Primitives are the fundamental geometric entities within a given data structure. 
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• We have already touched on point, vector and polygon primitives  

 

 

• Regular Polygon Primitives - square, triangle, circle, n-polygon, etc. 

 

• Polygon strips or meshes 

• Meshes provide a more economical description than multiple individual polygons 
 
For example, 100 individual triangles, each requiring 3 vertices, would require  
100 x 3 or 300 vertex definitions to be stored in the 3-D database. 
 
By contrast, triangle strips require n + 2 vertex definitions for any n number or 
triangles in the strip. Hence, a 100 triangle strip requires only 102 unique vertex 
definitions. 

• Meshes also provide continuity across surfaces which is important for shading 
calculations  

 

• 3D primitives in a polygonal database 
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3D shapes are represented by polygonal meshes that define or approximate geometric 
surfaces.  

 

• With curved surfaces, the accuracy of the approximation is directly proportional to the 
number of polygons used in the representation. 

• More polygons (when well used) yield a better approximation.  

• But more polygons also exact greater computational overhead, thereby degrading 
interactive performance, increasing render times, etc. 

27.27  Rendering   

• The process of computing a two dimensional image using a combination of a three-
dimensional database, scene characteristics, and viewing transformations. Various 
algorithms can be employed for rendering, depending on the needs of the application. 

27.28  Tessellation 

• The subdivision of an entity or surface into one or more non-overlapping primitives. 
Typically, renderers decompose surfaces into triangles as part of the rendering 
process. 

27.29  Sampling 

• The process of selecting a representative but finite number of values along a 
continuous function sufficient to render a reasonable approximation of the function 
for the task at hand. 

27.30  Level of Detail (LOD)  

• To improve rendering efficiency when dynamically viewing a scene, more or less 
detailed versions of a model may be swapped in and out of the scene database 
depending on the importance (usually determined by image size) of the object in the 
current view. 

27.31  Transformations 
The process of moving points in space is called transformation.   
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27.32  Types of Transformation 
There are various types of transformations as we have seen in case of 2D transformations. 
These include: 

a. Translation 
b. Rotation 
c. Scaling 
d. Reflection 
e. Shearing 

a) Translation 
Translation is used to move a point, or a set of points, linearly in space. Since now we are 
talking about 3D, therefore each point has 3 coordinates i.e. x, y and z. similarly, the 
translation distances can also be specified in any of the 3 dimensions. These Translation 
Distances are given by tx, ty and tz. 
For any point P(x,y,z) after translation we have P′(x′,y′,z′) where  

x′ = x + tx ,    
y′ = y + ty ,  
z′ = z + tz  
and (tx, ty , tz) is Translation vector 

 
Now this can be expressed as a single matrix equation: 
    P′ = P + T 
 
Where:  

  
3D Translation Example 
We may want to move a point “3 meters east, -2 meters up, and 4 meters north.” What 
would be done in such event? 
Steps for Translation 
Given a point in 3D and a translation vector, it can be translated as follows: 
 

Point3D point = (0, 0, 0) 
Vector3D vector = (10, -3, 2.5) 

Adding vector to point 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 

And finally we have translated point. 
 
Homogeneous Coordinates 
Analogous to their 2D Counterpart, the homogeneous coordinates for 3D translation can 
be expressed as : 
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Abbreviated as: 
   P’ = T (tx, ty , tz)  .  P 
On solving the RHS of the matrix equation, we get: 
 
 
 
 
 
 
Which shows that each of the 3 coordinates gets translated by the corresponding 
translation distance. 
 
Rotation 
Rotation is the process of moving a point in space in a non-linear manner  
 

We need to know three different angles: 
How far to rotate around the X axis(YZ rotation, or “pitch”) 
How far to rotate around the Y axis (XZ rotation, or “yaw”) 
How far to rotate around the Z axis (XY rotation, or “roll”)  

 
Column vector representation: 
   P′ = R . P 
Where  

 
Rotation: Homogeneous Coordinates 
The rotation can now be expressed using homogeneous coordinates as:  
 
 
 
 
Abbreviated as: 
   P’   =   R (θ)  .  P 
 
… Now in 3D 

Rotation can be about any of the three axes: 
About z-axis (i.e. in xy plane) 
About x-axis (i.e. in yz plane) 
About y-axis (i.e. in xz plane) 

 
Roll : around z-axis 
Pitch: around x-axis 
Yaw: around y-axis 
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Rotation about z-axis  
(i.e. in xy plane): 

x′  = x cosθ – y sinθ 
y′  = x sinθ + y cosθ 
z’  = z 

 
by Cyclic permutation  
 
Rotation about x-axis  
(i.e. in yz plane): 

x′  = x 
 y′  = y cosθ – z sinθ 

z′  = y sinθ + z cosθ 
and 
Rotation about y-axis  
(i.e. in xz plane): 

x′  = z sinθ +  x cosθ 
y ′  = y 
z′  = z cosθ – x sinθ 

 
 
b) SCALING:- 

Coordinate transformations for scaling relative to the origin are 
 X` = X . Sx 
 Y` = Y . Sy 
 Z` =  Z . Sz 

 
Uniform Scaling 

We preserve the original shape of an object with a uniform scaling  
( Sx = Sy = Sz) 

 
Differential Scaling 

We do not preserve the original shape of an object with a differential scaling  
( Sx <> Sy <> Sz)  

 
Scaling w.r.t. Origin 
 
 
 
 
27.33  PROJECTION 
 Projection can be defined as a mapping of point P(x,y,z) onto its image 
P`(x`,y`,z`) in the projection plane or view plane, which constitutes the display surface  
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Methods of Projection 
 

•Parallel Projection 

•Perspective Projection 
 

 
Parallel Projection is divided into Orthographic and Oblique transformations. 

•Orthographic 
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•Oblique 

 
Orthographic projection has two types 

• Multiview 
• Axonometric 

Multiview: 
 
There are three orthographic views of an object. 

 
 
Axonometric projections: 
There are three axonometric projections: 
 

•Isometric 

•Dimetric 

•Trimetric 
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1. Isometric 
The projection plane intersects each coordinate axis in the model coordinate system at an 
equal distance or the direction of projection makes equal angles with all of the three 
principal axes 
2. Dimetric 
The direction of projection makes equal angles with exactly two of the principal axes 
3. Trimetric 
The direction of projection makes unequal angles with the three principal axes 
 

 
 
 

Xp  =  x  +  z  ( L1 cos (Ф)  ) 
Yp  =  y  +  z  ( L1 sin (Ф)  ) 

 
Where L1 = L/z 
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Lecture No.28   Review III 

 

28.1 Perspective Projection 

As opposed to parallel projection, perspective projection gives a more realistic view of 
the objects in the scene. The objects away from the POV are projected smaller whereas 
those nearby are projected to appear proportionately larger. The idea is that of looking at 
the scene through the projection plane / screen. 
The POV represents the viewer’s eye, and we presume that the viewer will be behind the 
center of the screen. 
Note: We will use Left hand rule to describe 3D coordinate system. 
Two common approaches are used with this;  
 
1. The first approach is where 
the POV is at some point (0, 
0, -z) and the screen lies on 
the X-Y plane, graphically, 
this looks like figure given 
below: 
2. The second approach is 
where the POV lies at the 
origin, and the screen lies on a 
plane at some +z coordinate, 
as shown in figure given 
below: 
 
As we will see later, this 
second approach is much 
more convenient when we add 
features making it possible for 
the POV to move around the 3D world or for objects to move around in the world. 
Calculating the screen pixel that correlates to a 3D point is now a matter of simple 
geometry. From a viewpoint above the screen and POV (looking at the X-Z plane), the 
geometry appears like the one shown in figure below: 
In geometric terms, we say that the triangle 
from A to B to S is similar to the triangle 
from A to C to P because the three angles 
that make up the triangles are the same: the 
angle from AB to AS is the same as the angle 
from AC to AP, the two right angles are both 
90 degrees, and therefore the remaining two 
angles are the same (the sum of the angles in 
a triangle is always 180 degrees). What also 
holds true from similar triangles is that the 
ratio of two sides holds between the similar 
triangles; this means that the ratio of BS to 
AB is the same as the ratio of CP to AC. But 
we know what AB is-it is Screen.z ! and we 
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know what AC is-it is point.z ! and we know what CP is-it is point.x ! therefore: 
|BS| / |AB| = |CP| / |AC| 
|BS| = |AB| * |CP| / |AC| 
|BS| = Screen.z * point.x / point.z 
Screen.z is the distance d from the point of view at origin or the scaling factor. 
 
Notice that |BS| is the length of the line segment that goes from B to S in world units. But 
we normally address the 
screen with the point 
(0,0) at the top left, with 
+X pixels moving to the 
right, and +Y pixels 
moving down—and not 
from the middle of the 
screen. And we draw to 
the screen in pixel units – 
not our world units 
(unless, of course, 1.0 in 
your world represents 
one pixel). 

28.2 Triangles 

Triangles are to 3D 
graphics what pixels are to 2D graphics. Every PC hardware accelerator under the sun 
uses triangles as the fundamental drawing primitive (well … scan line aligned trapezoids 
actually, but that's a hardware implementation issue). When you draw a polygon, 
hardware devices really draw a fan of triangles. Triangles "flesh out" a 3D object, 
connecting them together to form a skin or mesh that defines the boundary surface of an 
object. Triangles, like polygons, generally have an orientation associated with them, to 
help in normal calculations. The ordering of the vertices goes clockwise around the 
triangle. Figure below shows what a clockwise ordered triangle would look like. 

 
Figure: Three points in space, and the triangle connecting them 

When defining a mesh of triangles that define the boundary of a solid, you set it up so that 
all of the triangles along the skin are ordered clockwise when viewed from the outside. 
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It is impossible to see triangles that face away from you. (You can find this out by 
computing the triangle's plane normal and performing a dot product with a vector from 
the camera location to a location on the plane.) 

Now let's move on to the code. To help facilitate using the multiple types, I'll implement 
triangles structure. I only define constructors and keep the access public. 
struct tri 
    { 
    
        type v[3]; // Array access useful for loops 
     
        tri() 
        { 
         
     // nothing 
 
        } 
     
        tri( type v0, type v1, type v2 ) 
        { 
 
            v[0] = v0; 
 
            v[1] = v1; 
 
            v[2] = v2; 
 
        } 
    }; 

28.3 Strips and Fans 

Lists of triangles are generally represented in one of three ways. The first is an explicit 
list or array of triangles, where every three elements represent a new triangle. However, 
there are two additional representations, designed to save bandwidth while sending 
triangles to dedicated hardware to draw them. They are called triangle strips and triangle 
fans. 

Triangle fans, conceptually, look like the folding fans you see in Asian souvenir shops. 
They are a list of triangles that all share a common point. The first three elements indicate 
the first triangle. Then each new element is combined with the first element and the 
current last element to form a new triangle. Note that an N-sided polygon can be 
represented efficiently using a triangle fan, Figure below illustrates what I'm talking 
about. 
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Figure: A list of points composing a triangle fan 

Triangles in a triangle strip, instead of sharing a common element with all other triangles 
like a fan, only share elements with the triangle immediately preceding them. The first 
three elements define the first triangle. Then each subsequent element is combined with 
the two elements before it, in clockwise order, to create a new triangle. See Figure below 
for an explanation of strips. 

 
Figure: A list of points composing a triangle strip 

 

28.4 Planes 

The next primitive to discuss is the plane. Planes are to 3D what lines are in 2D; they're 
n–1 dimensional hyper-planes that can help you accomplish various tasks. Planes are 
defined as infinitely large, infinitely thin slices of space, like big pieces of paper. 
Triangles that make up your model each exist in their own plane. When you have a plane 
that represents a slice of 3D space, you can perform operations like classification of 
points and polygons and clipping. 

So how do you represent planes? Well it is best to build a structure from the equation that 
defines a plane in 3D. The implicit equation for a plane is: 
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What do these numbers represent? The triplet <a,b,c> represents what is called the 
normal of the plane. A normal is a unit vector that, conceptually speaking, sticks directly 
out of a plane. A stronger mathematical definition would be that the normal is a vector 
that is perpendicular to all of the points that lie in the plane. 

The d component in the equation represents the distance from the plane to the origin. The 
distance is computed by tracing a line towards the plane until you hit it. Finally the triplet 
<x,y,z> is any point that satisfies the equation. The set of all points <x,y,z> that solve the 
equation is exactly all the points that lie in the plane. 

All of the pictures I'm showing you will be of the top-down variety, and the 3D planes 
will be on edge, appearing as 2D lines. This makes figure drawing much easier. 

 

Following are two examples of planes. The first has the normal pointing away from the 
origin, which causes d to be negative (try some sample values for yourself if this doesn't 
make sense). The second has the normal pointing towards the origin, so d is positive. Of 
course, if the plane goes through the origin, d is zero (the distance from the plane to the 
origin is zero). Figures 1 and Figure 2 provide some insight into this relation. 

 
Figure 1: d is negative when the normal faces away from the origin 

 
Figure 2: d is positive when it faces towards the origin 
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It's important to notice that technically the normal <a,b,c> does not have to be unit-length 
for it to have a valid plane equation. But since things end up nicer if the normal is unit-
length. 

Constructing a plane given three points that lie in the plane is a simple task. You just 
perform a cross product between the two vectors made up by the three points  

<point2 − point0> 

<point1 − point0> 

and find a normal for the plane. After generating the normal and making it unit length, 
finding the d value for the plane is just a matter of storing the negative dot product of the 
normal with any of the points. This holds because it essentially solves the plane equation 
above for d. Of course plugging a point in the plane equation will make it equal 0, and 
this constructor has three of them. 

28.5 Back-face Culling 

Now that you know how to define a point with respect to a plane, you can perform back-
face culling, one of the most fundamental optimization techniques of 3D graphics. 

Let's suppose you have a triangle whose elements are ordered in such a fashion that when 
viewing the triangle from the front, the elements appear in clockwise order. Back-face 
culling allows you to take triangles defined with this method and use the plane equation 
to discard triangles that are facing away. Conceptually, any closed mesh, a cube for 
example, will have some triangles facing you and some facing away. You know for a fact 
that you'll never be able to see a polygon that faces away from you; they are always 
hidden by triangles facing towards you. This, of course, doesn't hold if you're allowed to 
view the cube from its inside, but this shouldn't be allowed to happen if you want to really 
optimize your engine. 

Rather than perform the work necessary to draw all of the triangles on the screen, you can 
use the plane equation to find out if a triangle is facing towards the camera, and discard it 
if it is not. How is this achieved? Given the three points of the triangle, you can define a 
plane that the triangle sits in. Since you know the elements of the triangle are listed in 
clockwise order, you also know that if you pass the elements in order to the plane 
constructor, the normal to the plane will be on the front side of the triangle. If you then 
think of the location of the camera as a point, all you need to do is perform a point-plane 
test. If the point of the camera is in front of the plane, then the triangle is visible and 
should be drawn. 

There's an optimization to be had. Since you know three points that lie in the plane (the 
three points of the triangle) you only need to hold onto the normal of the plane, not the 
entire plane equation. To perform the back-face cull, just subtract one of the triangle's 
points from the camera location and perform a dot product with the resultant vector and 
the normal. If the result of the dot product is greater than zero, then the view point was in 
front of the triangle. Figure below can help explain the point. 
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Figure: A visual example of back-face culling 

In practice, 3D accelerators can actually perform back-face culling by themselves, so as 
the triangle rates of cards increase, the amount of manual back-face culling that is 
performed has steadily decreased. However, the information is useful for custom 3D 
engines that don't plan on using the facilities of direct hardware acceleration. 

28.6 Intersection between a Line and a Plane 

This occurs at the point which satisfies both the line and the plane equations.  
Line equation: p = org + u * dir                             (1) 
Plane equation: p * normal - k = 0.                          (2) 
Substituting (1) into (2) and rearranging we get: 
(org + u * dir) * normal - k = 0  
ie  u * dir * normal = k - org * normal 
ie  u = (k - org * normal) / (dir * normal) 
If (d * normal) = 0 then the line runs parrallel to the plane and no intersection occurs. The 
exact point at which intersection does occur can be found by plugging u back into the line 
equation in (1). 

28.7 Triangle Rasterization 
High performance triangle rasterization is a very important topic in Computer Graphics in 
today’s world.   
Triangles are the foundation of modern real time graphics, and are by far the most popular 
rendering primitive.  Most computer games released in the last few years are almost 
completely dependent on triangle rasterization performance. Recently the focus of 
graphics performance optimization is beginning to shift to bandwidth requirements as 
well as transformation and lighting.  Nevertheless, rasterization performance is still a 
factor, and this lecture will provide most of the basics of high performance triangle 
rasterization. Also, it will go into detail about two often neglected rendering quality 
improvements, sub-pixel and sub-texel accuracy.  Also, smooth shading and texture 
mapping techniques will be described. 
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28.8 Flat Filling Triangles 

 
Drawing triangle (or in general convex polygon, but as we discussed we will use only 
triangles) is very simple. The basic idea of the line triangle drawing algorithm is as 
follows. 

For each scan line (horizontal line on the screen), find the points of intersection with the 
edges of the triangle. Then, draw a horizontal line between intersections and do this for 
all scan lines. 
But how can we find these points quickly? 
Using linear interpolation! 
 
We have 3 vertices and we want to find coordinates of all points belonging to segments 
determined by these vertices. 
Assume we have segment given by points:  
(xa,ya) and (xb,yb).  
Our task is to find points: (xc,ya+1), (xd,ya+2), ... , (xm,yb-1), (xn,yb). 
Notice that xa changes to xb in (yb-ya) steps.  
 
 
We also have:  
xa=xa+0*(xb-xa)/(yb-ya), 
 
Xb = xa + ( yb-ya ) * ( xb-xa ) / ( yb-ya )  
and, in general, xi = xa + ( yi – ya ) * delta ,  
 
where delta=(xb-xa)/(yb-ya). 
 
The general function for linear interpolation is: 
 
f(X) = A + X * ( (B-A) / steps) where we slide from A to B in steps steps 
 
Here is pseudo code for a triangle filling algorithm. 
 

• The coordinates of vertices are (A. x,A. y), (B. x,B. y), (C. x,C. y); we assume that 
A. y <= B. y <= C. y (you should sort them first)  

 
• dx1,dx2,dx3 are deltas used in interpolation  

 
• Horizontal line draws horizontal segment with coordinates  

(S. x, Y), (E. x, Y)  
 

• S. x, E. x are left and right x-coordinates of the segment we have to draw  
 

• S = A means that S. x = A. x; S. y = A. y; 
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if (B.y - A.y > 0)  dx1 = (B.x-A.x) / (B.y-A.y)  
else dx1=0; 
 
if (C.y - A.y > 0)  dx2=(C.x-A.x)/(C.y-A.y)  
else dx2=0; 
 
if (C.y-B.y > 0) dx3=(C.x-B.x)/(C.y-B.y)  
else dx3=0; 
 
S = E = A 
 
if(dx1 > dx2) 
 { 
 for( ; S.y<=B.y; S.y++, E.y++, S.x+=dx2, E.x += dx1) 
  horizontal line (S.x,E.x,S.y, E.x,color); 
  

E=B; 
  

for(;S.y<=C.y;S.y++,E.y++,S.x+=dx2,E.x+=dx3) 
  horizontal line(S.x,E.x,S.y, E.x,color); 
} 
else 
{ 
 for(;S.y<=B.y;S.y++,E.y++,S.x+=dx1,E.x+=dx2) 
  horizontal line(S.x,E.x,S.y, E.x,color); 
  

S=B; 
  

for(;S.y<=C.y;S.y++,E.y++,S.x+=dx3,E.x+=dx2) 
  horizontal line(S.x,E.x,S.y, E.x,color); 
} 
 
I ought to explain what is the comparison dx1 > dx2 for. It's optimization trick: in the 
horizontal line routine, we don't need to compare the x's (S.x is always less than or equal 
to E.x).  
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28.9 Gouraud Shading 

 
 
The idea of gouraud and flat triangle is nearly the same. Gouraud takes only three 
parameters more (the color value of each of the vertices), and the routine just interpolates 
among them drawing a beautiful, shaded triangle.  
You can use 256-colors mode, in which vertices' colors are simply indices to palette or hi-
color mode (recommended).  
 
Flat triangle interpolated only one value (x in connection with y), 256 colors gouraud 
needs three (x related to y, color related to y, and color related to x), hi-color gouraud 
needs seven (x related to y, red, green and blue components of color related to y, and 
color related to x (also three components))  
 
Drawing a gouraud triangle, we add only two parts to the flat triangle routine. The 
horizline routine gets a bit more complicated due to the interpolation of the color value 
related to x but the main routine itself remains nearly the same.  

28.10 Textured Triangles 

 
We can also apply any bitmap on triangle for filling it. 

I'll show you the idea of linear (or 'classical') texture mapping (without perspective 
correction). Linear mapping works pretty well (read: fast) in some scenes, but perspective 
correction is in some way needed in most 3D systems.  

Again we're using the idea of interpolation: now we'll code a texture triangle filler. And 
again the idea is perfectly the same, only two more values to interpolate, that is five 
values total. In texture mapping, we interpolate x, u, and v related to y, and u and v 
related to x (u and v are coordinates in the 2D bitmap space). The situation is maybe 
easier to understand by looking at the following picture:  
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The left triangle is the triangle which is drawn onto the screen. There's a single scanline 
(one call to the horizline routine) pointed out as an example. The triangle on the right is 
the same triangle in the bitmap space, and there's the same scanline drawn from another 
point of view into it, too. So we need just to interpolate, interpolate, and once more 
interpolate in texture filler - an easy job if you've understood the idea of gouraud filler.  

28.11 COLOR 
It is important to understand how color is represented in computer graphics so that we can 
manipulate it effectively. A color is usually represented in the graphics pipeline by a 
three-element vector representing the intensities of the red, green, and blue components, 
or for a more complex object, by a four-element vector containing an additional value 
called the alpha component that represents the opacity of the color. Thus we can talk 
about rgb or rgba colors and mean a color that's made up of either three or four elements. 
There are many different ways of representing the intensity of a particular color element. 
Colors can also be represented as floating point values in the range [0,1].  
Nowadays every PC we can buy has hardware that can render images with thousands or 
millions of individual colors. Rather than have an array with thousands of color entries, 
the images instead contain explicit color values for each pixel. A 16-bit display is named 
since each pixel in a 16-bit image is taken up by 16 bits (2 bytes): 5 bits of red 
information, 6 bits of green information, and 5 bits of blue information. Incidentally, the 
extra bit (and therefore twice as much color resolution) is given to green because our eyes 
are more sensitive to green. A 24-bit display, of course, uses 24 bits, or 3 bytes per pixel, 
for color information. This gives 1 byte, or 256 distinct values each, for red, green, and 
blue. This is generally called true color, because 2563 (16.7 million) colors is about as 
much as your eyes can discern, so more color resolution really isn't necessary, at least for 
computer monitors. 

Finally, there is 32-bit color, something seen on most new graphics cards. Many 3D 
accelerators keep 8 extra bits per pixel around to store transparency information, which is 
generally referred to as the alpha channel, and therefore take up 4 bytes, or 32 bits, of 
storage per pixel. Rather than reimplement the display logic on 2D displays that don't 
need alpha information, these 8 bits are usually just wasted. 
 
WHY WE MIGHT WANT 128-BIT COLOR? 
 
In one of the early magazines articles of Mike Abrash  [ABRASH 1992], he tells a story 
about going from a 256-color palette to hardware that supported 256 levels for each RGB 
color–16 million colors! What would we do with all those colors? He goes on to tell of a 
story by Sheldon Linker at the eighth Annual Computer Graphics Show on how the folks 
at the Jet Propulsion Lab back in the 1970s had a printer that could print over 50 million 
distinct colors. As a test, they printed out words on paper where the background color was 
only one color index from the word's color. To their surprise, it was easy to discern the 
words—the human eye is very sensitive to color graduations and edge detection. The JPL 
team then did the same tests on color monitors and discovered that only about 16 million 
colors could be distinguished. It seems that the eye is (not too surprisingly) better at 
perceiving detail from reflected light (such as from a printed page) than from emissive 
light (such as from a CRT). The moral is that the eye is a lot more perceptive than you 
might think. Twenty four-bits of color really is not that much range, particularly if we are 
performing multiple passes. Round-off error can and will show up if we aren't careful! 
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An example of the various gamuts is shown in the figure below. The CIE diagrams are 
the traditional way of displaying perceived color space, which, we should note, is very 
different from the linear color space used by today's graphics hardware. The colored area 
is the gamut of the human eye. The gamut of printers and monitors are subsets of this 
gamut. 
 

 
 
Figure 1: The 1931 CIE diagram shows the gamut of the eye and the lesser gamut of 
output devices. 
 

28.12 Multiplying Color Values 
 
First we need to be aware of how to treat colors. The calculation of the color of a 
particular pixel depends, for example, on the surface's material properties that we've 
programmed in, the color of the ambient light (lighting model), the color of any light 
shining on the surface (perhaps of the angle of the light to the surface), the angle of the 
surface to the viewpoint, the color of any fog or other scattering material that's between 
the surface and the viewpoint, etc. No matter how you are calculating the color of the 
pixel, it all comes down to color calculations, at least on current hardware, on rgb or 
rgba vectors where the individual color elements are limited to the [0,1] range. 
Operations on colors are done piecewise–that is, even though we represent colors as rgb 
vectors, they aren't really vectors in the mathematical sense. Vector multiplication is 
different from the operation we perform to multiply color. We'll use the  symbol to 
indicate such piecewise multiplication. 
Colors are multiplied to describe the interaction between a surface and a light source. The 
colors of each are multiplied together to estimate the reflected light color–this is the color 
of the light that this particular light reflects off this surface. The problem with the 
standard rgb model is just that we're simulating the entire visible spectrum by three colors 
with a limited range. 
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Let's start with a simple example of using reflected colors. Later on we will discuss on 
lighting, we'll discover how to calculate the intensity of a light source, but for now, just 
assume that we've calculated the intensity of a light, and it's a value called id. This 
intensity of our light is represented by, say, a nice lime green color. 
 
Thus 
 

 
Let's say we shine this light on a nice magenta surface given by cs. 
 

 
 
So, to calculate the color contribution of this surface from this particular light, we 
perform a piecewise multiplication of the color values. 
 

 
 
Note: Piecewise multiplication is denoted by  that is element-by-element 
multiplication. Used in color operations, where the vector just represents a convenient 
notation for an array of scalars that are operated on simultaneously but independently. 
 
This gives us the dark plum color shown in figure below. We should note that since the 
surface has no green component, that no matter what value we used for the light color, 
there would never be any green component from the resulting calculation. Thus a pure 
green light would provide no contribution to the intensity of a surface if that surface 
contained a zero value for its green intensity. Thus it's possible to illuminate a surface 
with a bright light and get little or no illumination from that light. We should also note 
that using anything other than a full-bright white light [1,1,1] will involve multiplication 
of values less than one, which means that using a single light source will only illuminate a 
surface to a maximum intensity of its color value, never more. This same problem also 
happens when a texture is modulated by a surface color. The color of the surface will be 
multiplied by the colors in the texture. If the surface color is anything other than full 
white, the texture will become darker. Multiple texture passes can make a surface very 
dark very quickly. 
 
 

 
Figure 2: Multiplying (modulating) color values results in a color equal to or less than 
(darker) the original two. 
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Given that using a colored light in a scene makes the scene darker, how do we make the 
scene brighter? There are a few ways of doing this. Given that color multiplication will 
never result in a brighter color, it's offset a bit since we end up summing all the light 
contributions together, which, as we'll see in the next section, brings with it its own 
problems. But if we are just interested in increasing the brightness on one particular light 
or texture, one way is to use the API (Library routines e.g. OpenGL or DirectX) to 
artificially brighten the source–this is typically done with texture preprocessing. Or, we 
can artificially brighten the source, be it a light or a texture, by adjusting the values after 
we modulate them. 

28.13 Dealing with Saturated Colors 
 
On the other hand, what if we have too much contribution to a color? While the colors of 
lights are modulated by the color of the surface, each light source that illuminates the 
surface is added to the final color. All these colors are summed up to calculate the final 
color. Let's look at such a problem. We'll start with summing the reflected colors off a 
surface from two lights. The first light is an orange color and has rgb values 
[1.0,0.49,0.0], and the second light is a nice light green with rgb values [0.0,1.0,0.49]. 
Summing these two colors yields [1.0, 1.49, 0.49], which we can't display because of the 
values larger than one figure below shows. 
 

 
Figure 3: Adding colors can result in colors that are outside the displayable range. 
 
So, what can be done when color values exceed the range that the hardware can display? 
It turns out that there are three common approaches [HALL 1990].  
 
Clamping the color values is implemented in hardware, so for shaders (technology used in 
today computer graphics for lighting and shading), it's the default, and it just means that 
we clamp any values outside the [0,1] range. Unfortunately, this results in a shift in the 
color.  
 
The second most common approach is to scale the colors by the largest component. This 
maintains the color but reduces the overall intensity of the color. 
 
The third is to try to maintain the intensity of the color by shifting (or clipping) the color 
toward pure bright white by reducing the colors that are too bright while increasing the 
other colors and maintaining the overall intensity. Since we can't see what the actual color 
for (figure above) is, let's see what color each of these methods yields (figure below). 
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Figure 4: The results of three strategies for dealing with the same oversaturated color. 
 
As we can see, we get three very different results. In terms of perceived color, the scaled 
is probably the closest though it's darker than the actual color values. If we weren't 
interested in the color but more in terms of saturation, then the clipped color is closer. 
Finally, the clamped value is what we get by default, and as you can see, the green 
component is biased down so that we lose a good sense of the "greenness" of the color we 
were trying to create. 
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Lecture No.29   Mathematics of Lighting and Shading Part III 

 
Traditional 3D Hardware-Accelerated Lighting Models 
We will now take a look at the traditional method of calculating lighting in hardware—a 
method that we'll find is sufficient for most of our needs. The traditional approach in real-
time computer graphics has been to calculate lighting at a vertex as a sum of the ambient, 
diffuse, and specular light. In the simplest form (used by OpenGL and Direct3D), the 
function is simply the sum of these lighting components (clamped to a maximum color 
value). Thus we have an ambient term and then a sum of all the light from the light 
sources. 

)( ssddaatotal ikikiki ++= ∑  
Where itotal , is the intensity of light (as an rgb value) from the sum of the intensity of the 
global ambient value and the diffuse and specular components of the light from the light 
sources. This is called a local lighting model since the only light on a vertex is from a 
light source, not from other objects. That is, lights are lights, not objects. Objects that are 
brightly lit don't illuminate or shadow any other objects. We’ve included the reflection 
coefficients for each term, k for completeness since we'll frequently see the lighting 
equation. The reflection coefficients are in the [0, 1] range and are specified as part of the 
material property. However, they are strictly empirical and since they simply adjust the 
overall intensity of the material color, the material color values are usually adjusted so the 
color intensity varies rather than using a reflection coefficient, so we'll ignore them in our 
actual color calculations. This is a very simple lighting equation and gives fairly good 
results. However, it does fail to take into account any gross roughness or anything other 
than perfect isotropic reflection. That is, the surface is treated as being perfectly smooth 
and equally reflective in all directions. Thus this equation is really only good at modeling 
the illumination of objects that don't have any "interesting" surface properties. By this we 
mean anything other than a smooth surface (like fur or sand) or a surface that doesn't 
really reflect light uniformly in all directions (like brushed metal, hair, or skin). However, 
with liberal use of texture maps to add detail, this model has served pretty well and can 
still be used for a majority of the lighting processing to create a realistic environment in 
real time. Let's take a look at the individual parts of the traditional lighting pipeline. 
 
Ambient Light 
 
Ambient light is the light that comes from all directions—thus all surfaces are illuminated 
equally regardless of orientation. However, this is a big hack in traditional lighting 
calculations since "real" ambient light really comes from the light reflected from the 
"environment." This would take a long time to calculate and would require ray tracing or 
the use of radiosity methods, so traditionally, we just say that there's x amount of global 
ambient light and leave it at that. This makes ambient light a little different from the other 
lighting components since it doesn't depend on a light source. However, we typically do 
want ambient light in our scene because having a certain amount of ambient light makes 
the scene look natural. One large problem with the simplified lighting model is that there 
is no illumination of an object with reflected light—the calculations required are 
enormous for a scene of any complexity (every object can potentially reflect some light 
and provide some illumination for every other object in a scene) and are too time 
consuming to be considered for real-time graphics. So, like most things in computer 
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graphics, we take a look at the real world, decide it's too complicated, and fudge up 
something that kind a works. Thus the ambient light term is the "fudge factor" that 
accounts for our simple lighting model's lack of an inter-object reflectance term. The 
ambient light equation is given by 
 

a a ai m s⊗=  
 
Where ia is the ambient light intensity, ma is the ambient material color, and sa is the 
light source ambient color. Typically, the ambient light is some amount of white (i.e., 
equal rgb values) light, but we can achieve some nice effects using colored ambient light. 
Though it's very useful in a scene, ambient light doesn't help differentiate objects in a 
scene since objects rendered with the same value of ambient tend to blend since the 
resulting color is the same. Figure 1 shows a scene with just ambient illumination. We 
can see that it's difficult to make out details or depth information with just ambient light. 
 

 
 

Figure 1: Ambient light provides illumination, but no surface details. 
 
Ambient lighting is our friend. With it we make our scene seem more realistic than it is. 
A world without ambient light is one filled with sharp edges, of bright objects surrounded 
by sharp, dark, harsh shadows. A world with too much ambient light looks washed out 
and dull. Since the number of actual light sources supported by hardware FFP is limited 
(typically to eight simultaneous), we'll be better off to apply the lights to add detail to the 
area that our user is focused on and let ambient light fill in the rest. Before we point out 
that talking about the hardware limitation of the number of lights has no meaning on 
shaders, where we do the lighting calculations, we'll point out that eight lights were 
typically the maximum that the hardware engineers created for their hardware. It was a 
performance consideration. There's nothing stopping us (except buffer size) from writing 
a shader that calculates the effects from a hundred simultaneous lights. But we think that 
we'll find that it runs much too slowly to be used to render our entire scene. But the nice 
thing about shaders is we can. 
 
Diffuse Light 
 
Diffuse light is the light that is absorbed by a surface and is reflected in all directions. In 
the traditional model, this is ideal diffuse reflection—good for rough surfaces where the 
reflected intensity is constant across the surface and is independent of viewpoint but 
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depends only upon the direction of the light source to the surface. This means that 
regardless of the direction from which we view an object with a stationary diffuse light 
source on it, the brightness of any point on the surface will remain the same. Thus, unlike 
ambient light, the intensity of diffuse light is directional and is a function of the angle of 
the incoming light and the surface. This type of shading is called Lambertian shading 
after Lambert's cosine law, which states that the intensity of the light reflected from an 
ideal diffuse surface is proportional to the cosine of the direction of the light to the vertex 
normal. Since we're dealing with vertices here and not surfaces, each vertex has a normal 
associated with it. We might hear talk of per-vertex normals vs. per-polygon normals. The 
difference being that per polygon has one normal shared for all vertices in a polygon, 
whereas per vertex has a normal for each vertex. OpenGL has the ability to specify per-
polygon normals, and Direct3D does not. Since vertex shaders can't share information 
between vertices (unless we explicitly copy the data our self). We'll focus on per-vertex 
lighting. Figure 2 shows the intensity of reflected light as a function of the angle between 
the vertex normal and the light direction. 
 

 
Figure 2: Diffuse light decreases as the angle between the light vector and the surface 
normal increases. 
 
The equation for calculating diffuse lighting is 

 
Which is similar to the ambient light equation, except that the diffuse light term is now 
multiplied by the dot product of the unit normal of the vertex and the unit direction vector 
to the light from the vertex (not the direction from the light). Note that the md value is a 
color vector, so there are rgb or rgba values that will get modulated. 
 

Since , where theta is the angle between vectors, when the angle 
between them is zero, cos(theta ) is 1 and the diffuse light is at its maximum. When the 
angle is 90°, cos (theta) is zero and the diffuse light is zero. One calculation advantage is 
that when the cos(theta ) value is negative, this means that the light isn't illuminating the 
vertex at all. However, since we (probably!) don't want the light illuminating sides that it 
physically can't shine on, we want to clamp the contribution of the diffuse light to 
contribute only when cos(theta ) is positive. Thus the equation in practice looks more like  
 

 
 
Where we've clamped the diffuse value to only positive values, Figure 3 was rendered 
with just diffuse lighting. Notice how we can tell a lot more detail about the objects and 
pick up distance cues from the shading. 
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Figure 3: Diffuse shading brings out some surface details. 
 
The problem with just diffuse lighting is that it's independent of the viewer's direction. 
That is, it's strictly a function of the surface normal and the light direction. Thus as we 
change the viewing angle to a vertex, the vertex's diffuse light value never changes. You 
have to rotate the object (change the normal direction) or move the light (change the light 
direction) to get a change in the diffuse lighting of the object. However, when we 
combine the ambient and diffuse, as in Figure 4, we can see that the two types of light 
give a much more realistic representation than either does alone. This combination of 
ambient and diffuse is used for a surprisingly large number of items in rendered scenes 
since when combined with texture maps to give detail to a surface we get a very 
convincing shading effect.  
 

 
 
Figure 4: When diffuse and ambient terms are combined, you get more detail and a more 
natural-looking scene. The final color is the combination of the ambient and diffuse 
colors. 
 
Specular Light 
 
Ambient light is the light that comes from the environment (i.e., it's directionless); diffuse 
light is the light from a light source that is reflected by a surface evenly in all directions 
(i.e., it's independent of the viewer's position). Specular light is the light from a light 
source that is reflected by a surface and is reflected in such a manner that it's both a 
function of the light's vector and the viewer's direction. While ambient light gives the 
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object an illuminated matte surface, specular light is what gives the highlights to an 
object. These highlights are greatest when the viewer is looking directly along the 
reflection angle from the surface. This is illustrated in Figure 5. 
 

 
 
Figure 5: Specular light's intensity follows the reflection vector. 
 
Most discussions of lighting (including this one) start with Phong's lighting equation 
(which is not the same as Phong's shading equation). In order to start discussing specular 
lighting, let's look at a diagram of the various vectors that are used in a lighting equation. 
We have a light source, some point the light is shining on, and a viewpoint. The light 
direction (from the point to the light) is vector l, the reflection vector of the light vector 
(as if the surface were a mirror) is r, the direction to the viewpoint from the point is 
vector v. The point's normal is n. 
 
Phong's Specular Light Equation 
 
Warnock [WARNOCK 1969] and Romney [ROMNEY 1969] were the first to try to 
simulate highlights using a cos n (θ) term. But it wasn't until Phong Bui-Tong [BUI 1998] 
reformulated this into a more general model that formalized the power value as a measure 
of surface roughness that we approach the terms used today for specular highlights. 
Phong's equation for specular lighting is 
 

 
 

 
 
Figure 6: The relationship between the normal n, the light vector v, the view direction v, 
and the reflection vector r. 
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It basically says that the more the view direction, v, is aligned with the reflection 
direction, r, the brighter the specular light will be. The big difference is the introduction 
of the ms term, which is a power term that attempts to approximate the distribution of 
specular light reflection. The ms term is typically called the "shininess" value. The larger 
the ms value, the "tighter" (but not brighter) the specular highlights will be. This can be 

seen in the Figure 7, which shows values of   for values of m ranging from 1 to 
128. As we can see, the specular highlights get narrower for higher values, but they don't 
get any brighter. 
 

 
 
Figure 7: Phong's specular term for various values of the "shininess" term. Note that the 
values never get above 1. 
 
Now, as we can see, this requires some calculations since we can't know r before hand 
since it's the v vector reflected around the point's normal. To calculate r we can use the 
following equation:  

 
 
If l and n are normalized, then the resulting r is normalized and the equation can be 
simplified. 
 

 
 
And just as we did for diffuse lighting, if the dot product is negative, then the term is 
ignored. 
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Figure 8 shows the scene with just specular lighting. As we can see, we get an impression 
of a very shiny surface. 
 

 
 

Figure 8: A specular term just shows the highlights. 
 
When we add the ambient, diffuse, and specular terms together, we get Figure 8A. The 
three terms all act in concert to give us a fairly good imitation of a nice smooth surface 
that can have a varying degree of shininess to it. We may have noticed that computing the 
reflection vector took a fair amount of effort. In the early days of computer graphics, 
there was a concerted effort to reduce anything that took a lot of computation, and the 
reflection vector of Phong's equation was one such item. 
 

 
 

Figure 8A: A combination of ambient, diffuse, and specular illumination. 
 
Blinn's Simplification: OpenGL and DirectX Lighting 
 
Now it's computationally expensive to calculate specular lighting using Phong's equation 
since computing the reflection vector is expensive. Blinn [BLINN 1977] suggested, 
instead of using the reflection and view vectors, that we create a "half" vector that lies 
between the light and view vectors. This is shown as the h vector in Figure 9. Just as 
Phong's equation maximizes when the reflection vector is coincident with the view vector 
(thus the viewer is looking directly along the reflection vector), so does Blinn's. When the 
half vector is coincident with the normal vector, then the angle between the view vector 
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and the normal vector is the same as between the light vector and the normal vector. 
Blinn's version of Phong's equation is: 
 

 
 

Figure 9: The half-angle vector is an averaging of the light and view vectors. 
where the half vector is defined as 

 

 
 
The advantage is that no reflection vector is needed; instead, we can use values that are 
readily available, namely, the view and light vectors. Note that both OpenGL and the 
DirectX FFP use Blinn's equation for specular light. Besides a speed advantage, there are 
some other effects to note between Phong's specular equation and Blinn's. If we multiply 
Blinn's exponent by 4, we approximate the results of Phong's equation. Thus if there's an 
upper limit on the value of the exponent, Phong's equation can produce sharper 
highlights. For l • v angles greater than 45° (i.e., when the light is behind an object and 
we're looking at an edge), the highlights are longer along the edge direction for Phong's 
equation. Blinn's equation produces results closer to those seen in nature. 
 
For an in-depth discussion of the differences between the two equations, there's an 
excellent discussion in [FISHER 1994]. Figure 10 shows the difference between Phong 
lighting and Blinn—Phong lighting. 
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Figure 10: Blinn-Phong specular on the left, Phong specular on the right. 
 
 
 
Note: Some of the material, for the preparation of this lecture, is taken from a book Real 
time shader Programming by Ron fosner 
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Lecture No.30   Mathematics of Lighting and Shading Part IV 

 
The Lighting Equation 
So now that we've computed the various light contributions to our final color value, we 
can add them up to get the final color value. Note that the final color values will have to 
be made to fit in the [0,1] range for the final rgb values. 
 

 
 
Our final scene with ambient, diffuse, and (Blinn's) specular light contributions (with one 
white light above and to the left of the viewer) looks like Figure 1. 
 

 
 

Figure 1: A combination of ambient, diffuse, and specular illumination. 
 
It may be surprising to discover that there's more than one way to calculate the shading of 
an object, but that's because the model is empirical, and there's no correct way, just 
different ways that all have tradeoffs. Until now though, the only lighting equation we've 
been able to use has been the one we just formulated. Most of the interesting work in 
computer graphics is tweaking that equation, or in some cases, throwing it out altogether 
and coming up with something new. 
The next sections will discuss some refinements and alternative ways of calculating the 
various coefficients of the lighting equation. 
 
Light Attenuation 

 
Light in the real world loses its intensity as the inverse square of the distance from the 
light source to the surface being illuminated. However, when put into practice, this 
seemed to drop off the light intensity in too abrupt a manner and then not to vary too 
much after the light was far away. An empirical model was developed that seems to give 
satisfactory results. This is the attenuation model that's used in OpenGL and DirectX. The 
fatten factor is the attenuation factor. The distance d between the light and the vertex is 
always positive. The attenuation factor is calculated by the following equation: 
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Where the kc, k1, and kq parameters are the constant, linear, and quadratic attenuation 
constants respectively, to get the "real" attenuation factor, we can set kq to one and the 
others to zero. The attenuation factor is multiplied by the light diffuse and specular 
values. Typically, each light will have a set of these parameters for itself. The lighting 
equation with the attenuation factor looks like this. 
 

 
 
Figure 2 shows a sample of what attenuation looks like. This image is the same as the one 
shown in Figure 1, but with light attenuation added. 

 
 

Figure 2: A scene with light attenuation. The white sphere is the light position. 
 
Schlick's simplification for the Specular Exponential Term 
Real-time graphics programmers are always looking for simplifications. We’ve probably 
gathered that there's no such thing as the "correct" lighting equation, just a series of hacks 
to make things look right with as little computational effort as possible. Schlick 
[SCHLICK 1994] suggested a replacement for the exponential term since that's a fairly 
expensive operation. If we define part of our specular light term as follows: 

 
where S is either the Phong or Blinn-Phong flavor of the specular lighting equation, then 
Schlick's simplification is to replace the preceding part of the specular equation with 

 
Which eliminates the need for an exponential term, At first glance, a plot of Schlick's 
function looks very similar to the exponential equation (Figure 3). 
 

 
 
Figure 3: Schlick's term for specular looks very much like the more expensive Phong 
term. 
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If we plot both equations in the same graph (Figure 4), we can see some differences and 
evaluate just how well Schlick's simplification works. The blue values are Schlick's, and 
the red are the exponential plot. As the view and light angles get closer (i.e., get closer to 
zero on the x axis), we can see that the values of the curves are quite close. (For a value of 
zero, they overlap.) As the angles approach a grazing angle, we can see that the 
approximation gets worse. This would mean that when there is little influence from a 
specular light, Schlick's equation would be slightly less sharp for the highlight. 
 

 
Figure 4: Schlick's vs. Phong's specular terms. 

 
We might notice the green line in Figure 4. Unlike the limit of a value of 128 for the 
exponential imposed in both OpenGL and DirectX FFP, we can easily make our values in 
the approximation any value we want. The green line is a value of 1024 in Schlick's 
equation. We may be thinking that we can make a very sharp specular highlight using 
Schlick's approximation with very large values—sharper than is possible using the 
exponential term. Unfortunately, we can't since we really need impractically large values 
(say, around 100 million) to boost it significantly over the exponential value for 128. But 
that's just the kind of thinking that's going to get our creative juices flowing when writing 
our own shaders! If the traditional way doesn't work, figure out something that will. 
 
Oren—Nayar Diffuse Reflection 
Though there's been a lot of research on specular reflection models, there's been less 
research on diffuse reflection models. One of the problems of the standard Lambertian 
model is that it considers the surface as a smooth diffuse surface. Surfaces that are really 
rough, like sandpaper, exhibit much more of a backscattering effect, particularly when the 
light source and the view direction are in the same direction. 
The classic example of this is a full moon. If we look at the picture of the moon shown in 
Figure 5, it's pretty obvious that this doesn't follow the Lambertian distribution—if it did, 
the edges of the moon would be in near darkness. In fact, the edges look as bright as the 
center of the moon. This is because the moon's surface is rough—the surface is made of a 
jumble of dust and rock with diffuse reflecting surfaces at all angles—thus the quantity of 
reflecting surfaces is uniform no matter the orientation of the surface; hence no matter the 
orientation of the surface to the viewer, the amount of light reflecting off the surface is 
nearly the same. 
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Figure 5: The full moon is a good example of something that doesn't show Lambertian 
diffuse shading. 
 
The effect we're looking at is called backscattering. Backscattering is when a rough 
surface bounces around a light ray and then reflects the ray in the direction the light 
originally came from. Note that there is a similar but different effect called retro 
reflection. Retro reflection is the effect of reflecting light toward the direction from which 
it came, no matter the orientation of the surface. This is the same effect that we see on 
bicycle reflectors. However, this is due to the design of the surface features (made up of 
vshaped or spherical reflectors) rather than a scattering effect. 
In a similar manner, when the light direction is closer to the view direction, we get the 
effect of forward scattering. Forward scattering is just backscattering from a different 
direction. In this case, instead of near uniform illumination though, we get near uniform 
loss of diffuse lighting. We can get the same effects here on Earth. Figures 6 and 7, shows 
the same surfaces demonstrating backscattering and forward scattering. Both the dirt field 
in Figure 6 and the soybean field in Figure 7 can be considered rough diffuse reflecting 
surfaces. 

 
 
Figure 6: The same dirt field showing wildly differing reflection properties. 
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Figure 7: A soybean field showing differing reflection properties. 
 
Notice how the backscattering image shows a near uniform diffuse illumination, whereas 
the forward scattering image shows a uniform dull diffuse illumination. Also note that we 
can see specular highlights and more color variation because of the shadows due to the 
rough surface whereas the backscattered image washes out the detail. In an effort to better 
model rough surfaces, Oren and Nayar [OREN 1992] came up with a generalized version 
of a Lambertian diffuse shading model that tries to account for the roughness of the 
surface. They applied the Torrance—Sparrow model for rough surfaces with isotropic 
roughness and provided parameters to account for the various surface structures found in 
the Torrance—Sparrow model. By comparing their model with actual data, they 
simplified their model to the terms that had the most significant impact. The Oren—
Nayar diffuse shading model looks like this. 

 
Where 

 
Now this may look daunting, but it can be simplified to something we can appreciate if 
we replace the original notation with the notation we've already been using. ρ/π is a 
surface reflectivity property, which we can replace with our surface diffuse color. E0 is a 
light input energy term, which we can replace with our light diffuse color. And the θi 
term is just our familiar angle between the vertex normal and the light direction. Making 
these exchanges gives us 
 

 
Which looks a lot more like the equations we've used, there are still some parameters to 
explain. 
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σ is the surface roughness parameter. It's the standard deviation in radians of the angle of 
distribution of the microfacets in the surface roughness model. The larger the value, the 
rougher the surface. 
 
θr is the angle between the vertex normal and the view direction. 
φr - φi is the circular angle (about the vertex normal) between the light vector and the 
view vector. 
 
α is max(θi, θr). 
β is min (θi, θr). 
 
Note that if the roughness value is zero, the model is the same as the Lambertian diffuse 
model. Oren and Nayar also note that we can replace the value 0.33 in coefficient A with 
0.57 to better account for surface inter-reflection. 
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Lecture No.31   Mathematics of Lighting and Shading Part V 

 
Physically Based Illumination 
 
In order to get a more realistic representation of lighting, we need to move away from the 
simplistic models that are found hard coded in most graphics pipelines and move to 
something that is based more in a physical representation of light as a wave with 
properties of its own that can interact with its environment. To do this, we'll need to 
understand how light passes through a medium and how hitting the boundary layer at the 
intersection of two media can affect light's properties. In Figure 1, there's an incident light 
hitting a surface. At the boundary of the two media (in this case, air and glass), there are 
two resulting rays of light. The reflected ray is the one that we've already discussed to 
some extent, and the other ray is the refracted or transmitted ray. 
 

 
 

Figure 1: Light being reflected and refracted through a boundary. 
 
In addition to examining the interaction of light with the surface boundary, we need a 
better description of real surface geometries. Until now, we've been treating our surfaces 
as perfectly smooth and uniform. Unfortunately, this prevents us from getting some 
interesting effects. We'll go over trying to model a real surface later, but first let's look at 
the physics of light interacting at a material boundary. 
 
Reflection 
 
Reflection of a light wave is the change in direction of the light ray when it bounces off 
the boundary between two media. The reflected light wave turns out to be a simple case 
since light is reflected at the same angle as the incident wave (when the surface is smooth 
and uniform, as we'll assume for now). Thus for a light wave reflecting off a perfectly 
smooth surface  

 
Until now, we've treated all of our specular lighting calculations as essentially reflection 
off a perfect surface, a surface that doesn't interact with the light in any manner other than 
reflecting light in proportion to the color of the surface itself. Using a lighting model 
based upon the Blinn—Phong model means that we'll always get a uniform specular 
highlight based upon the color of the reflecting light and material, which means that all 
reflections based on this model, will be reminiscent of plastic. In order to get a more 
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interesting and realistic lighting model, we need to add in some nonlinear elements to our 
calculations. First, let's examine what occurs when light is reflected off a surface. For a 
perfect reflecting surface, the angle of the incoming light (the angle of incidence) is equal 
to that of the reflected light. Phong's equation just blurs out the highlight a bit in a 
symmetrical fashion. Until we start dealing with non uniform smooth surfaces in a 
manner a bit more realistic than Phong's. 
 
Refraction 
 
Refraction happens when a light wave goes from one medium into another. Because of 
the difference in the speed of light of the media, light bends when it crosses the boundary. 
Snell's law gives the change in angles. 

 
Where the n's are the material's index of refraction,  
 
Snell's law states that when light refracts through a surface, the refracted angle is 
shifted by a function of the ratio of the two material's indices of refraction. The index 
of refraction of vacuum is 1, and all other material's indices of refraction are greater than 
1. What this means is that in order to realistically model refraction, we need to know the 
indices of refraction of the two materials that the light is traveling through. Let's look at 
an example (Figure 2) to see what this really means. Let's take a simple case of a ray of 
light traveling through the air (n air = 1) and intersecting a glass surface (n Glass = 1.5). If 
the light ray hits the glass surface at 45°, at what angle does the refracted ray leave the 
interface? 
 

 
 

Figure 2: The refracted ray's angle is less than the incoming ray's. 
 
The angle of incidence is the angle between the incoming vector and the surface. 
Rearranging Snell's law, we can solve for the refracted angle. 
 

 
Inserting the values give us 
 



31-Mathematics of Lighting and Shading Part V                                                                                          VU       
 

 
© Copyright Virtual University of Pakistan 

 

295

 
This is a fairly significant change in the angle! If we change things around so that we are 
following a light ray emerging from water into the air, we can run into another 
phenomenon. Since the index of refraction is just a measure of the change in speed that 
light travels in a material, we can observe from Snell's law (and the fact that the index of 
refraction in a vacuum is 1) that light bends toward the normal when it slows down (i.e., 
when the material it's intersecting with has a higher index of refraction). Consequently, 
when we intersect a medium that has a lower index of refraction (e.g., going from glass to 
air), then the angle will increase. Ah, we must be thinking, we're approaching a 
singularity here since we can then easily generate numbers that we can't take the inverse 
sine of! If we use Snell's law for light going from water to air, and plug in 90° for the 
refracted angle, we get 41.8° for the incident angle. This is called the critical angle at 
which we observe the phenomenon of total internal reflection. At any angle greater than 
this, light will not pass though a boundary but will be reflected internally. One place that 
we get interesting visual properties is in the diamond—air interface. The refractive index 
of a diamond is fairly high, 2.24, which means that it's got a very low critical angle, just 
24.4°. This means that a good portion of the light entering a diamond will bounce around 
the inside of the diamond hitting a number of air—diamond boundaries, and as long as 
the angle is 24.4° or greater, it will keep reflecting internally. This is why diamonds are 
cut to be relatively flatish on the top but with many faceted sides, so that light entering in 
one spot will bounce around and exit at another, giving rise to the sparkle normally 
associated with diamonds.  
 
Another place where a small change in the indices of refraction occurs is on a road heated 
by the sun when viewed from far away (hence a glancing incident angle). The hot air at 
the road's surface has a slightly smaller index of refraction than the denser, cooler air 
above it. This is why we get the effect of a road looking as though it were covered with 
water and reflecting the image above it—the light waves are actually reflected off the 
warm air—cold air interface. 

 
 

Figure 3: The critical angle. 
 
What makes this really challenging to model is that the index of refraction for most 
materials is a function of the wavelength of the light. This means that not only is there a 
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shift in the angle of refraction, but that the shift is different for differing wavelengths of 
light. Figure 4 and 5 show the index of refraction for fused quartz and sapphire plotted 
against the wavelength. We can see the general trend that shorter wavelength light 
(bluish) tends to bend more than the longer (reddish) wavelengths. 

 
 

Figure 4: Index of refraction as a function of wavelength for quartz. 
 

 
Figure 5: Index of refraction as a function of wavelength for sapphire. 

 
This is the phenomenon that's responsible for the spectrum that can be seen when white 
light is passed through a prism (Figure 6). It's refraction that will break apart a light 
source into its component colors, not reflection. 
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Figure 6: The wavelength dependence of the index of refraction in action. 

 
This is one area where our simplistic model of light breaks down since we're not 
computing an entire spectrum of light waves, but we're limited to three primary colors. 
For reference, the rgb values can be assigned to a range of wavelengths as follows: 

 
There's a lot more to color science than just determining wavelengths, but that's beyond 
our scope.  
While the spectrum spreading effect of refraction is interesting in itself, the rgb nature of 
computer color representation precludes performing this spreading directly—we can't 
break up a color value into multiple color values. However, with some work, we can 
compute the shade of the color for a particular angle of refraction and then use that as the 
material color to influence the refracted color. 
 
Temperature Correction for Refractive Index 
 
Refractive index is a function of temperature, mostly due to density changes in materials 
with changes in temperature. A simple correction can be applied in most circumstances to 
allow us to use a value given at one temperature at another. For example, suppose the 
index of refraction value we have is given at 25°C: η25. To convert the index to another 
temperature, ηt, we can use the following equation: 

 
Where the actual temperature we want is t, and the 25 is the temperature (both in °C) of 
the actual index we have, η25. 
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Lecture No.32   Introduction to OpenGL 

As a software interface for graphics hardware, OpenGL renders multidimensional objects 
into a frame buffer. OpenGL is industry-standard graphics software with which 
programmers can create high-quality still and animated three-dimensional color images.  
 
Where Applicable: 
OpenGL is built for compatibility across hardware and operating systems. This 
architecture makes it easy to port OpenGL programs from one system to another. While 
each operating system has unique requirements, the OpenGL code in many programs can 
be used as is.  

Developer Audience: 
Designed for use by C/C++ programmers 

Run-time Requirements: 
OpenGL can run on Linux and all versions of 32 bit Microsoft Windows. 

Most Widely Adopted Graphics Standard 

OpenGL is the premier environment for developing portable, interactive 2D and 3D 
graphics applications. Since its introduction in 1992, OpenGL has become the industry's 
most widely used and supported 2D and 3D graphics application programming interface 
(API), bringing thousands of applications to a wide variety of computer platforms. 
OpenGL fosters innovation and speeds application development by incorporating a broad 
set of rendering, texture mapping, special effects, and other powerful visualization 
functions. Developers can leverage the power of OpenGL across all popular desktop and 
workstation platforms, ensuring wide application deployment. 

High Visual Quality and Performance 

Any visual computing application requiring maximum performance-from 3D animation 
to CAD to visual simulation-can exploit high-quality, high-performance OpenGL 
capabilities. These capabilities allow developers in diverse markets such as broadcasting, 
CAD/CAM/CAE, entertainment, medical imaging, and virtual reality to produce and 
display incredibly compelling 2D and 3D graphics. 

Developer-Driven Advantages 

• Industry standard 

An independent consortium, the OpenGL Architecture Review Board, guides the 
OpenGL specification. With broad industry support, OpenGL is the only truly 
open, vendor-neutral, multiplatform graphics standard.  

• Stable 

OpenGL implementations have been available for more than seven years on a 
wide variety of platforms. Additions to the specification are well controlled, and 
proposed updates are announced in time for developers to adopt changes. 
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Backward compatibility requirements ensure that existing applications do not 
become obsolete.  

• Reliable and portable 

All OpenGL applications produce consistent visual display results on any 
OpenGL API-compliant hardware, regardless of operating system or windowing 
system.  

• Evolving 

Because of its thorough and forward-looking design, OpenGL allows new 
hardware innovations to be accessible through the API via the OpenGL extension 
mechanism. In this way, innovations appear in the API in a timely fashion, letting 
application developers and hardware vendors incorporate new features into their 
normal product release cycles.  

• Scalable 

OpenGL API-based applications can run on systems ranging from consumer 
electronics to PCs, workstations, and supercomputers. As a result, applications can 
scale to any class of machine that the developer chooses to target.  

• Easy to use 

OpenGL is well structured with an intuitive design and logical commands. 
Efficient OpenGL routines typically result in applications with fewer lines of code 
than those that make up programs generated using other graphics libraries or 
packages. In addition, OpenGL drivers encapsulate information about the 
underlying hardware, freeing the application developer from having to design for 
specific hardware features.  

• Well-documented 

Numerous books have been published about OpenGL, and a great deal of sample 
code is readily available, making information about OpenGL inexpensive and 
easy to obtain.  

Simplifies Software Development, Speeds Time-to-Market  

OpenGL routines simplify the development of graphics software—from rendering a 
simple geometric point, line, or filled polygon to the creation of the most complex lighted 
and texture-mapped NURBS curved surface. OpenGL gives software developers access 
to geometric and image primitives, display lists, modeling transformations, lighting and 
texturing, anti-aliasing, blending, and many other features. 

Every conforming OpenGL implementation includes the full complement of OpenGL 
functions. The well-specified OpenGL standard has language bindings for C, C++, 
Fortran, Ada, and Java. All licensed OpenGL implementations come from a single 
specification and language binding document and are required to pass a set of 
conformance tests. Applications utilizing OpenGL functions are easily portable across a 
wide array of platforms for maximized programmer productivity and shorter time-to-
market. 
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All elements of the OpenGL state—even the contents of the texture memory and the 
frame buffer—can be obtained by an OpenGL application. OpenGL also supports 
visualization applications with 2D images treated as types of primitives that can be 
manipulated just like 3D geometric objects. As shown in the OpenGL visualization 
programming pipeline diagram above, images and vertices defining geometric primitives 
are passed through the OpenGL pipeline to the frame buffer. 

Available Everywhere 

Supported on all UNIX® workstations, and shipped standard with every Windows 
95/98/2000/NT and MacOS PC, no other graphics API operates on a wider range of 
hardware platforms and software environments. OpenGL runs on every major operating 
system including Mac OS, OS/2, UNIX, Windows 95/98, Windows 2000, Windows NT, 
Linux, OPENStep, and BeOS; it also works with every major windowing system, 
including Win32, MacOS, Presentation Manager, and X-Window System. OpenGL is 
callable from Ada, C, C++, Fortran, Python, Perl and Java and offers complete 
independence from network protocols and topologies. 

Architected for Flexibility and Differentiation!  

Although the OpenGL specification defines a particular graphics processing pipeline, 
platform vendors have the freedom to tailor a particular OpenGL implementation to meet 
unique system cost and performance objectives. Individual calls can be executed on 
dedicated hardware, run as software routines on the standard system CPU, or 
implemented as a combination of both dedicated hardware and software routines. This 
implementation flexibility means that OpenGL hardware acceleration can range from 
simple rendering to full geometry and is widely available on everything from low-cost 
PCs to high-end workstations and supercomputers. Application developers are assured 
consistent display results regardless of the platform implementation of the OpenGL 
environment. 

Using the OpenGL extension mechanism, hardware developers can differentiate their 
products by developing extensions that allow software developers to access additional 
performance and technological innovations. 
Main purpose of OpenGL 
As a software interface for graphics hardware, the main purpose of OpenGL is to render 
two- and three-dimensional objects into a frame buffer. These objects are described as 
sequences of vertices (that define geometric objects) or pixels (that define images). 
OpenGL performs several processes on this data to convert it to pixels to form the final 
desired image in the frame buffer.  

The following topics present a global view of how OpenGL works:  

 Primitives and Commands discusses points, line segments, and polygons as the 
basic units of drawing; and the processing of commands.  

 OpenGL Graphic Control describes which graphic operations OpenGL controls 
and which it does not control.  

 Execution Model discusses the client/server model for interpreting OpenGL 
commands.  
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 Basic OpenGL Operation gives a high-level description of how OpenGL 
processes data to produce a corresponding image in the frame buffer.  

Primitives and Commands 
OpenGL draws primitive points, line segments, or polygons subject to several selectable 
modes. You can control modes independently of one another. That is, setting one mode 
doesn't affect whether other modes are set (although many modes may interact to 
determine what eventually ends up in the frame buffer). To specify primitives, set modes, 
and perform other OpenGL operations, you issue commands in the form of function calls.  

Primitives are defined by a group of one or more vertices. A vertex defines a point, an 
endpoint of a line, or a corner of a polygon where two edges meet. Data (consisting of 
vertex coordinates, colors, normals, texture coordinates, and edge flags) is associated with 
a vertex, and each vertex and its associated data are processed independently, in order, 
and in the same way. The only exceptions to this rule are cases in which the group of 
vertices must be clipped so that a particular primitive fits within a specified region. In this 
case, vertex data may be modified and new vertices created. The type of clipping depends 
on which primitive the group of vertices represents. 

Commands are always processed in the order in which they are received, although there 
may be an indeterminate delay before a command takes effect. This means that each 
primitive is drawn completely before any subsequent command takes effect. It also means 
that state-querying commands return data that is consistent with complete execution of all 
previously issued OpenGL commands. 
 
OpenGL Graphic Control 
OpenGL provides you with fairly direct control over the fundamental operations of two- 
and three-dimensional graphics. This includes specification of such parameters as 
transformation matrices, lighting equation coefficients, antialiasing methods, and pixel-
update operators. However, it doesn't provide you with a means for describing or 
modeling complex geometric objects. Thus, the OpenGL commands you issue specify 
how a certain result should be produced (what procedure should be followed) rather than 
what exactly that result should look like. That is, OpenGL is fundamentally procedural 
rather than descriptive. To fully understand how to use OpenGL, it helps to know the 
order in which it carries out its operations. 
Execution Model 
The model for interpretation of OpenGL commands is client/server. Application code (the 
client) issues commands, which are interpreted and processed by OpenGL (the server). 
The server may or may not operate on the same computer as the client. In this sense, 
OpenGL is network-transparent. A server can maintain several OpenGL contexts, each of 
which is an encapsulated OpenGL state. A client can connect to any one of these 
contexts. The required network protocol can be implemented by augmenting an already 
existing protocol (such as that of the X Window System) or by using an independent 
protocol. No OpenGL commands are provided for obtaining user input.  

The window system that allocates frame buffer resources ultimately controls the effects of 
OpenGL commands on the frame buffer. The window system:  
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 Determines which portions of the frame buffer OpenGL may access at any given 
time.  

 Communicates to OpenGL how those portions are structured.  

Therefore, there are no OpenGL commands to configure the frame buffer or initialize 
OpenGL. Frame buffer configuration is done outside of OpenGL in conjunction with the 
window system; OpenGL initialization takes place when the window system allocates a 
window for OpenGL rendering.  
Basic OpenGL Operation 
The following diagram illustrates how OpenGL processes data. As shown, commands 
enter from the left and proceed through a processing pipeline. Some commands specify 
geometric objects to be drawn, and others control how the objects are handled during 
various processing stages.  

 

The processing stages in basic OpenGL operation are as follows:  

 Display list Rather than having all commands proceed immediately through the 
pipeline, you can choose to accumulate some of them in a display list for 
processing later.  

 Evaluator The evaluator stage of processing provides an efficient way to 
approximate curve and surface geometry by evaluating polynomial commands of 
input values.  

 Per-vertex operations and primitive assembly OpenGL processes geometric 
primitives—points, line segments, and polygons—all of which are described by 
vertices. Vertices are transformed and lit, and primitives are clipped to the view 
port in preparation for rasterization.  

 Rasterization The rasterization stage produces a series of frame-buffer addresses 
and associated values using a two-dimensional description of a point, line 
segment, or polygon. Each fragment so produced is fed into the last stage, per-
fragment operations.  

 Per-fragment operations these are the final operations performed on the data 
before it's stored as pixels in the frame buffer.  

Per-fragment operations include conditional updates to the frame buffer based on 
incoming and previously stored z values (for z buffering) and blending of 
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incoming pixel colors with stored colors, as well as masking and other logical 
operations on pixel values.  

Data can be input in the form of pixels rather than vertices. Data in the form of pixels, 
such as might describe an image for use in texture mapping, skips the first stage of 
processing described above and instead is processed as pixels, in the pixel operations 
stage. Following pixel operations, the pixel data is either:  

 Stored as texture memory, for use in the rasterization stage.  

 Rasterized, with the resulting fragments merged into the frame buffer just as if 
they were generated from geometric data.  

OpenGL Processing Pipeline 
Many OpenGL functions are used specifically for drawing objects such as points, lines, 
polygons, and bitmaps. Some functions control the way that some of this drawing occurs 
(such as those that enable antialiasing or texturing). Other functions are specifically 
concerned with frame buffer manipulation. The topics in this section describe how all of 
the OpenGL functions work together to create the OpenGL processing pipeline. This 
section also takes a closer look at the stages in which data is actually processed, and ties 
these stages to OpenGL functions.  

The following diagram details the OpenGL processing pipeline. For most of the pipeline, 
you can see three vertical arrows between the major stages. These arrows represent 
vertices and the two primary types of data that can be associated with vertices: color 
values and texture coordinates. Also note that vertices are assembled into primitives, then 
into fragments, and finally into pixels in the framebuffer.  
The OpenGL Visualization Programming Pipeline 

 
OpenGL operates on image data as well as geometric primitives. 

A detailed view on the next page. 
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Lecture No.33   OpenGL Programming - I 

 
For writing a program, using OpenGL, for any of the operating systems we can use 
OpenGL Utility Library named, “glut”. “glut” is used to initialize OpenGL on any 
platform e.g. Microsoft Windows or Linux etc because it is platform independent. “glut” 
can create window, get keyboard input and run an event handler or message loop in our 
graphics application.  
 
All those functions that start with the prefix “gl” are the core OpenGL functions and those 
which start with “glu” or “glut” are the OpenGL utility library functions. 
 
Let’s write a program that uses “glut” and then uses OpenGL function to create graphics. 
 
#include <GL/glut.h> 
int main()  
{ 
    glutCreateWindow( "first graphics window" ); 
} 
 

glutCreateWindow 
glutCreateWindow creates a top-level window.  
 
Usage  
int glutCreateWindow(char *name); 
name:  

ASCII character string for use as window name.  
 

Description: glutCreateWindow creates a top-level window. The name will be provided 
to the window system as the window's name. The intent is that the window system will 
label the window with the name. 
  
Implicitly, the current window is set to the newly created window. Each created window 
has a unique associated OpenGL context. State changes to a window's associated 
OpenGL context can be done immediately after the window is created.  
The display state of a window is initially for the window to be shown. But the window's 
display state is not actually acted upon until glutMainLoop is entered. This means until 
glutMainLoop is called, rendering to a created window is ineffective because the window 
cannot yet be displayed. 
  
The value returned is a unique small integer identifier for the window. The range of 
allocated identifiers starts at one. This window identifier can be used when calling 
glutSetWindow.  
 
X Implementation Notes  
The proper X Inter-Client Communication Conventions Manual (ICCCM) top-level 
properties are established. The   WM_COMMAND property that lists the command line 
used to invoke the GLUT program is only established for the first window created.  
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This is the simple program that we have written so far. Now we will use more features of 
“glut” library. 
 
#include <GL/glut.h> 
int main()  
{ 
    //Set up the OpenGL rendering context. 
    glutInitDisplayMode( GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH ); 
 
    //Create a window and set its width and height. 
    glutCreateWindow( "Deform" ); 
    glutReshapeWindow( 640, 480 ); 
 
    //The keyboard function gets called whenever we hit a key. 
    glutKeyboardFunc( keyboard ); 
 
    //The display function gets called whenever the window 
    //requires an update or when we explicitly call 
    glutDisplayFunc( display ); 
 
    //The reshape function gets called whenever the window changes 
    //shape. 
    glutReshapeFunc( reshape ); 
 
    // The idle function gets called when there are no window- 
    // events to process. 
    glutIdleFunc( idle ); 
 
    //Get the ball rolling! 
    glutMainLoop(); 
} 
 
In the above program we have used “glut” functions. Let us discuss them in detail. 
 

GlutInitDisplayMode 
 
glutInitDisplayMode sets the initial display mode.  
 
Usage  
void glutInitDisplayMode(unsigned int mode); 
mode  

Display mode, normally the bitwise OR-ing of GLUT display mode bit masks. See 
values below:  

GLUT_RGBA  
Bit mask to select an RGBA mode window. This is the default if neither 
GLUT_RGBA nor GLUT_INDEX are specified.  

GLUT_RGB  
An alias for GLUT_RGBA.  

GLUT_INDEX  
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Bit mask to select a color index mode window. This overrides GLUT_RGBA if it 
is also specified.  

GLUT_SINGLE  
Bit mask to select a single buffered window. This is the default if neither 
GLUT_DOUBLE or GLUT_SINGLE are specified.  

GLUT_DOUBLE  
Bit mask to select a double buffered window. This overrides GLUT_SINGLE if it 
is also specified.  

GLUT_ACCUM  
Bit mask to select a window with an accumulation buffer.  

GLUT_ALPHA  
Bit mask to select a window with an alpha component to the color buffer(s).  

GLUT_DEPTH  
Bit mask to select a window with a depth buffer.  

GLUT_STENCIL  
Bit mask to select a window with a stencil buffer.  

GLUT_MULTISAMPLE  
Bit mask to select a window with multisampling support. If multisampling is not 
available, a non-multisampling window will automatically be chosen. Note: both 
the OpenGL client-side and server-side implementations must support the 
GLX_SAMPLE_SGIS extension for multisampling to be available.  

GLUT_STEREO  
Bit mask to select a stereo window.  

GLUT_LUMINANCE  
Bit mask to select a window with a ``luminance'' color model. This model 
provides the functionality of OpenGL's RGBA color model, but the green and 
blue components are not maintained in the frame buffer. Instead each pixel's red 
component is converted to an index between zero and 
glutGet(GLUT_WINDOW_COLORMAP_SIZE)-1 and looked up in a per-
window color map to determine the color of pixels within the window. The initial 
colormap of GLUT_LUMINANCE windows is initialized to be a linear gray 
ramp, but can be modified with GLUT's colormap routines.  

 
Description  
The initial display mode is used when creating top-level windows, subwindows, and 
overlays to determine the OpenGL display mode for the to-be-created window or overlay. 
  
Note that GLUT_RGBA selects the RGBA color model, but it does not request any bits 
of alpha (sometimes called an alpha buffer or destination alpha) be allocated. To request 
alpha, specify GLUT_ALPHA. The same applies to GLUT_LUMINANCE.  
 
GLUT_LUMINANCE Implementation Notes  
GLUT_LUMINANCE is not supported on most OpenGL platforms.  
 

glutReshapeWindow 
glutReshapeWindow requests a change to the size of the current window.  
Usage  
void glutReshapeWindow(int width, int height); 
width  

New width of window in pixels.  
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height  
New height of window in pixels.  

 
Description  
glutReshapeWindow requests a change in the size of the current window. The width and 
height parameters are size extents in pixels. The width and height must be positive values. 
  
The requests by glutReshapeWindow are not processed immediately. The request is 
executed after returning to the main event loop. This allows multiple 
glutReshapeWindow, glutPositionWindow, and glutFullScreen requests to the same 
window to be coalesced. 
  
In the case of top-level windows, a glutReshapeWindow call is considered only to be a 
request for sizing the window. The window system is free to apply its own policies to top-
level window sizing. The intent is that top-level windows should be reshaped according to 
glutReshapeWindow's parameters. Whether a reshape actually takes effect and, if so, the 
reshaped dimensions are reported to the program by a reshape callback. 
  
glutReshapeWindow disables the full screen status of a window if previously enabled.  
 

glutKeyboardFunc 
  glutKeyboardFunc sets the keyboard callback for the current window.  
Usage  
void glutKeyboardFunc(void (*func)(unsigned char key, 
                                   int x, int y)); 
func  

The new keyboard callback function.  
 
Description  
glutKeyboardFunc sets the keyboard callback for the current window. When a user types 
into the window, each key press generating an ASCII character will generate a keyboard 
callback. The key callback parameter is the generated ASCII character. The state of 
modifier keys such as Shift cannot be determined directly; their only effect will be on the 
returned ASCII data. The x and y callback parameters indicate the mouse location in 
window relative coordinates when the key was pressed. When a new window is created, 
no keyboard callback is initially registered, and ASCII key strokes in the window are 
ignored. Passing NULL to glutKeyboardFunc disables the generation of keyboard 
callbacks.  
During a keyboard callback, glutGetModifiers may be called to determine the state of 
modifier keys when the keystroke generating the callback occurred.  
We can also see glutSpecialFunc for a means to detect non-ASCII key strokes.  
 

glutDisplayFunc 
  glutDisplayFunc sets the display callback for the current window.  
 
Usage  
void glutDisplayFunc(void (*func)(void)); 
func  

The new display callback function.  
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Description  
glutDisplayFunc sets the display callback for the current window. When GLUT 
determines that the normal plane for the window needs to be redisplayed, the display 
callback for the window is called. Before the callback, the current window is set to the 
window needing to be redisplayed and (if no overlay display callback is registered) the 
layer in use is set to the normal plane. The display callback is called with no parameters. 
The entire normal plane region should be redisplayed in response to the callback (this 
includes ancillary buffers if your program depends on their state).  
GLUT determines when the display callback should be triggered based on the window's 
redisplay state. The redisplay state for a window can be either set explicitly by calling 
glutPostRedisplay or implicitly as the result of window damage reported by the window 
system. Multiple posted redisplays for a window are coalesced by GLUT to minimize the 
number of display callbacks called.  
When an overlay is established for a window, but there is no overlay display callback 
registered, the display callback is used for redisplaying both the overlay and normal plane 
(that is, it will be called if either the redisplay state or overlay redisplay state is set). In 
this case, the layer in use is not implicitly changed on entry to the display callback. 
  
See glutOverlayDisplayFunc to understand how distinct callbacks for the overlay and 
normal plane of a window may be established. 
  
When a window is created, no display callback exists for the window. It is the 
responsibility of the programmer to install a display callback for the window before the 
window is shown. A display callback must be registered for any window that is shown. If 
a window becomes displayed without a display callback being registered, a fatal error 
occurs. Passing NULL to glutDisplayFunc is illegal as of GLUT 3.0; there is no way to 
``deregister'' a display callback (though another callback routine can always be 
registered).  
Upon return from the display callback, the normal damaged state of the window (returned 
by calling glutLayerGet(GLUT_NORMAL_DAMAGED) is cleared. If there is no 
overlay display callback registered the overlay damaged state of the window (returned by 
calling glutLayerGet(GLUT_OVERLAY_DAMAGED) is also cleared.  
 

glutReshapeFunc 
  glutReshapeFunc sets the reshape callback for the current window.  
Usage  
void glutReshapeFunc(void (*func)(int width, int height)); 
func  

The new reshape callback function.  
Description  
glutReshapeFunc sets the reshape callback for the current window. The reshape callback 
is triggered when a window is reshaped. A reshape callback is also triggered immediately 
before a window's first display callback after a window is created or whenever an overlay 
for the window is established. The width and height parameters of the callback specify 
the new window size in pixels. Before the callback, the current window is set to the 
window that has been reshaped.  
 
If a reshape callback is not registered for a window or NULL is passed to 
glutReshapeFunc (to deregister a previously registered callback), the default reshape 
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callback is used. This default callback will simply call glViewport(0,0,width,height) on 
the normal plane (and on the overlay if one exists).  
If an overlay is established for the window, a single reshape callback is generated. It is the 
callback's responsibility to update both the normal plane and overlay for the window 
(changing the layer in use as necessary).  
When a top-level window is reshaped, subwindows are not reshaped. It is up to the GLUT 
program to manage the size and positions of subwindows within a top-level window. 
Still, reshape callbacks will be triggered for subwindows when their size is changed using 
glutReshapeWindow.  
 

glutIdleFunc 
  glutIdleFunc sets the global idle callback.  
Usage  
void glutIdleFunc(void (*func)(void)); 
Description  
glutIdleFunc sets the global idle callback to be ‘func’ so a GLUT program can perform 
background processing tasks or continuous animation when window system events are 
not being received. If enabled, the idle callback is continuously called when events are 
not being received. The callback routine has no parameters. The current window and 
current menu will not be changed before the idle callback. Programs with multiple 
windows and/or menus should explicitly set the current window and/or current menu and 
not rely on its current setting.  
The amount of computation and rendering done in an idle callback should be minimized 
to avoid affecting the program's interactive response. In general, not more than a single 
frame of rendering should be done in an idle callback.  
Passing NULL to glutIdleFunc disables the generation of the idle callback.  
 

glutMainLoop 
glutMainLoop enters the GLUT event processing loop.  
Usage  
void glutMainLoop(void); 
Description  
glutMainLoop enters the GLUT event processing loop. This routine should be called at 
most once in a GLUT program. Once called, this routine will never return. It will call as 
necessary any callbacks that have been registered.  
 

glutSwapBuffers 
glutSwapBuffers swaps the buffers of the current window if double buffered.  
Usage  
void glutSwapBuffers(void); 
Description  
Performs a buffer swap on the layer in use for the current window. Specifically, 
glutSwapBuffers promotes the contents of the back buffer of the layer in use of the 
current window to become the contents of the front buffer. The contents of the back 
buffer then become undefined. The update typically takes place during the vertical retrace 
of the monitor, rather than immediately after glutSwapBuffers is called.  
An implicit   glFlush is done by glutSwapBuffers before it returns. Subsequent OpenGL 
commands can be issued immediately after calling glutSwapBuffers, but are not executed 
until the buffer exchange is completed.  
If the layer in use is not double buffered, glutSwapBuffers has no effect. 
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Lecture No.34   OpenGL Programming - II 

 
#include "GL/glut.h" 
#include <stdlib.h> 
 
static void reshape( int w, int h ) 
{ 
    glViewport( 0, 0, w, h ); 
} 
 
static void keyboard( unsigned char key, int x, int y ) 
{ 
    switch( key ) 
    { 
    case 27:        //Escape 
        exit(0); 
        break; 
    } 
} 
 
static void display() 
{ 
} 
 
static void idle() 
{ 
 glClearColor(0.0f,0.0f,0.0f,0.0f); 
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); 
/////////////////////////////////////////////////////// 
// glRotatef(0.5f,0.0f,1.0f,0.0);  
 
 glBegin(GL_TRIANGLES); 
 
 glVertex3f(0.5f,0.2f,0.0f); 
 glVertex3f(0.5f,0.0f,0.0f); 
 glVertex3f(0.0f,0.0f,0.0f); 
 
 glEnd(); 
 
 glutSwapBuffers(); 
} 
 
static void initGL() 
{ 
 float ratio= (float)640 /480 ; 
 
    glMatrixMode( GL_PROJECTION );  
  glLoadIdentity(); 
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  gluPerspective( 45.0,(float) 640 /480 , 1.0, 100.0 );  
 glMatrixMode(GL_MODELVIEW); 
 
 glLoadIdentity(); 
    glTranslated(0.0, 0.0, -5.0 );  
 
} 
int main( int argc, char* argv[] ) 
{ 
 
    //Initialize the GLUT library. 
    glutInit( &argc, argv ); 
 
    //Set up the OpenGL rendering context. 
    glutInitDisplayMode( GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH ); 
 
    //Create a window and set its width and height. 
    glutCreateWindow( "Deform" ); 
    glutReshapeWindow( 640, 480 ); 
 
    //Initialize our data structures. 
    initGL(); 
 
    //The keyboard function gets called whenever we hit a key. 
    glutKeyboardFunc( keyboard ); 
 
    //The display function gets called whenever the window 
    //requires an update or when we explicitly call 
    //glutPostRedisplay() 
    glutDisplayFunc( display ); 
 
    //The reshape function gets called whenever the window changes 
    //shape. 
    glutReshapeFunc( reshape ); 
 
    //The idle function gets called when there are no window 
    //events to process. 
    glutIdleFunc( idle ); 
 
    //Get the ball rolling! 
    glutMainLoop(); 
 
    return 0; 
} 
 
//eof 
 
In the above program we have first set perspective projection matrix and then rendered a 
triangle in idle function. 
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glMatrixMode 
The glMatrixMode function specifies which matrix is the current matrix. 
void glMatrixMode( 
  GLenum mode 
); 

Parameters 
mode  

The matrix stack that is the target for subsequent matrix operations. The mode 
parameter can assume one of three values:  

Value Meaning 

GL_MODELVIEW Applies subsequent matrix operations to 
the modelview matrix stack.  

GL_PROJECTION Applies subsequent matrix operations to 
the projection matrix stack.  

GL_TEXTURE Applies subsequent matrix operations to 
the texture matrix stack. 

 
Remarks 
The glMatrixMode function sets the current matrix mode.  

The following function retrieves information related to glMatrixMode: 
Error Codes 
The following are the error codes generated and their conditions. 

Error code Condition 

GL_INVALID_ENUM  mode was not an accepted value. 

GL_INVALID_OPERATION  glMatrixMode was called between a call to 
glBegin and the corresponding call to glEnd.  

 
 

glLoadIdentity 
The glLoadIdentity function replaces the current matrix with the identity matrix. 
void glLoadIdentity( 
  void 
); 
 
Remarks 
The glLoadIdentity function replaces the current matrix with the identity matrix. It is 
semantically equivalent to calling glLoadMatrix with the identity matrix 
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but in some cases it is more efficient. 

The following functions retrieve information related to glLoadIdentity: 
Error Codes 

The following is the error code and its condition. 

Error code Condition 

GL_INVALID_OPERATION  glLoadIdentity was called between a call to 
glBegin and the corresponding call to glEnd. 

 
glTranslated, glTranslatef 

The glTranslated and glTranslatef functions multiply the current matrix by a translation 
matrix. 
void glTranslated( 
  GLdouble x, 
  GLdouble y, 
  GLdouble z 
); 
 
void glTranslatef( 
  GLfloat x,  
  GLfloat y,  
  GLfloat z   
); 

Parameters x, y, z  
The x, y, and z coordinates of a translation vector.  

 
Remarks 
The glTranslate function produces the translation specified by (x, y, z). The translation 
vector is used to compute a 4x4 translation matrix: 

 

The current matrix (see glMatrixMode) is multiplied by this translation matrix, with the 
product replacing the current matrix. That is, if M is the current matrix and T is the 
translation matrix, then M is replaced with M•T. 

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn 
after glTranslate is called are translated. Use glPushMatrix and glPopMatrix to save 
and restore the untranslated coordinate system. 

The following functions retrieve information related to glTranslated and glTranslatef: 
Error Codes 
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The following is the error code and its condition. 

Error code Condition 

GL_INVALID_OPERATION  glTranslate was called between a call to glBegin 
and the corresponding call to glEnd. 

 
gluPerspective 

The gluPerspective is the function of gl utility library. This function sets up a perspective 
projection matrix. 
void gluPerspective( 
  GLdouble fovy, 
  GLdouble aspect, 
  GLdouble zNear, 
  GLdouble zFar 
); 

Parameters 
fovy  

The field of view angle, in degrees, in the y-direction.  
aspect  

The aspect ratio that determines the field of view in the x-direction. The aspect 
ratio is the ratio of x (width) to y (height).  

zNear  
The distance from the viewer to the near clipping plane (always positive).  

zFar  
The distance from the viewer to the far clipping plane (always positive).  

Remarks 
The gluPerspective function specifies a viewing frustum into the world coordinate 
system. In general, the aspect ratio in gluPerspective should match the aspect ratio of the 
associated viewport. For example, aspect = 2.0 means the viewer's angle of view is twice 
as wide in x as it is in y. If the viewport is twice as wide as it is tall, it displays the image 
without distortion. 

The matrix generated by gluPerspective is multiplied by the current matrix, just as if 
glMultMatrix were called with the generated matrix. To load the perspective matrix onto 
the current matrix stack instead, precede the call to gluPerspective with a call to 
glLoadIdentity. 

 
glRotated, glRotatef 

The glRotated and glRotatef functions multiply the current matrix by a rotation matrix. 
void glRotated( 
   GLdouble angle, 
   GLdouble x, 
   GLdouble y, 
   GLdouble z ); 
void glRotatef( 
   GLfloat angle, 
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   GLfloat x, 
   GLfloat y, 
   GLfloat z ); 

Parameters 
angle  

The angle of rotation, in degrees.  
x, y, z  

The x, y, and z coordinates of a vector, respectively.  
Remarks 

The glRotate function computes a matrix that performs a counterclockwise rotation of 
angle degrees about the vector from the origin through the point (x, y, z). 

The current matrix (see glMatrixMode) is multiplied by this rotation matrix, with the 
product replacing the current matrix. That is, if M is the current matrix and R is the 
translation matrix, then M is replaced with M•R. 

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn 
after glRotate is called are rotated. Use glPushMatrix and glPopMatrix to save and 
restore the unrotated coordinate system. 

Error Codes 
The following is the error code and its condition. 

Error code Condition 

GL_INVALID_OPERATION  glRotate was called between a call to glBegin and 
the corresponding call to glEnd. 

 
glClearColor 

The glClearColor function specifies clear values for the color buffers. 
void glClearColor( 
  GLclampf red, 
  GLclampf green, 
  GLclampf blue, 
  GLclampf alpha 
); 

Parameters 
red, green, blue, alpha  

The red, green, blue, and alpha values that glClear uses to clear the color buffers. 
The default values are all zero.  

Remarks 
The glClearColor function specifies the red, green, blue, and alpha values used by 
glClear to clear the color buffers. Values specified by glClearColor are clamped to the 
range [0,1]. 

Error Codes 
The following is the error code generated and its condition. 

Error code Condition 
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GL_INVALID_OPERATION  glClearColor was called between a call to 
glBegin and the corresponding call to glEnd. 

glColor 
These functions set the current color. 

glColor3b, glColor3d, glColor3f, glColor3i, glColor3s,  
glColor3ub, glColor3ui, glColor3us, glColor4b, glColor4d,  
glColor4f, glColor4i, glColor4s, glColor4ub, glColor4ui,  
glColor4us, glColor3bv, glColor3dv, glColor3fv, glColor3iv,  
glColor3sv, glColor3ubv, glColor3uiv, glColor3usv,  
glColor4bv, glColor4dv, glColor4fv, glColor4iv, glColor4sv,  
glColor4ubv, glColor4uiv, glColor4usv. 
void glColor3b( 
  GLbyte red,      
  GLbyte green,    
  GLbyte blue    ); 
void glColor3f( 
  GLfloat red,      
  GLfloat green,    
  GLfloat blue     ); 
 Consult yourself for the documentation of rest of the functions of this type. 

Parameters 
red, green, blue  

New red, green, and blue values for the current color.  
alpha  

A new alpha value for the current color. Included only in the four-argument 
glColor4 function.  

Remarks 
OpenGL stores both a current single-valued color index and a current four-valued RGBA 
color. The glColor function sets a new four-valued RGBA color.  

There are two major variants to glColor:  

• The glColor3 variants specify new red, green, and blue values explicitly, and set 
the current alpha value to 1.0 implicitly.  

• The glColor4 variants specify all four color components explicitly.  

The glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, and glColor4i functions 
take three or four signed byte, short, or long integers as arguments. When you append v to 
the name, the color functions can take a pointer to an array of such values. 

Current color values are stored in floating-point format, with unspecified mantissa and 
exponent sizes. Unsigned integer color components, when specified, are linearly mapped 
to floating-point values such that the largest representable value maps to 1.0 (full 
intensity), and zero maps to 0.0 (zero intensity). Signed integer color components, when 
specified, are linearly mapped to floating-point values such that the most positive 
representable value maps to 1.0, and the most negative representable value maps to 1.0. 
Floating-point values are mapped directly. 
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Neither floating-point nor signed integer values are clamped to the range [0,1] before 
updating the current color. However, color components are clamped to this range before 
they are interpolated or written into a color buffer. 

You can update the current color at any time. In particular, you can call glColor between 
a call to glBegin and the corresponding call to glEnd. 

glClear 
The glClear function clears buffers to preset values. 
void glClear( 
  GLbitfield mask 
); 

Parameters 
mask  

Bitwise OR operators of masks that indicate the buffers to be cleared. The four 
masks are as follows.  

Mask Buffer to be Cleared 

GL_COLOR_BUFFER_BIT The buffers currently enabled for color 
writing. 

GL_DEPTH_BUFFER_BIT The depth buffer. 

GL_ACCUM_BUFFER_BIT The accumulation buffer. 

GL_STENCIL_BUFFER_BIT The stencil buffer. 

 
Remarks 

The glClear function sets the bitplane area of the window to values previously selected 
by glClearColor, glClearIndex, glClearDepth, glClearStencil, and glClearAccum. 
You can clear multiple color buffers simultaneously by selecting more than one buffer at 
a time using glDrawBuffer. 

The pixel-ownership test, the scissor test, dithering, and the buffer writemasks affect the 
operation of glClear. The scissor box bounds the cleared region. The glClear function 
ignores the alpha function, blend function, logical operation, stenciling, texture mapping, 
and z-buffering. 

The glClear function takes a single argument (mask) that is the bitwise OR of several 
values indicating which buffer is to be cleared. 

The value to which each buffer is cleared depends on the setting of the clear value for that 
buffer. 

If a buffer is not present, a glClear call directed at that buffer has no effect. 
Error Codes 

 

The following are the error codes generated and their conditions. 
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Error code Condition 

GL_INVALID_VALUE  Any bit other than the four defined bits was 
set in mask. 

GL_INVALID_OPERATION  glClear was called between a call to glBegin 
and the corresponding call to glEnd. 

 
glBegin, glEnd 

The glBegin and glEnd functions delimit the vertices of a primitive or a group of like 
primitives. 
void glBegin( 
  GLenum mode 
); 
 void glEnd( 
  void 
); 

Parameters 
mode  

The primitive or primitives that will be created from vertices presented between 
glBegin and the subsequent glEnd. The following are accepted symbolic 
constants and their meanings:  
GL_POINTS  
Treats each vertex as a single point. Vertex n defines point n. N points are drawn.  
GL_LINES  
Treats each pair of vertices as an independent line segment. Vertices 2n 1 and 2n 
define line n. N/2 lines are drawn.  
GL_LINE_STRIP  
Draws a connected group of line segments from the first vertex to the last. 
Vertices n and n+1 define line n. N 1 lines are drawn.  
GL_LINE_LOOP  
Draws a connected group of line segments from the first vertex to the last, then 
back to the first. Vertices n and n+1 define line n. The last line, however, is 
defined by vertices N and 1. N lines are drawn.  
GL_TRIANGLES  
Treats each triplet of vertices as an independent triangle. Vertices 3n 2, 3n 1, and 
3n define triangle n. N/3 triangles are drawn.  
GL_TRIANGLE_STRIP  
Draws a connected group of triangles. One triangle is defined for each vertex 
presented after the first two vertices. For odd n, vertices n, n + 1, and n + 2 define 
triangle n. For even n, vertices n + 1, n, and n + 2 define triangle n. N 2 triangles 
are drawn.  
GL_TRIANGLE_FAN  
Draws a connected group of triangles. One triangle is defined for each vertex 
presented after the first two vertices. Vertices 1, n + 1, and n + 2 define triangle n. 
N 2 triangles are drawn.  
GL_QUADS  
Treats each group of four vertices as an independent quadrilateral. Vertices 4n 3, 
4n 2, 4n 1, and 4n define quadrilateral n. N/4 quadrilaterals are drawn.  
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GL_QUAD_STRIP  
Draws a connected group of quadrilaterals. One quadrilateral is defined for each 
pair of vertices presented after the first pair. Vertices 2n 1, 2n, 2n + 2, and 2n + 1 
define quadrilateral n. N quadrilaterals are drawn. Note that the order in which 
vertices are used to construct a quadrilateral from strip data is different from that 
used with independent data.  
GL_POLYGON  
Draws a single, convex polygon. Vertices 1 through N define this polygon.  

Remarks 
The glBegin and glEnd functions delimit the vertices that define a primitive or a group of 
like primitives. The glBegin function accepts a single argument that specifies which of 
ten primitives the vertices compose. Taking n as an integer count starting at one, and N as 
the total number of vertices specified, the interpretations are as follows:  

• You can use only a subset of OpenGL functions between glBegin and glEnd. The 
functions you can use are:  

glVertex 
glColor 
glIndex 
glNormal 
glMaterial 
 

 You can also use glCallList or glCallLists to execute display lists that include only 
the preceding functions. If any other OpenGL function is called between glBegin and 
glEnd, the error flag is set and the function is ignored.  

• Regardless of the value chosen for mode in glBegin, there is no limit to the 
number of vertices you can define between glBegin and glEnd. Lines, triangles, 
quadrilaterals, and polygons that are incompletely specified are not drawn. 
Incomplete specification results when either too few vertices are provided to specify 
even a single primitive or when an incorrect multiple of vertices is specified. The 
incomplete primitive is ignored; the complete primitives are drawn.  

• The minimum specification of vertices for each primitive is:  

Minimum number 
of vertices 

 
Type of primitive 

1  Point 

2 Line 

3 Triangle 

4 Quadrilateral 

3 Polygon 
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Modes that require a certain multiple of vertices are GL_LINES (2), GL_TRIANGLES 
(3), GL_QUADS (4), and GL_QUAD_STRIP (2). 

Error Codes 
The following are the error codes generated and their conditions. 

Error code Condition 

GL_INVALID_ENUM  mode was set to an unaccepted value. 

GL_INVALID_OPERATION  A function other than glVertex, glColor, 
glIndex, glNormal, glTexCoord, 
glEvalCoord, glEvalPoint, glMaterial, 
glEdgeFlag, glCallList, or glCallLists was 
called between glBegin and the 
corresponding glEnd. The function glEnd 
was called before the corresponding glBegin 
was called, or glBegin was called within a 
glBegin/glEnd sequence. 

 
glVertex 

These functions specify a vertex. 

glVertex2d, glVertex2f, glVertex2i, glVertex2s, glVertex3d,  
glVertex3f, glVertex3i, glVertex3s, glVertex4d, glVertex4f,  
glVertex4i, glVertex4s, glVertex2dv, glVertex2fv, glVertex2iv,  
glVertex2sv, glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv,  
glVertex4dv, glVertex4fv, glVertex4iv, glVertex4sv 
void glVertex3f( 
  GLfloat x, 
  GLfloat y, 
  GLfloat z 
); 
Consult the documentation to yourself for the functions of the same nature. 

Parameters 
x, y, z, w  

The x, y, z, and w coordinates of a vertex. Not all parameters are present in all 
forms of the command.  

Remarks 
The glVertex function commands are used within glBegin/glEnd pairs to specify point, 
line, and polygon vertices. The current color, normal, and texture coordinates are 
associated with the vertex when glVertex is called. 

When only x and y are specified, z defaults to 0.0 and w defaults to 1.0. When x, y, and z 
are specified, w defaults to 1.0. 

Invoking glVertex outside of a glBegin/glEnd pair results in undefined behavior. 
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Lecture No.35   Curves 
 
We all know what a curve is. In this lecture we will explore the mathematical definition 
of a curve in a form that is very useful to geometric modeling and other computer 
graphics applications: that definition consists of a set of parametric equations. The 
mathematics of parametric equations is the basis for Bezier, NURBS (Non Uniform 
Rational Beta Splines), and Hermite curves. We will discuss both plane curves and space 
curves here and also discussion of the tangent vector, blending functions, conic curves, 
re-parameterization, and continuity and composite curves. 
 

Parametric Equations of a Curve 
 
A parametric curve is one whose defining equations are given in terms of a single, 
common, independent variable called the parametric variable. We have already 
encountered parametric variables in earlier discussions of vectors, lines, and planes. 
Imagine a curve in three-dimensional space, each point on the curve has a unique set of 
coordinates: a specific x value, y value, and z value. Each coordinate is controlled by a 
separate parametric equation, whose general form looks like 
 
 

)1()(),(),( LLLuzzuyyuxx ===  
 
where x(u) stands for some as yet unspecified function in which u is the independent 

variable; for example, x(u) = au2 + bu + c, and similarly 
for y(u) and z(u). It is important to understand that each 
of these is an independent expression. This will become 
clear as we discuss specific examples later. 
The dependent variables are the x,y, and z coordinates 
themselves, because their values depend on the value of 
the parametric variable u. Engineers and programmers 
who do geometric modeling usually prefer these kinds of 
expressions because the coordinates x, y, and z are 
independent of each other, and each is defined by its own 
parametric equation. 
 
 
Figure 1: point of a curve defined by a vector. 

 
Each point on a curve is defined by a vector p (figure 1). The components of this vector 
are x(u), y(u), and z(u). We express this as 
 

)2()( LLLupp =  
 
Which says that the vector p is a function of the parametric variable u. 
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There is a lot of information in equation 2. When we expand it into component form, it 
becomes 

)3()]()()([)( LLLuzuyuxup =  
 
The specific functions that define the vector components of p determine the shape of the 
curve. In fact, this is one way to define a curve – by simple choosing or designing these 
mathematical functions. There re only a few simple rules that we must follow: 1) define 
each component by a single, common parametric variable, and 2) make sure that each 
point on the curve corresponds to a unique value of the parametric variable. The last rule 
can be put another way: each value of the parametric variable must correspond to a 
unique point on the curve. 
 
Plane Curves 
 
To define plane curves, we use parametric functions that are second-degree polynomials: 
  

zzz

yyy

xxx

cubuauz

cubuauy

cubuaux

++=

++=

++=

2

2

2

)(

)4()(

)(

LLL
 

 
Where the a, b, and c terms are constant coefficients.  
We can combine x(u), y(u), z(u), and their respective coefficients into and equivalent, 
more concise, vector equation: 
 

)5()( 2 LLLcbuauuP ++=  
 
We allow the parametric variable to take on values only in the interval 0 ≤ u ≤ 1. This 
ensures that the equation produces a bounded line segment. The coefficients a, b, c, in this 
equation are vectors, and each has three components; for example, a = [ax      ay      az ].  
 
This curve has serious limitations. Although it can generate all the conic curves, or a 
close approximation to them, it cannot generate curve with an inflection point, like an S-
shaped curve, no matter what values we select for the coefficients a, b, c. to do this 
requires a cubic polynomial. 
 
How do we define a specific plane curve, one that we can display, with define end points, 
and a precise orientation in space? first, note in equation 4 or 5 that there are nine 
coefficients that we must determine:  ax, bx, …, cz. if we know the two end points and the 
intermediate point. 
 
End points and an intermediate point on the curve, then we now nine quantities that we 
can express in terms of these coefficients (3 points x 3 coordinates each = 9 known 
quantities), and we can use these three points to define a unique curve (Figure 2). By 
applying some simple algebra to these relationships, we can rewrite Equation 5 in terms 
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of the three points. To one of the end points we assign u = 0, and to the other u = 1. To 
the intermediate point, we arbitrarily assign u = 0.5. We can write this points as 
 
P0   = [x0    y0        z0] 
P0.5 = [x0.5  y0.5    z0.5]     (6) 
P1   = [x1    y1        z1] 
 
 
Where the subscripts indicate the value of the parametric variable at each point.  
 
Now we solve equations 4 for the ax, bx, …, cz coefficients in terms of these points. Thus, 
for x at u = 0, u =0.5, and u =1, we have 
 
x0 = cx 
x0.5 = 0.25ax + 0.5bx + cx     (7)  
x1 = ax + bx + cx 
 
with similar equations for y, and z. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A plane curve defined by three points 
 
 
Next we solve these three equations in three unknowns for ax, bx, and cx, finding 
 
ax = 2x0 - 4x0.5  + 2x1  
bx = -3x0 + 4x0.5  + x1      (8) 
cx = x0 
 
Substituting this result in to equation 4 yields 
 
x(u) = (2x0 - 4x0.5  + 2x1 ) u2 + (-3x0 + 4x0.5  - x1) u + x0  (9)  
 
Again, there are equivalent expressions for y( u) and z(u). 
We rewrite equation 9 as follows: 
 
x(u) = (2u2 – 3u + 1) x0 + (-4u2 + 4u)x0.5 + (2u2 – u) x1  (10) 
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Using this result and equivalent expressions for y(u) and z(u), we combine them into a 
single vector equation: 
 
P(u) = (2u2 – 3u + 1) P0 + (-4u2 + 4u)P0.5 + (2u2 – u) P1  (11) 
 
Equation 11 produces the same curve as Equation 5. The curve will always lie in a plane 
no matter what three points we choose, Furthermore, it is interesting to note that the point 
P0.5 which is on the curve a t u= 0.5, is not necessarily half way along the length of the 
curve between p0 and p1. We can show this quite convincingly by choosing three points 
to define a curve such that two of them are relatively close together (figure 3). In fact, if 
we assign a different value to the parametric variable for the intermediate point, then we 
obtain different values for the coefficients in equations 8. This, in turn, means that a 
different curve is produced, although it passes through the same three points. 
 
Equation 5 is the algebraic form and equation 11 is the geometric form. Each of these 
equations can be written more compactly with matrices. Compactness is not the only 
advantage to matrix notation. Once a curve is defined in matrix form, we can use the full 
power of matrix algebra to solve many geometry problems.  
 

 
 

Figure 3: Curve defined by three non-uniformly spaced points. 
 
So now we rewrite equation 5 using the following substitutions: 
 

)12(]1[ 22 LLLcbuau
c
b
a

uu ++=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

 

 

)13(]1[ 2 LLLuuU =  
 

)14(][ LLLTcbaA =  
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And finally we obtain 
 

)15()( LLLUAup =  
 
Remember that A is really a matrix of vectors, so that 
 

)16(LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

zyx

zyx

zyx

ccc
bbb
aaa

c
b
a

A
 

The nine terms on the right are called the algebraic coefficients. 
Next, we convert equation 11 into matrix form. The right-hand side looks like the product 
of two matrices:  )]2()44()132[( 222 uuuuuu −+−+−  and ][ 15.00 ppp . This 
means that 
 

)17()]2()44()132[()(

1

5.0

0
222 LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+−+−=

p
p
p

uuuuuuup

Using the following substitutions: 
 

)18()]2()44()132[( 222 LLLuuuuuuF −+−+−=  
and 
 

)19(

111

5.05.05.0

000

1

5.0

0

LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

zyx
zyx
zyx

p
p
p

p
 

 
where P is the control point matrix and the nine terms on the right are its elements or the 
geometric coefficients, we can now write 

 
)20()( LLLFPup =  

 
This is the matrix version of the geometric form. 
Because it is the same curve in algebraic form, p(u)=UA, or geometric form, p(u)=FP, we 
can write 
 

)21(LLLUAFP =  
The F matrix is itself the product of two other matrices: 
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)22(
001
143

242
]1[ 2 LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−
= uuF

 

The matrix on the left we recognize as U, and we can denote the other matrix as 
 

)23(
001
143

242
LLL

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−
=M

 

 
This means that 
 

)24(LLLUMF =  
 
Using this we substitute appropriately to find 
 

)25(LLLUAUMP =  
 
Pre-multiplying each side of this equation by 1−U yields 
 

)26(LLLAMP =  
This expresses a simple relationship between the algebraic and geometric coefficients 
 

)27(LLLMPA =  
Or 

)28(1 LLLAMP −=  
 
The matrix M is called a basis transformation matrix, and F is called a blending function 
matrix. 
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Lecture No.36   Space Curves 

A space curve is not confined to a plane. It is free to twist through space. To define a 
space curve we must use parametric functions that are cubic polynomials. For x (u) we 
write  

( ) xxxx ducubuaux +++= 23      (1) 

With similar expressions for y(u) and z(u). Again the a, b, c and d terms are constant 
coefficients. As we did with Equation for a plane curve, we combine the x(u), y(u) , and 
z(u) expressions into a single vector equation : 

( ) dcubuauup +++= 23      (2) 

If a = 0, then this equation is identical to Equation discussed in plane curves 

To define a specific curve in space, we use the same approach as we did for a plane curve. 
This time, though, there are 12 coefficients to be determined. We specify four points 
through which we want the curve to pass, which provides all the information we need to 
determine a, b, c, and d. but which four points? Two are obvious: ( )0p  and ( )1p , the end 
points at 0=u  and 1=u . For various reasons beyond our scope, it turns out to be 

advantageous to use two intermediate points that we assign parametric values of 
3
1

=u  

and 
3
2

=u , or ⎟
⎠
⎞

⎜
⎝
⎛

3
1p  and ⎟

⎠
⎞

⎜
⎝
⎛

3
2p . So we now have the four points we need: 

 

 

 

 

 

 

Figure 1 Four points define a cubic space curve 

( )0p , ⎟
⎠
⎞

⎜
⎝
⎛

3
1p  and ⎟

⎠
⎞

⎜
⎝
⎛

3
2p  and ( )1p , which we can rewrite as the more convenient p1, p2, 

p3, and p4 (Figure 1). 

Substituting each of the values of the parametric variable ( )1,  32,  31,  0=u  into 
Equation 1, we obtain the following four equations in four unknowns: 

xdx =1  

xxxx dcbax +++=
3
1

9
1

27
1

2  

xxxx dcbax +++=
3
2

9
4

27
8

3             (3) 

x

y
z

P1

P1/3

P0

P2/3
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xxxx dcbax +++=4  

Now we can express ax, bx, cx and dx in terms of x1, x2, x3, and x4. After doing the necessary 
algebra, we obtain 

4321 2
9

2
27

2
27

2
9 xxxxax +−+−=  

4321 2
918

2
459 xxxxbx −+−=  

4321 2
99

2
11 xxxxcx +−+−=             (4) 

1xd x =  

We substitute these results into Equation 1, producing  

( )

14321

2
321

3
4321

2
99

2
11

2
918

2
459

2
9

2
27

2
27

2
9

xuxxxx

uxxxxuxxxxux

+⎟
⎠
⎞

⎜
⎝
⎛ +−+−+

⎟
⎠
⎞

⎜
⎝
⎛ −+−+⎟

⎠
⎞

⎜
⎝
⎛ +−+−=

      (5) 

All this looks a bit messy right now, but we can put it into a neat, much more compact 
form. We begin by rewriting Equation 5 as follows: 

( )

4
23

3
23

2
23

1
23

2
9

2
9918

2
27

9
2
45

2
271

2
119

2
9

xuuuxuuu

xuuuxuuuux

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −+−+

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ +−+−=

        (6) 

Using equivalent expressions for y(u) and z(u), we can summarize them as a single vector 
equation: 

( )

4
23

3
23

2
23

1
23

2
9

2
9918

2
27

9
2
45

2
271

2
119

2
9

puuupuuu

puuupuuuup

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −+−+

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ +−+−=

        (7) 

This means that, given four point assigned successive values of u (in this case at u=0, 1/3, 
2/3, 1), equation 7 produces a curve that starts at p1, passes through p2 and p3, and ends 
at p4. 

Now let’s take one more step toward a more compact notation. Using the four parametric 
functions appearing in Equation 7, we define a new matrix, [ ]4321 GGGGG = , 
where  

⎟
⎠
⎞

⎜
⎝
⎛ +−+−= 1

2
119

2
9 23

1 uuuG   ⎟
⎠
⎞

⎜
⎝
⎛ +−= uuuG 9

2
45

2
27 23

2  

⎟
⎠
⎞

⎜
⎝
⎛ −+−= uuuG 918

2
27 23

3   ⎟
⎠
⎞

⎜
⎝
⎛ +−= uuuG 23

4 2
9

2
9        (8) 

And then define a matrix P containing the control points, [ ]TPPPPP 4321= , so that  
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( ) GPuP =               (9) 

The matrix G is the product of two other matrices, U and N: 
UNG =             (10) 

Where [ ]TuuuU 123=  and  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−−

=

0001

1
2
99

2
11

1
2
9

2
459

2
9

2
27

2
27

2
9

N          (11) 

(Note that N is another example of a basis transformation matrix.) 
Now we let 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

zyx

zyx

zyx

zyx

ddd
ccc
bbb
aaa

d
c
b
a

A                     (12) 

Using matrices, Equation 2 becomes 
( ) UAuP =                       (13) 

Which looks a lot like Equation for a plane curve, except that we have defined new U and 
A matrices? In fact, Equation is a special case of the formulation for a space curve. 

To convert the information in the A matrix into that required for the P matrix, we do 
some simple matrix algebra, using Equations 9,  10 and 13. First we have  

UNPGP =                       (14) 
And then 

UNPUA =                       (15) 
Or more simply 

NPA =                       (16) 
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Lecture No.37   The Tangent Vector 

 
Another way to define a space curve does not use intermediate points. It uses the tangents 
at each end of the curve, instead. Every point on a curve has a straight line associated 
with it called the tangent line, which is related to the first derivation of the Parametric 
functions x(u), y(u), and z(u), such as those given by Equation 2 of previous lecture. Thus  

( ) ( ) ( )uz
du
danduy

du
dux

du
d         ,     ,              (1) 

From elementary calculus, we can compute, for example,  
( )
( ) duudx

duudy
du
dy

/
/ =            (2) 

We can treat ( ) ( ) ( ) duudzandduudyduudx ,,  as components of a vector along the 
tangent line to the curve. We call this the tangent vector, and define it as  

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡= kuz

du
djuy

du
diux

du
duPu          (3) 

Or more simply as  

[ ]uuuu zyxP  =             (4) 

(Here the superscript u indicates the first derivative operation with respect to the 
independent variable u). This is a very powerful idea, and we will now see how to use it 
to define a curve. 

In the last section, we discussed how to define a curve by specifying four points. Now we 
have another way to define a curve. We will still use the two end points, but instead of 
two intermediate points, we will use the tangent vectors at each end to supply the 
information we need to define a curve. By manipulating these tangent vectors, we can 
control the slope at each end. The set of vectors 0p , 1p , up

0
, and up1 are called the 

boundary conditions. This method itself is called the cubic Hermite interpolation, after C. 
Hermite (1822-1901) the French mathematician who made significant contributions to 
our understanding of cubic and quadratic polynomials. 

We differentiate to obtain the x component of the tangent vector: 

( ) xxx
u cubuaxudx

du
d

++== 23 2       (5) 

 

 

 

 

Figure 1 Defining a curve using end points and tangent vectors. 

( ) xxxx ducubuaux +++= 23        (1A) 

P1

P0

Pu
1

Pu
0
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Evaluating (1A) and Equation 5 at u = 0, u = 1, yields 

xxx
u

x
u

xxxx

x

cbax

cx

dcbax
dx

++=

=

+++=
=

231

0

1

0

      (6) 

Using these four equations in four unknowns, we solve for ax ,  bx ,  cx and dx in terms of the 
boundary conditions 

( )
( )

0

0

1010

1010

23

2

xd
xc

xxxxb

xxxxa

x

u
x

uu
x

uu
x

=
=

−−+−=

++−=

                     (7) 

Substituting the result into Equation (1A), yields 

( ) ( ) ( ) 00
2

01010
3

1010 23322 xxuxxxxxuxxxxux uuuuuu ++−−+−+++−=     (8) 

Rearranging terms we can rewrite this as  

( ) ( ) ( ) ( ) ( ) uu xuuxuuuxuuxuuux 1
23

0
23

1
23

0
23 232132 −++−++−++−=     (9) 

Because y(u) and z(u) have equivalent forms, we can include them by rewriting Equation 
9 in vector form: 

( ) ( ) ( ) ( ) ( ) uu puupuuupuupuuup 1
23

0
23

1
23

0
23 232132 −++−++−++−=   (10) 

To express Equation 10 in matrix notation, we first define a blending function matrix 
[ ]4321 FFFFF = , where  

23
4

23
3

23
2

23
1

2

32

132

uuF

uuuF

uuF

uuF

−=

+−=

+−=

+−=

       (11) 

These matrix elements are the polynomial coefficients of the vectors which we rewrite as  

( ) uu pFpFpFpFup 14031201 +++=       (12) 

If we assemble the vectors representing the boundary conditions into a matrix B,  

[ ]Tuu ppppB 1010=        (13)  

Then 

   ( ) FBup =         (14) 

Here again we write the matrix F as the product of two matrices, U and M, so that 
   UMF =          (15) 
where 



37-The Tangent Vector                                                                                                                                 VU       
 

 
© Copyright Virtual University of Pakistan 

 

333

    [ ]123 uuuU =        (16) 

and  

    M = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−

−

0001
0100
1233

1122

     (17) 

Rewriting Equation 14 using these substitutions, we obtain 
 

( ) UMBuP =          (18) 

It is easy to show that the relationship between the algebraic and geometric coefficients 
for a space curve. Since 

( ) UAuP =       (19) 

the relationship between A and B  is, again,  
   
    MBA =       (20) 
Consider the four vectors that make up the boundary condition matrix. There is nothing 
extraordinary about the vectors defining the end points, but what about the two tangent 
vector? A tangent vector certainly defines the slope at one end of the curve, but a vector 
has characteristics of both direction and magnitude. All we need to specify ht slope is a 
unit tangent vector at each end, say t0 and t1. But p0, p1, t0, and t1 supply only 10 of the 12 
pieces of information needed to completely determine the curve. So the magnitude of the 
tangent vector is also necessary and contributes to the shape of the curve. In fact, we can 
write up0 and up1  as:  

000 tmpu =       (21) 

And  

    111 tmpu =        (22) 

Clearly, m0, and m1 are the magnitudes of up0 and up1 . 

Using these relationships, we modify Equation 10 as follows: 

( ) ( ) ( ) ( ) ( ) 11
23

00
23

1
23

0
23 232132 tmuutmuuupuupuuup −++−++−++−=   (23) 

Now we can experiment with a curve (Figure 2). Let’s hold p0, p1, t0, and t1 constants 
and see what happens to the shape of the curve as we vary m0 and m1. For simplicity we 
will consider a curve in the x, y plane. This means that z0, z1, uz0 and uz1  are all equal to 
zero. 

The B matrix for the curve drawn with the bold line (and with m0 = m1 = 1) is   
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 B = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11

00

1

0

tm
tm

P
P

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 0707.0707.0
0707.0707.0
001
000

     (24) 

Carefully consider this array of 12 elements; they uniquely define the curve. By changing 
either m0 or m1, or both, we can change the shape of the curve. But it is a restricted kind 
of change because not only do the end points remain fixed, but the end slopes are also 
unchanged! 

The three curves drawn with light lines in Figure 3 show the effects of varying m0 and 
m1. This is a very powerful tool for designing curves, making it possible to join up end-
to-end many curves in a smooth way and still exert some control over the interior shape 
of each individual curve. For example, as we increase the value of m0 while holding m1 
fixed, the curve seems to be pushed toward p1. Keeping m0 and m1 equal but increasing 
their value increases the maximum deflection of the curve from the x-axis and increases 
the curvature at the maximum. (Under some conditions, not necessarily desirable, we can 
force a loop to form). 
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Lecture No.38   Bezier Curves 
 
The Bezier curve is an important part of almost every computer-graphics illustration 
program and computer-aided design system in use today. It is used in many ways, from 
designing the curves and surfaces of automobiles to defining the shape of letters in type 
fonts. And because it is numerically the most stable of all the polynomial-based curves 
used in these applications, the Bezier curve is the ideal standard for representing the more 
complex piecewise polynomial curves.  
 
In the early 1960s, Peter Bezier began looking for a better way to define curves and 
surfaces one that would be useful to a design engineer. He was familiar with the work of 
Ferguson and Coons and their parametric cubic curves and bicubic surfaces. However, 
these did not offer an intuitive way to alter and control shape. The results of Bezier’s 
research led to the curves and surfaces that bear his name and became part of the 
UNISURF system. The French automobile manufacturer, Renault used UNISURF to 
design the sculptured surfaces of many of its products.  
 
A Geometric Construction 
 
We can draw a Bezier curve using a simple recursive geometric construction. Let’s begin 
by constructing a second-degree curve. We select three points A, B, C so that line AB is a 
tangent to the curve at A, and BC is tangent at C. The curve begins at A and ends at C. 
For any ratio, ui, we construct points D and E so that  
 

 
Figure 1: Geometric Construction of a second-degree Bezier curve. 

 

iu
BC
BE

AB
AD

==         (1) 

 
On DE we construct F so that DF/DE = uj . Point F is on the curve. Repeating this process 
for other values of ui, we produce a series of points on a Bezier curve. Note that we must 
be consistent in the order in which we sub-divide AB and BC.  
 
To define this curve in a coordinate system, let point A = (xA, yA), B= (xB, yB). Then 
coordinates of points D and E for some value of ui are  

( )
( )ABiAD

ABiAD

yyuyy
xxuxx

−+=
−+=

       (2) 

And   
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( )
( )BCiBE

BCiBE

yyuyy
xxuxx

−+=
−+=

       (3)  

 
The coordinates of point F for some value of ui are  

( )
( )DEiDF

DEiDF

yyuyy
xxuxx

−+=
−+=

        (4) 

To obtain xF and yF in terms of the coordinates of points A, B and C, for any value of ui in 
the unit interval, we substitute appropriately from Equation 2 and 3 into equations 4 of 
plane curve. After rearranging terms to simplify, we find 

 
( ) ( )
( ) ( ) CiBiiAiF

CiBiiAiF

yuyuuyuy

xuxuuxux
22

22

121

121

+−+−=

+−+−=
     (5) 

We generalize this set of equations for any point on the curve using the following 
substitutions: 

( )
( ) F

F

yuy
xux

=
=

         (6) 

And we let 

CBA

CBA

yyyyyy
xxxxxx
===
===

210

210

          
          

       (7) 

 
Now we can rewrite Equation 5 as  

( ) ( ) ( )
( ) ( ) ( ) 2

2
10

2

2
2

10
2

121

121

yuyuuyuuy

xuxuuxuux

+−+−=

+−+−=       (8) 

This is the set of second-degree equations for the coordinates of points on Bezier curve 
based on our construction. 
 
We express this construction process and Equations 8 in terms of vectors with the 
following substitutions. Let the vector po represent point A, p1  point B, and p2 point C. 
Form vector geometry we have D >>>> and E == >>> if we let F = >>> we see that  
 

( ) ( ) ( ) ( )[ ]010121010 ppupppupuppupup −+−−++−+=    (9) 
We rearrange terms to obtain a more compact vector equation of a second degree Bezier 
curve: 
 

( ) ( ) ( ) 2
2

10
2 121 pupuupuup +−+−=              (10) 

The ratio u is the parametric variable. Later we will see that this equation is an example of 
a Bernstein polynomial. Note that the curve will always lie in the plane containing the 
three control points, but the points do not necessarily lie in the xy plane. 
 
Similar constructions apply to Bezier curves of any degree. In fact the degree of a Bezier 
curve is equal to n-1, where n is the number of control points.  
Figure 2 shows the construction of point on a cubic Bezier curve, which requires four 
control points A, B, C, and D to define it. The curve begins at point A tangent to the, AB, 
and ends at D and tangent to CD. We construct points E, F, and G so that  
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iu
CD
CG

BC
BF

AB
AE

===                  (11) 

 

 
Figure 2: Geometric construction of a cubic Bezier curve 

 
On EF and FG we locate H and I, respectively, so that  
 

iu
FG
FI

EF
EH

==                   (12) 

Finally on HI we locate J so that  

iu
HI
HJ

=                   (13) 

We can make no more subdivisions, which means that point J is on the curve. If we 
continue this process for a sequence of points, then their locus defines the curve. If points 
A, B, C, and D are represented by the vectors >>>>> respectively, then expressing the 
construction of the intermediate points E, F, G, H, and I in terms of these vectors to 
produce point J, or P(u), yields  
( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]}          
{          

01012101

0021232121

010121010

ppupppupuppu
pppupppupuppupu

ppupppupuppupup

−−−−++−−
−−+−−++−++

−+−−++−+=
           (14) 

This awkward expression simplifies nicely to  
( ) ( ) ( ) ( ) 0

3
2

2
1

2
0

3 13131 pupuupuupuup +−+−+−=              (15) 
Of course this construction, of a cubic curve with its four control points is done in the 
plane of the paper.  However, the cubic polynomial allows a curve that is nonplanar; that 
is, it can represent a curve that twists in space. 
 
The geometric construction of a Bezier curve shows how the control points influence its 
shape. The curve begins on the first point and ends on the last point. It is tangent to the 
lines connecting the first two points and the last two points. The curve is always 
contained within the convex hull of the control points. 
No one spends time constructing and plotting the points of a Bezier curve by hand, of 
course. A computer does a much faster and more accurate job. However, it is worth doing 
several curves this way for insight into the characteristics of Bezier curves. 
 
An Algebraic Definition 
Bezier began with the idea that any point p(u) on a curve segment should be given by an 
equation such as the following: 
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( ) ( )∑
=

=
n

i
ii ufpup

0

                  (16) 

 

 
Figure 3: Bezier curves and their control points 

 
Equation 16 is a compact way to express the sum of several similar terms because what it 
says is this: 
 

( ) ( ) ( ) ( )ufpufpufpup nn+++= ........1100                (17) 
Of which Equation 10 and 15 are specific examples, for n=2 and n=3, respectively.  
The n+1 functions, that is the fi(u) must produce a cure that has certain well-defined 
characteristics. Here are some of the most important ones: 

1. The curve must start on the first control point, p0, and end on the last, pn. 
Mathematically, we say that the functions must interpolate these two points. 

2. The curve must be tangent to the line given by p1 – p0 at pn - pn-1 at pn  . 
3. The functions fi(u) must be symmetric with respect to u and (1-u). This lets us 

reverse the sequence of control points without changing the shape of the curve. 
 
Other characteristics can be found in more advanced works on the subject. 

 
 Figure 
 

 
Figure 4: Three different sequences of four control points 
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Figure 5: Modifying the shape of a Bezier curve. 

 
A family of functions called Bernstein polynomials satisfies these requirements. They are 
the basis functions of the Bezier curve (Other curves, such as the NURBS curves, use 
different, but related, basis functions). We rewrite Equation 16 using them so that  
 

( ) ( )∑
=

=
n

i
nii uBpup

0
,                   (18) 

Were the basis functions are 
( ) ( ) ( ) inin

ini uuuB −−= 1,                  (19) 
 

( ) ( )!1!
!
−

=
ni
nn

i                    (20) 

 
The symbol ! is the factorial operator. For example, 3! = 3 x 2 x 1, 5! = 5 x 4 x 3 x 2 x 1, 
so forth. We use the following conventions when evaluating Equation20; If i and u equal 
zero, then ui = 1 and 0! = 1. We see that for n+1 control points, the basis functions 
produce an nth-degree polynomial. 
 
Expanding Equation 18 for a second degree Bezier curve (When n=2 and there are three 
control points) produces 
 
( ) ( ) ( ) ( )uBpuBpuBpup 2,222,112,00 ++=                (21) 

 
From Equation 20, we find 
 
 ( ) ( )22,0 1 uuB −=                  (22) 

( ) ( )uuuB −= 122,1                  (23) 

( ) 2
2,2 uuB =                   (24) 
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These are the basis functions for a second-degree Bezier curve.  
 

 
 

Figure 6: Bezier curve basis functions 
 
Substituting them into Equation 21 and rearranging terms, we find 
 

( ) ( ) ( ) 2
2

10
2 121 pupuupuup +−+−=               (25) 

 
This is the same expression we found from the geometric construction, Equation 10. The 
variable u is now called the parametric variable. 
 
Now, let’s expand Equation 18 for a cubic Bezier curve, where n=3: 

( ) ( ) ( ) ( ) ( )uBpuBpuBpuBpup 3,333,223,113,00 +++=    (26) 
And from Equation 20 we find 
 

( ) ( )33,0 1 uuB −=            (27) 
 

( ) ( )23,1 13 uuuB −=            (28) 
 

( ) ( )uuuB −= 13 2
3,2            (29) 

 
( ) 3

3,3 uuB =             (30) 
 
 
Substituting these into Equation 26 and rearranging terms produces 

( ) ( ) ( ) ( ) 3
3

2
2

1
2

0
3 13131 pupuupuupuup +−+−+−=       (31) 

 
 

Bezier curve equations are well suited for expression in matrix form. We can expand the 
cubic parametric functions and rewrite Equation 31 as  
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( )

( )
( )
( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+−
−+−

=

3

2

1

0

3

32

32

32

33
363

331

p
p
p
p

u
uu

uuu
uuu

up

T

          (32) 

 
or as  
 

( ) [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

3

2

1

0

23  

0001
0033
0363
1331

1

p
p
p
p

uuuup         (33) 

 
If we let 
 

[ ]123 uuuU =              (34) 
[ ]TppppP 3210 =             (35) 

 
and  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

0001
0033
0363
1331

M            (36) 

 
Then we can write Equation 33 even more compactly as  
 

( ) UMPup =                (37) 
 
Note that the composition of the matrices U, M, and P varies according to the number of 
control points (that is, the degree of the Bernstein polynomial basis functions). 
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Lecture No.39   Building Polygonal Models of Surfaces 

 
Constructing polygonal approximations to surfaces is an art, and there is no substitute for 
experience. This section, however, lists a few pointers that might make it a bit easier to 
get started. 
 

• Keep polygon orientations consistent. Make sure that when viewed from the 
outside, all the polygons on the surface are oriented in the same direction (all 
clockwise or all counterclockwise). Consistent orientation is important for 
polygon culling and two-sided lighting. Try to get this right the first time, since it's 
excruciatingly painful to fix the problem later. (If you use glScale*() to reflect 
geometry around some axis of symmetry, you might change the orientation with 
glFrontFace() to keep the orientations consistent.) 

• When you subdivide a surface, watch out for any nontriangular polygons. The 
three vertices of a triangle are guaranteed to lie on a plane; any polygon with four 
or more vertices might not. Nonplanar polygons can be viewed from some 
orientation such that the edges cross each other, and OpenGL might not render 
such polygons correctly.    

• There's always a trade-off between the display speed and the quality of the image. 
If you subdivide a surface into a small number of polygons, it renders quickly but 
might have a jagged appearance; if you subdivide it into millions of tiny polygons, 
it probably looks good but might take a long time to render. Ideally, you can 
provide a parameter to the subdivision routines that indicates how fine a 
subdivision you want, and if the object is farther from the eye, you can use a 
coarser subdivision. Also, when you subdivide, use large polygons where the 
surface is relatively flat, and small polygons in regions of high curvature. 

• For high-quality images, it's a good idea to subdivide more on the silhouette edges 
than in the interior. If the surface is to be rotated relative to the eye, this is tougher 
to do, since the silhouette edges keep moving. Silhouette edges occur where the 
normal vectors are perpendicular to the vector from the surface to the viewpoint - 
that is, when their vector dot product is zero. Your subdivision algorithm might 
choose to subdivide more if this dot product is near zero. 

• Try to avoid T-intersections in your models (see Figure 1). As shown, there's no 
guarantee that the line segments AB and BC lie on exactly the same pixels as the 
segment AC. Sometimes they do, and  sometimes they don't, depending on the 
transformations and orientation. This can cause cracks to appear intermittently in 
the surface. 

 
Figure 1 : Modifying an Undesirable T-intersection 

 
• If you're constructing a closed surface, make sure to use exactly the same numbers 

for coordinates at the beginning and end of a closed loop, or you can get gaps and 
cracks due to numerical round-off. Here's a two-dimensional example of bad code: 
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#define PI 3.14159265 
#define EDGES 30 
/* draw a circle */ 
glBegin(GL_LINE_STRIP); 
 
for (i = 0; i <= EDGES; i++) 

glVertex2f(cos((2*PI*i)/EDGES), sin((2*PI*i)/EDGES)); 
glEnd(); 
 
The edges meet exactly only if your machine manages to calculate the sine and cosine of 
0 and of (2*PI*EDGES/EDGES) and gets exactly the same values. If you trust the 
floating-point unit on your machine to do this right, the authors have a bridge they'd like 
to sell you.... To correct the code, make sure that when i == EDGES, you use 0 for the 
sine and cosine, not 2*PI*EDGES/EDGES. (Or simpler still, use GL_LINE_LOOP 
instead of GL_LINE_STRIP, and change the loop termination condition to i < EDGES.) 
 
An Example: Building an Icosahedron 
 
To illustrate some of the considerations that arise in approximating a surface, let's look at 
some example code sequences. This code concerns the vertices of a regular icosahedron 
(which is a Platonic solid composed of twenty faces that span twelve vertices, each face 
of which is an equilateral triangle). An icosahedron can be considered a rough 
approximation for a sphere. Example 1 defines the vertices and triangles making up an 
icosahedron and then draws the icosahedron. 
 
Example 1 : Drawing an Icosahedron 
#define X .525731112119133606 
#define Z .850650808352039932 
static GLfloat vdata[12][3] = { 

{-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z}, 
{0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X}, 
{Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0} 

}; 
static GLuint tindices[20][3] = { 

{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1}, 
{8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3}, 
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6}, 
{6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11}  

}; 
 
int i; 
glBegin(GL_TRIANGLES); 

for (i = 0; i < 20; i++) { 
/* color information here */ 
glVertex3fv(&vdata[tindices[i][0]][0]); 
glVertex3fv(&vdata[tindices[i][1]][0]); 
glVertex3fv(&vdata[tindices[i][2]][0]); 

} 
glEnd(); 
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The strange numbers X and Z are chosen so that the distance from the origin to any of the 
vertices of the icosahedron is 1.0. The coordinates of the twelve vertices are given in the 
array vdata[ ][ ], where the zeroth vertex is {- &Xgr; , 0.0, &Zgr; }, the first is {X, 0.0, 
Z}, and so on. The array tindices[ ][ ] tells how to link the vertices to make triangles. For 
example, the first triangle is made from the zeroth, fourth, and first vertex. If you take the 
vertices for triangles in the order given, all the triangles have the same orientation. 
 
The line that mentions color information should be replaced by a command that sets the 
color of the ith face. If no code appears here, all faces are drawn in the same color, and 
it'll be impossible to discern the three-dimensional quality of the object. An alternative to 
explicitly specifying colors is to define surface normals and use lighting, as described in 
the next subsection. 
 
Note: In all the examples described in this section, unless the surface is to be drawn only 
once, you should probably save the calculated vertex and normal 
coordinates so that the calculations don't need to be repeated each time that the surface is 
drawn. This can be done using your own data structures or by 
constructing display lists. 
 
Calculating Normal Vectors for a Surface 
If a surface is to be lit, you need to supply the vector normal to the surface. Calculating 
the normalized cross product of two vectors on that surface provides normal vector. With 
the flat surfaces of an icosahedron, all three vertices defining a surface have the same 
normal vector. In this case, the normal needs to be specified only once for each set of 
three vertices. icosahedron. 
 
Example 2 : Generating Normal Vectors for a Surface 
 
GLfloat d1[3], d2[3], norm[3]; 
for (j = 0; j < 3; j++) { 

d1[j] = vdata[tindices[i][0]][j] - vdata[tindices[i][1]][j]; 
d2[j] = vdata[tindices[i][1]][j] - vdata[tindices[i][2]][j]; 

} 
normcrossprod(d1, d2, norm); 
glNormal3fv(norm); 
 
The function normcrossprod() produces the normalized cross product of two vectors, as 
shown in Example 3. 
 
Example 3 : Calculating the Normalized Cross Product of Two Vectors 
 
void normalize(float v[3]) { 

GLfloat d = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]); 
if (d == 0.0) { 

error("zero length vector"); 
return; 

} 
v[0] /= d; v[1] /= d; v[2] /= d; 

} 
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void normcrossprod(float v1[3], float v2[3], float out[3]) 
{ 

GLint i, j; 
GLfloat length; 
out[0] = v1[1]*v2[2] - v1[2]*v2[1]; 
out[1] = v1[2]*v2[0] - v1[0]*v2[2]; 
out[2] = v1[0]*v2[1] - v1[1]*v2[0]; 
normalize(out); 

} 
 
If you're using an icosahedron as an approximation for a shaded sphere, you'll want to use 
normal vectors that are perpendicular to the true surface of the sphere, rather than being 
perpendicular to the faces. For a sphere, the normal vectors are simple; each points in the 
same direction as the vector from the origin to the corresponding vertex. Since the 
icosahedron vertex data is for an icosahedron of radius 1, the normal and vertex data is 
identical. Here is the code that would draw an icosahedral approximation of a smoothly 
shaded sphere  
 
glBegin(GL_TRIANGLES); 

for (i = 0; i < 20; i++) { 
glNormal3fv(&vdata[tindices[i][0]][0]); 
glVertex3fv(&vdata[tindices[i][0]][0]); 
glNormal3fv(&vdata[tindices[i][1]][0]); 
glVertex3fv(&vdata[tindices[i][1]][0]); 
glNormal3fv(&vdata[tindices[i][2]][0]); 
glVertex3fv(&vdata[tindices[i][2]][0]); 

} 
glEnd(); 
 
Improving the Model 
A twenty-sided approximation to a sphere doesn't look good unless the image of the 
sphere on the screen is quite small, but there's an easy way to increase the accuracy of the 
approximation. Imagine the icosahedron inscribed in a sphere, and subdivide the triangles 
as shown in Figure 2. The newly introduced vertices lie slightly inside the sphere, so push 
them to the surface by normalizing them (dividing them by a factor to make them have 
length 1). This subdivision process can be repeated for arbitrary accuracy. The three 
objects shown in Figure 2 use 20, 80, and 320 approximating triangles, respectively. 

 
Figure 2: Subdividing to Improve a Polygonal Approximation to a Surface 
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Example 4 performs a single subdivision, creating an 80-sided spherical approximation. 
 
Example 4 : Single Subdivision 
 
void drawtriangle(float *v1, float *v2, float *v3) 
{ 

glBegin(GL_TRIANGLES); 
glNormal3fv(v1); glVertex3fv(v1); 
glNormal3fv(v2); glVertex3fv(v2); 
glNormal3fv(v3); glVertex3fv(v3); 

glEnd(); 
} 
void subdivide(float *v1, float *v2, float *v3) 
{ 

GLfloat v12[3], v23[3], v31[3]; 
GLint i; 
for (i = 0; i < 3; i++) { 

v12[i] = v1[i]+v2[i]; 
v23[i] = v2[i]+v3[i]; 
v31[i] = v3[i]+v1[i]; 

} 
normalize(v12); 
normalize(v23); 
normalize(v31); 
drawtriangle(v1, v12, v31); 
drawtriangle(v2, v23, v12); 
drawtriangle(v3, v31, v23); 
drawtriangle(v12, v23, v31); 

} 
for (i = 0; i < 20; i++) { 

subdivide(&vdata[tindices[i][0]][0], 
&vdata[tindices[i][1]][0], 
&vdata[tindices[i][2]][0]); 

} 
 
Example 5 is a slight modification of Example 4 which recursively subdivides the 
triangles to the proper depth. If the depth value is 0, no subdivisions are performed, and 
the triangle is drawn as is. If the depth is 1, a single subdivision is performed, and so on. 
 
Example 5 : Recursive Subdivision 
 
void subdivide(float *v1, float *v2, float *v3, long depth) 
{ 

GLfloat v12[3], v23[3], v31[3]; 
GLint i; 
if (depth == 0) { 

drawtriangle(v1, v2, v3); 
return; 

} 
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for (i = 0; i < 3; i++) { 
v12[i] = v1[i]+v2[i]; 
v23[i] = v2[i]+v3[i]; 
v31[i] = v3[i]+v1[i]; 

} 
normalize(v12); 
normalize(v23); 
normalize(v31); 
subdivide(v1, v12, v31, depth-1); 
subdivide(v2, v23, v12, depth-1); 
subdivide(v3, v31, v23, depth-1); 
subdivide(v12, v23, v31, depth-1); 

} 
 
Generalized Subdivision 
A recursive subdivision technique such as the one described in Example 5 can be used for 
other types of surfaces. Typically, the recursion ends either if a certain depth is reached or 
if some condition on the curvature is satisfied (highly curved parts of surfaces look better 
with more subdivision). 
To look at a more general solution to the problem of subdivision, consider an arbitrary 
surface parameterized by two variables u[0] and u[1]. Suppose that two routines are 
provided: 
 
void surf(GLfloat u[2], GLfloat vertex[3], GLfloat normal[3]); 
float curv(GLfloat u[2]); 
 
If surf() is passed u[], the corresponding three-dimensional vertex and normal vectors (of 
length 1) are returned. If u[] is passed to curv(), the curvature of the surface at that point 
is calculated and returned. (See an introductory textbook on differential geometry for 
more information about measuring surface curvature.) 
 
Example 6 shows the recursive routine that subdivides a triangle either until the 
maximum depth is reached or until the maximum curvature at the three 
vertices is less than some cutoff. 
 
Example 6 : Generalized Subdivision 
 
void subdivide(float u1[2], float u2[2], float u3[2], float cutoff, long depth) 
{ 

GLfloat v1[3], v2[3], v3[3], n1[3], n2[3], n3[3]; 
GLfloat u12[2], u23[2], u32[2]; 
GLint i; 
if (depth == maxdepth || (curv(u1) < cutoff && curv(u2) < cutoff && curv(u3) < 
cutoff)) { 

surf(u1, v1, n1); surf(u2, v2, n2); surf(u3, v3, n3); 
glBegin(GL_POLYGON); 

glNormal3fv(n1); glVertex3fv(v1); 
glNormal3fv(n2); glVertex3fv(v2); 
glNormal3fv(n3); glVertex3fv(v3); 

glEnd(); 
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return; 
} 
for (i = 0; i < 2; i++) { 

u12[i] = (u1[i] + u2[i])/2.0; 
u23[i] = (u2[i] + u3[i])/2.0; 
u31[i] = (u3[i] + u1[i])/2.0; 

} 
subdivide(u1, u12, u31, cutoff, depth+1); 
subdivide(u2, u23, u12, cutoff, depth+1); 
subdivide(u3, u31, u23, cutoff, depth+1); 
subdivide(u12, u23, u31, cutoff, depth+1); 

} 
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Lecture No.40   Fractals 

 
Fractal are geometric patterns that is repeated at ever smaller scales to produce irregular 
shapes and surfaces that can not be represented by classical geometry. Fractals are used in 
computer modeling of irregular patterns and structure in nature. 
According to Webster's Dictionary a fractal is defined as being "derived from the Latin 
word fractus meaning broken, uneven: any of various extremely irregular curves or 
shapes that repeat themselves at any scale on which they are examined." 

Mandelbrot, the discoverer of fractals gives two definitions:  

• "I coined fractal from the Latin adjective fractus. The corresponding Latin verb 
frangere means 'to break:' to create irregular fragments. It is therefore sensible - 
and how appropriate for our needs! - that, in addition to 'fragmented' (as in 
fraction or refraction), fractus should also mean 'irregular,' both meanings being 
preserved in fragment"[3]  

• Every set with a non-integer (Hausdorff-Besicovitch) dimension (D) is a fractal. 
However not every fractal has an integer D. A fractal is by definition a set for 
which D strictly exceeds the topological dimension (D^).[3]  

Hausdorff-Besicovitch(Fractal Dimension) 
To understand the second definition we need to be able to understand the fractal 
dimension. So first we have to develop an understanding of “how to calculate the 
dimension of an object”. Below we have three different objects. 

1. As you can see the line is broken into 4 smaller lines. Each of these lines is similar 
to the original line, but they are all 1/4 the scale. This is the idea of self similarity.  

 

2. The square below is also broken into smaller pieces. Each of which is 1/4th the 
size of the original. In this case it takes 16 of the smaller pieces to create the 
original.  

 

3. As with the others the cube is also broken down into smaller cubes of 1/4 the size 
of the original. It takes 64 of these smaller cubes to create the original cube.  
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By looking at this we begin to see a pattern:  
4 = 4^1  
16 = 4^2  
64 = 4^3  

This gives us the equation: 

N = S^D 
 
Where N is the number of small pieces that go into the larger one, S is the scale to which 
the smaller pieces compare to the larger one and D is the dimension.  
We now have the tools to be able to calculate the dimension. Just solve for D in the 
previous equation. When we do this we find that the Dimension is: 

D = log N / log S 
This dimension is the Hausdorff-Besicovitch dimension. 

Koch Curve 
Euclidean Geometry is the stuff we all learn in school. It is the geometry of lines, planes, 
circles etc. It's simple and it works, and for a long time, mathematicians thought it was a 
reasonable representation of nature. However, people soon discovered that they could 
draw (or at least begin to draw) certain curves and surfaces that could not be described by 
the classical geometry.  
 
How hard can it be to draw a curve? Let us attempt to describe. This is the Koch curve:  

 
Draw a triangle.  
If we say that each line is of length 1, then the total length of the curve is 3. 
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Now take each edge in turn and add another triangle, a third of the size. So now there are 
12 edges and 12 points. The length of the curve is now 4.  Repeat the process again, and 
again, forever. 
Length = 5.3333 

 

 

 

 

 

 

 

 

 

 

 

 

 

Length = 7.1111 
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Length = 12.6420 

As we continue adding edges, the length of the curve increases. If we add edges forever, 
then length of the curve reaches infinity, but the whole curve nevertheless covers a finite 
area. The curve is infinitely detailed. No matter how closely we zoom into the image, it 
always shows up more detail.   

Self Similarity  
So what do these mathematical curiosities have to do with the real world? Well, 
everything as it turns out. Such objects turn up all the time in the natural world. Animals, 
plants, rocks, crystals and liquids all exhibit fractal properties and self similarity.  
Let’s take a look at a common plant, the fern. The fern is typical of many plants in that it 
exhibits self similarity. A fern consists of a leaf, which is made up from many similar, but 
smaller leaves, each of which, in turn, is made from even smaller leaves. The closer we 
look the more detail we see. 
 
The following figure is a standard fern, which we may well find while being dragged on 
long walks in the country by your parents long before we are able to fully appreciate the 
beauty of nature. We will see the overall theme of repeating leaves. Each smaller leaf 
looks similar to the larger leaf.  
 
 
 
 
  
 
 
 
 
 
 



40-Fractals                                                                                                                                                     VU        
 

 
© Copyright Virtual University of Pakistan 

 

353

Looking a little closer, we can see that those small leaves are made up from even smaller 
leaves.  
 
 
 
 
 
 
 
 
 
 
 
 
Of course, in reality, a fern does have a smallest leaf, though we’re sure every fern aspires 
to be like that one. What is interesting it that the program to generate this image is only a 
few lines long. The same tends to be true for all fractals. A very simple algorithm can 
explain an infinitely complex object.  
 
Fractal Geometry 
Almost all geometric forms used for building man made objects belong to Euclidean 
geometry, they are comprised of lines, planes, rectangular volumes, arcs, cylinders, 
spheres, etc. These elements can be classified as belonging to an integer dimension, 1, 2, 
or 3. This concept of dimension can be described both intuitively and mathematically. 
Intuitively we say that a line is one dimensional because it only takes 1 number to 
uniquely define any point on it. That one number could be the distance from the start of 
the line. This applies equally well to the circumference of a circle, a curve, or the 
boundary of any object.  

 
A plane is two dimensional since in order to uniquely define any point on its surface we 
require two numbers. There are many ways to arrange the definition of these two numbers 
but we normally create an orthogonal coordinate system. Other examples of two 
dimensional objects are the surface of a sphere or an arbitrary twisted plane.  

 
The volume of some solid object is 3 dimensional on the same basis as above, it takes 
three numbers to uniquely define any point within the object.  
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A more mathematical description of dimension is based on how the "size" of an object 
behaves as the linear dimension increases. In one dimension consider a line segment. If 
the linear dimension of the line segment is doubled then obviously the length 
(characteristic size) of the line has doubled. In two dimensions, ff the linear dimensions of 
a rectangle for example is doubled then the characteristic size, the area, increases by a 
factor of 4. In three dimensions if the linear dimension of a box are doubled then the 
volume increases by a factor of 8. This relationship between dimension D, linear scaling 
L and the resulting increase in size S can be generalized and written as  

 
This is just telling us mathematically what we know from everyday experience. If we 
scale a two dimensional object for example then the area increases by the square of the 
scaling. If we scale a three dimensional object the volume increases by the cube of the 
scale factor. Rearranging the above gives an expression for dimension depending on how 
the size changes as a function of linear scaling, namely  

 
In the examples above the value of D is an integer, 1, 2, or 3, depending on the dimension 
of the geometry. This relationship holds for all Euclidean shapes. There are however 
many shapes which do not conform to the integer based idea of dimension given above in 
both the intuitive and mathematical descriptions. That is, there are objects which appear 
to be curves for example but which a point on the curve cannot be uniquely described 
with just one number. If the earlier scaling formulation for dimension is applied the 
formula does not yield an integer. There are shapes that lie in a plane but if they are 
linearly scaled by a factor L, the area does not increase by L squared but by some non 
integer amount. These geometries are called fractals! One of the simpler fractal shapes is 
the von Koch snowflake. The method of creating this shape is to repeatedly replace each 
line segment with the following 4 line segments.  

 
The process starts with a single line segment and continues for ever. The first few 
iterations of this procedure are shown below.  
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This demonstrates how a very simple generation rule for this shape can generate some 
unusual (fractal) properties. Unlike Euclidean shapes this object has detail at all levels. If 
one magnifies a Euclidean shape such as the circumference of a circle it becomes a 
different shape, namely a straight line. If we magnify this fractal more and more detail is 
uncovered, the detail is self similar or rather it is exactly self similar. Put another way, 
any magnified portion is identical to any other magnified portion.  

Note also that the "curve" on the right is not a fractal but only an approximation of one. 
This is no different from when one draws a circle, it is only an approximation to a perfect 
circle. At each iteration the length of the curve increases by a factor of 4/3. Thus the 
limiting curve is of infinite length and indeed the length between any two points of the 
curve is infinite. This curve manages to compress an infinite length into a finite area of 
the plane without intersecting itself! Considering the intuitive notion of 1 dimensional 
shapes, although this object appears to be a curve with one starting point and one end 
point, it is not possible to uniquely specify any position along the curve with one number 
as we expect to be able to do with Euclidean curves which are 1 dimensional. Although 
the method of creating this curve is straightforward, there is no algebraic formula the 
describes the points on the curve. Some of the major differences between fractal and 
Euclidean geometry are outlined in the following table.  

 
Firstly the recognition of fractal is very modern, they have only formally been studied in 
the last 10 years compared to Euclidean geometry which goes back over 2000 years. 
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Secondly whereas Euclidean shapes normally have a few characteristic sizes or length 
scales (e.g. the radius of a circle or the length of of a side of a cube) fractals have so 
characteristic sizes. Fractal shapes are self similar and independent of size or scaling. 
Third, Euclidean geometry provides a good description of man made objects whereas 
fractals are required for a representation of naturally occurring geometries. It is likely that 
this limitation of our traditional language of shape is responsible for the striking 
difference between mass produced objects and natural shapes. Finally, Euclidean 
geometries are defined by algebraic formulae, for example  

 
defines a sphere. Fractals are normally the result of a iterative or recursive construction or 
algorithm.  
L-Systems 
The following is based on L-Systems as described in "Lecture Notes in Biomathematics" 
by Przemyslaw Prusinkiewcz and James Hanan. A brief description of an 0L system will 
be presented here but for a more complete description the user should consult the 
literature.  
 
Simpleminded example of 0L system  
A string of characters (symbols) is rewritten on each iteration according to some 
replacement rules. Consider an initial string (axiom)  
F+F+F+F 
and a rewriting rule  
F --> F+F-F-FF+F+F-F 
After one iteration the following string would result  
F+F-F-FF+F+F-F + F+F-F-FF+F+F-F + F+F-F-FF+F+F-F + F+F-F-FF+F+F-F  
For the next iteration the same rule is applied but now to the string resulting from the last 
iteration  

F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-FF+ F-
F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F+ F+ F-F-
FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-FF+ F-F-FF+ F+ 
F-F+ F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-
F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-FF+ F-F-FF+ F+ F-F+ F+ 
F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ F-F+ F+ F-F-
FF+ F+ F-F-F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-FF+ F-F-FF+ F+ F-F+ F+ F-F-FF+ F+ 
F-F+ F+ F-F-FF+ F+ F-F-F+ F-F-FF+ F+ F-F  

Some symbols are now given a graphical meaning, for example, F means move forward 
drawing a line, + means turn right by some predefined angle (90 degrees in this case), - 
means turn left. Using these symbols the initial string F+F+F+F is just a rectangle (ø = 
90). The replacement rule F --> F+F-F-FF+F+F-F replaces each forward movement by 
the following figure  
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The first iteration interpreted graphically is  

 
The next iteration interpreted graphically is:  

 
The following characters have a geometric interpretation.  
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Recent usage of L-Systems is for the creation of realistic looking objects that occur in 
nature and in particular the branching structure of plants. One of the important 
characteristics of L systems is that only a small amount of information is required to 
represent very complex objects. So while the bushes in figure 9 contain many thousands 
of lines they can be described in a database by only a few bytes of data, the actual bushes 
are only "grown" when required for visual presentation. Using suitably designed L-
System algorithms it is possible to design the L-System production rules that will create a 
particular class of plant.  
Further examples:  
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Featured on the cover of the HPC (High Performance Computing) magazine, 3 August 

2001. 
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IFS - Iterated Function Systems 
Instead of working with lines as in L systems, IFS replaces polygons by other polygons as 
described by a generator. On every iteration each polygon is replaced by a suitably scaled, 
rotated, and translated version of the polygons in the generator. Figure 10 shows two such 
generators made of rectangles and the result after one and six iterations. From this 
geometric description it is also possible to derive a hop-along description which gives the 
image that would be created after iterating the geometric model to infinity. The 
description of this is a set of contractive transformations on a plane of the form  

 
each with an assigned probability. To run the system an initial point is chosen and on 
each iteration one of the transformation is chosen randomly according to the assigned 
probabilities, the resulting points (xn, yn) are drawn on the page. As in the case of L 
systems, if the IFS code for a desired image can be determined (by something called the 
Collage theorem) then large data compression ratios can be achieved. Instead of storing 
the geometry of the very complex object just the IFS generator needs to be stored and the 
image can be generated when required. The fundamental iterative process involves 
replacing rectangles with a series of rectangles called the generator. The rectangles are 
replaced by a suitably scaled, translated, and rotated version of the generator.  
For example consider the generator on
the right  
It consists of three rectangles, each
with its own center, dimensions and
rotation angle. The initial conditions
usually consist of a single square, the
first iteration then consists of replacing
this square by a suitably positioned,
scaled and rotated version of the
generator.   

The next iteration involves replacing
each of the rectangles in the current
system by suitably positioned, scaled,
and rotated versions of the generator
resulting in the following  
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The next iteration replaces each
rectangle above again by the initial
generator as shown  

 
and so on, three more iterations later  

 

Hop-along or "The Chaos Game"  

A technique exists by which the
resulting form after an infinite
number of iterations can be
derived. This is a function of the
form  

 
This gives a series of (x,y) points
all which lie on the result of an
infinite IFS. Although it still takes
an infinite number of terms in this
series to form the result the
appearance can be readily
appreciated after a modest number
of terms (10000 say).  

Note that with both methods it is possible to create the image at any scale. In many but 
not all cases zoomed in examples will be exhibit self similarity at all scales. Applications 
generally iinvolve data reduction for model files. If a generator can be found for a 
complex image then storing the generator and the rules of production results in a great 
deal of data reduction. For example the weed in the examples above might eventually 
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contain over 2000 rectangles but is completely specified by the characteristics of 3 
rectangles, only 5 numbers, center (cx,cy), scale (sx,sy), and angle (ø) Note: it is not 
necessarily trivial to derive a rectangular generator for an arbitrary form, although it is 
possible to create a polygonal generator for any form.  
Further examples  
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IFS Fern 

 
 

Random IFS 

 
Wada basins 
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Lecture No.41   Viewing 

 
In this lecture we will practically implement viewing a geometric model in any 
orientation by transforming it in three-dimensional space and control the location in three-
dimensional space from which the model is viewed and to Clip undesired portions of the 
model out of the scene that's to be viewed, manipulate the appropriate matrix stacks that 
control model transformation for viewing and project the model onto the screen, combine 
multiple transformations to mimic sophisticated systems in motion, such as a solar system 
or an articulated robot arm, Reverse or mimic the operations of the geometric processing 
pipeline l   and we will also discuss on how to instruct OpenGL to draw the geometric 
models we want displayed in our scene. Now we must decide how we want to position 
the models in the scene, and we must choose a vantage point from which to view the 
scene. We can use the default positioning and vantage point, but most likely we want to 
specify them. Look at the image on the cover of this book. The program that produced 
that image contained a single geometric description of a building block. Each block was 
carefully positioned in the scene: Some blocks were scattered on the floor, some were 
stacked on top of each other on the table, and some were assembled to make the globe. 
Also, a particular viewpoint had to be chosen. Obviously, we wanted to look at the corner 
of the room containing the globe. But how far away from the scene - and where exactly - 
should the viewer be? We wanted to make sure that the final image of the scene contained 
a good view out the window, that a portion of the floor was visible, and that all the 
objects in the scene were not only visible but presented in an interesting arrangement. and 
how to use OpenGL to accomplish these tasks: how to position and orient models in 
three-dimensional space and how to establish the location - also in three-dimensional 
space - of the viewpoint. All of these factors help determine exactly what image appears 
on the screen. We want to remember that the point of computer graphics is to create a 
two-dimensional image of three-dimensional objects (it has to be two-dimensional 
because it's drawn on a flat screen), but we need to think in three-dimensional coordinates 
while making many of the decisions that determine what gets drawn on the screen. A 
common mistake people make when creating three-dimensional graphics is to start 
thinking too soon that the final image appears on a flat, two-dimensional screen. Avoid 
thinking about which pixels need to be drawn, and instead try to visualize three-
dimensional space. Create your models in some three-dimensional universe that lies deep 
inside your computer, and let the computer do its job of calculating which pixels to color. 
 
A series of three computer operations convert an object's three-dimensional coordinates to 
pixel positions on the screen. Transformations, which are represented by matrix 
multiplication, include modeling, viewing, and projection operations. Such operations 
include rotation, translation, scaling, reflecting, orthographic projection, and perspective 
projection. Generally, we use a combination of several transformations to draw a scene.    
Since the scene is rendered on a rectangular window, objects (or parts of objects) that lie 
outside the window must be clipped. In three-dimensional Computer graphics, clipping 
occurs by throwing out objects on one side of a clipping plane.   
 
Finally, a correspondence must be established between the transformed coordinates and 
screen pixels. This is known as a viewport transformation. 
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Overview: The Camera Analogy 
The transformation process to produce the desired scene for viewing is analogous to 
taking a photograph with a camera. As shown in Figure 1, the steps with a camera (or a 
computer) might be the following. Set up your tripod and pointing the camera at the scene 
(viewing transformation).  
Arrange the scene to be photographed into the desired composition (modeling 
transformation).  
Choose a camera lens or adjust the zoom (projection transformation).  
Determine how large we want the final photograph to be - for example, we might want it 
enlarged (viewport transformation).  
After these steps are performed, the picture can be snapped or the scene can be drawn. 
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Figure 1: The Camera Analogy 
 
Note that these steps correspond to the order in which we specify the desired 
transformations in our program, not necessarily the order in which the relevant 
mathematical operations are performed on an object's vertices. The viewing 
transformations must precede the modeling transformations in our code, but we can 
specify the projection and viewport transformations at any point before drawing occurs. 
Figure 2 shows the order in which these operations occur on our computer. 
 

 
 

Figure 2: Stages of Vertex Transformation 
 
To specify viewing, modeling, and projection transformations, we construct a 4 × 4 
matrix M, which is then multiplied by the coordinates of each vertex v in the scene to 
accomplish the transformation 
 

v'=Mv 
 
(Remember that vertices always have four coordinates (x, y, z, w), though in most cases 
w is 1 and for two-dimensional data z is 0.) Note that viewing and modeling 
transformations are automatically applied to surface normal vectors, in addition to 
vertices. (Normal vectors are used only in eye coordinates.) This ensures that the normal 
vector's relationship to the vertex data is properly preserved. 
 
The viewing and modeling transformations we specify are combined to form the 
modelview matrix, which is applied to the incoming object coordinates to yield eye 
coordinates. Next, if we've specified additional clipping planes to remove certain objects 
from the scene or to provide cutaway views of objects, these clipping planes are applied. 
After that, OpenGL applies the projection matrix to yield clip coordinates. This 
transformation defines a viewing volume; objects outside this volume are clipped so that 
they're not drawn in the final scene. After this point, the perspective division is performed 
by dividing coordinate values by w, to produce normalized device coordinates. Finally, 
the transformed coordinates are converted to window coordinates by applying the 
viewport transformation. We can manipulate the dimensions of the viewport to cause the 
final image to be enlarged, shrunk, or stretched. We might correctly suppose that the x 
and y coordinates are sufficient to determine which pixels need to be drawn on the screen. 
However, all the transformations are performed on the z coordinates as well. This way, at 
the end of this transformation process, the z values correctly reflect the depth of a given 
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vertex (measured in distance away from the screen). One use for this depth value is to 
eliminate unnecessary drawing. For example, suppose two vertices have the same x and y 
values but different z values. OpenGL can use this information to determine which 
surfaces are obscured by other surfaces and can then avoid drawing the hidden surfaces. 
As we've probably guessed by now, we need to know a few things about matrix 
mathematics to get the most out of this lecture as we have learnt from previous lectures.  
 
A Simple Example: Drawing a Cube 
Example 1 draws a cube that's scaled by a modeling transformation (see Figure 3). The 
viewing transformation, gluLookAt(), positions and aims the camera towards where the 
cube is drawn. A projection transformation and a viewport transformation are also 
specified. The rest of this section walks us through Example 1 and briefly explains the 
transformation commands it uses. The succeeding sections contain the complete, detailed 
discussion of all OpenGL's transformation commands. 
 

 
 

Figure 3: Transformed Cube 
 
Example 1 : Transformed Cube 
#include <GL/gl.h> 
#include <GL/glu.h> 
#include <GL/glut.h> 
void init(void) 
{ 
glClearColor (0.0, 0.0, 0.0, 0.0); 
glShadeModel (GL_FLAT); 
} 
 
 
void display(void) 
{ 
glClear (GL_COLOR_BUFFER_BIT); 
glColor3f (1.0, 1.0, 1.0); 
glLoadIdentity (); /* clear the matrix */ 
/* viewing transformation */ 
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); 
glScalef (1.0, 2.0, 1.0); /* modeling transformation */ 
glutWireCube (1.0); 
glFlush (); 
} 
void reshape (int w, int h) 
{ 
glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
glMatrixMode (GL_PROJECTION); 
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glLoadIdentity (); 
glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0); 
glMatrixMode (GL_MODELVIEW); 
} 
int main(int argc, char** argv) 
{ 
glutInit(&argc, argv); 
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); 
glutInitWindowSize (500, 500); 
glutInitWindowPosition (100, 100); 
glutCreateWindow (argv[0]); 
init (); 
glutDisplayFunc(display); 
glutReshapeFunc(reshape); 
glutMainLoop(); 
return 0; 
} 
 
The Viewing Transformation 
 
Recall that the viewing transformation is analogous to positioning and aiming a camera. 
In this code example, before the viewing transformation can be specified, the current 
matrix is set to the identity matrix with glLoadIdentity(). This step is necessary since 
most of the transformation commands multiply the current matrix by the specified matrix 
and then set the result to be the current matrix. If we don't clear the current matrix by 
loading it with the identity matrix, we continue to combine previous transformation 
matrices with the new one we supply. In some cases, we do want to perform such 
combinations, but we also need to clear the matrix sometimes. In Example 1, after the 
matrix is initialized, the viewing transformation is specified with gluLookAt(). The 
arguments for this command indicate where the camera (or eye position) is placed, where 
it is aimed, and which way is up. The arguments used here place the camera at (0, 0, 5), 
aim the camera lens towards (0, 0, 0), and specify the up-vector as (0, 1, 0). The up-vector 
defines a unique orientation for the camera. 
If gluLookAt() was not called, the camera has a default position and orientation. By 
default, the camera is situated at the origin, points down the negative z-axis, and has an 
up-vector of (0, 1, 0). So in Example 1, the overall effect is that gluLookAt() moves the 
camera 5 units along the z-axis.  
 
The Modeling Transformation 
 
We use the modeling transformation to position and orient the model. For example, we 
can rotate, translate, or scale the model - or perform some combination of these 
operations. In Example 1, glScalef() is the modeling transformation that is used. The 
arguments for this command specify how scaling should occur along the three axes. If all 
the arguments are 1.0, this command has no effect. In Example 1, the cube is drawn twice 
as large in the y direction. Thus, if one corner of the cube had originally been at (3.0, 3.0, 
3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effect of this modeling 
transformation is to transform the cube so that it isn't a cube but a rectangular box. 
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Try This 
Change the gluLookAt() call in Example 1 to the modeling transformation 
glTranslatef() with parameters (0.0, 0.0, -5.0). The result should look exactly the same as 
when we used gluLookAt(). Why are the effects of these two commands similar? 
 
Note that instead of moving the camera (with a viewing transformation) so that the cube 
could be viewed, we could have moved the cube away from the camera (with a modeling 
transformation). This duality in the nature of viewing and modeling transformations is 
why we need to think about the effect of both types of transformations simultaneously. It 
doesn't make sense to try to separate the effects, but sometimes it's easier to think about 
them one way rather than the other. This is also why modeling and viewing 
transformations are combined into the modelview matrix before the transformations are 
applied. 
 
Also note that the modeling and viewing transformations are included in the display() 
routine, along with the call that's used to draw the cube, glutWireCube(). This way, 
display() can be used repeatedly to draw the contents of the window if, for example, the 
window is moved or uncovered, and we've ensured that each time, the cube is drawn in 
the desired way, with the appropriate transformations. The potential repeated use of 
display() underscores the need to load the identity matrix before performing the viewing 
and modeling transformations, especially when other transformations might be performed 
between calls to display(). 
 
The Projection Transformation 
 
Specifying the projection transformation is like choosing a lens for a camera. We can 
think of this transformation as determining what the field of view or viewing volume is 
and therefore what objects are inside it and to some extent how they look. This is 
equivalent to choosing among wide-angle, normal, and telephoto lenses, for example. 
With a wide-angle lens, we can include a wider scene in the final photograph than with a 
telephoto lens, but a telephoto lens allows us to photograph objects as though they're 
closer to us than they actually are. In computer graphics, we don't have to pay $10,000 for 
a 2000-millimeter telephoto lens; once we've bought our graphics workstation, all we 
need to do is use a smaller number for our field of view. In addition to the field-of-view 
considerations, the projection transformation determines how objects are projected onto 
the screen, as its name suggests. Two basic types of projections are provided for us by 
OpenGL, along with several corresponding commands for describing the relevant 
parameters in different ways. One type is the perspective projection, which matches how 
we see things in daily life. Perspective makes objects that are farther away appear 
smaller; for example, it makes railroad tracks appear to converge in the distance. If we're 
trying to make realistic pictures, we'll want to choose perspective projection, which is 
specified with the glFrustum() command in this code example. The other type of 
projection is orthographic, which maps objects directly onto the screen without affecting 
their relative size. Orthographic projection is used in architectural and computer-aided 
design applications where the final image needs to reflect the measurements of objects 
rather than how they might look. Architects create perspective drawings to show how 
particular buildings or interior spaces look when viewed from various vantage points; the 
need for orthographic projection arises when blueprint plans or elevations are generated, 
which are used in the construction of buildings. Before glFrustum() can be called to set 
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the projection transformation, some preparation needs to happen. As shown in the 
reshape() routine in Example 1, the command called glMatrixMode() is used first, with 
the argument GL_PROJECTION. This indicates that the current matrix specifies the 
projection transformation; the following transformation calls then affect the projection 
matrix. As we can see, a few lines later glMatrixMode() is called again, this time with 
GL_MODELVIEW as the argument. This indicates that succeeding transformations now 
affect the modelview matrix instead of the projection matrix.  Note that glLoadIdentity() 
is used to initialize the current projection matrix so that only the specified projection 
transformation has an effect. Now glFrustum() can be called, with arguments that define 
the parameters of the projection transformation. In this example, both the projection 
transformation and the viewport transformation are contained in the reshape() routine, 
which is called when the window is first created and whenever the window is moved or 
reshaped. This makes sense, since both projecting (the width to height aspect ratio of the 
projection viewing volume) and applying the viewport relate directly to the screen, and 
specifically to the size or aspect ratio of the window on the screen. 
 
Try This 
Change the glFrustum() call in Example 1 to the more commonly used Utility Library 
routine gluPerspective() with parameters (60.0, 1.0, 1.5, 20.0). Then experiment with 
different values, especially for fov(field of view ), near and far plane. 
 
Viewing and Modeling Transformations 
 
Viewing and modeling transformations are inextricably related in OpenGL and are in fact 
combined into a single modelview matrix. (See "A Simple Example: Drawing a Cube.") 
One of the toughest problems newcomers to computer graphics face is understanding the 
effects of combined three-dimensional transformations. As we've already seen, there are 
alternative ways to think about transformations - do we want to move the camera in one 
direction, or move the object in the opposite direction? Each way of thinking about 
transformations has advantages and disadvantages, but in some cases one way more 
naturally matches the effect of the intended transformation. If we can find a natural 
approach for wer particular application, it's easier to visualize the necessary 
transformations and then write the corresponding code to specify the matrix 
manipulations. The first part of this section discusses how to think about transformations; 
later, specific commands are presented. For now, we use only the matrix-manipulation 
commands we've already seen. Finally, keep in mind that we must call glMatrixMode() 
with GL_MODELVIEW as its argument prior to performing modeling or viewing 
transformations. 
 
Thinking about Transformations 
 
Let's start with a simple case of two transformations: a 45-degree counterclockwise 
rotation about the origin around the z-axis, and a translation down the x-axis. Suppose 
that the object we're drawing is small compared to the translation (so that we can see the 
effect of the translation), and that it's originally located at the origin. If we rotate the 
object first and then translate it, the rotated object appears on the x-axis. If we translate it 
down the x-axis first, however, and then rotate about the origin, the object is on the line 
y=x, as shown in Figure 4. In general, the order of transformations is critical. If we do 
transformation A and then transformation B, we almost always get something different 
than if we do them in the opposite order. 
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Figure 4 : Rotating First or Translating First 
 
 
Now let's talk about the order in which we specify a series of transformations. All 
viewing and modeling transformations are represented as 4 × 4 matrices. Each successive 
glMultMatrix*() or transformation command multiplies a new 4 × 4 matrix M by the 
current modelview matrix C to yield CM. Finally, vertices v are multiplied by the current 
modelview matrix. This process means that the last transformation command called in our 
program is actually the first one applied to the vertices: CMv. Thus, one way of looking 
at it is to say that we have to specify the matrices in the reverse order. Like many other 
things, however, once we've gotten used to thinking about this correctly, backward will 
seem like forward. Consider the following code sequence, which draws a single point 
using three transformations: 
 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
glMultMatrixf(N); /* apply transformation N */ 
glMultMatrixf(M); /* apply transformation M */ 
glMultMatrixf(L); /* apply transformation L */ 
glBegin(GL_POINTS); 
glVertex3f(v); /* draw transformed vertex v */ 
glEnd(); 
 
With this code, the modelview matrix successively contains I, N, NM, and finally NML, 
where I represents the identity matrix. The transformed vertex is NMLv. Thus, the vertex 
transformation is N(M(Lv)) - that is, v is multiplied first by L, the resulting Lv is 
multiplied by M, and the resulting MLv is multiplied by N. Notice that the 
transformations to vertex v effectively occur in the opposite order than they were 
specified. (Actually, only a single multiplication of a vertex by the modelview matrix 
occurs; in this example, the N, M, and L matrices are already multiplied into a single 
matrix before it's applied to v.) 
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Grand, Fixed Coordinate System 
 
Thus, if we like to think in terms of a grand, fixed coordinate system - in which matrix 
multiplications affect the position, orientation, and scaling of our model - we have to 
think of the multiplications as occurring in the opposite order from how they appear in the 
code. Using the simple example shown on the left side of Figure 4 (a rotation about the 
origin and a translation along the x-axis), if we want the object to appear on the axis after 
the operations, the rotation must occur first, followed by the translation. To do this, we'll 
need to reverse the order of operations, so the code looks something like this (where R is 
the rotation matrix and T is the translation matrix): 
 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
glMultMatrixf(T); /* translation */ 
glMultMatrixf(R); /* rotation */ 
draw_the_object(); 
 
Moving a Local Coordinate System 
 
Another way to view matrix multiplications is to forget about a grand, fixed coordinate 
system in which our model is transformed and instead imagine that a local coordinate 
system is tied to the object we’re drawing. All operations occur relative to this changing 
coordinate system. With this approach, the matrix multiplications now appear in the 
natural order in the code. (Regardless of which analogy we're using, the code is the same, 
but how we think about it differs.) To see this in the translation-rotation example, begin 
by visualizing the object with a coordinate system tied to it. The translation operation 
moves the object and its coordinate system down the x-axis. Then, the rotation occurs 
about the (now-translated) origin, so the object rotates in place in its position on the axis. 
This approach is what we should use for applications such as articulated robot arms, 
where there are joints at the shoulder, elbow, and wrist, and on each of the fingers. To 
figure out where the tips of the fingers go relative to the body, we'd like to start at the 
shoulder, go down to the wrist, and so on, applying the appropriate rotations and 
translations at each joint. Thinking about it in reverse would be far more confusing. This 
second approach can be problematic, however, in cases where scaling occurs, and 
especially so when the scaling is non-uniform (scaling different amounts along the 
different axes). After uniform scaling, translations move a vertex by a multiple of what 
they did before, since the coordinate system is stretched. Non-uniform scaling mixed with 
rotations may make the axes of the local coordinate system non-perpendicular. 
 
As mentioned earlier, we normally issue viewing transformation commands in our 
program before any modeling transformations. This way, a vertex in a model is first 
transformed into the desired orientation and then transformed by the viewing operation. 
Since the matrix multiplications must be specified in reverse order, the viewing 
commands need to come first. Note, however, that we don't need to specify either viewing 
or modeling transformations if we're satisfied with the default conditions. If there's no 
viewing transformation, the "camera" is left in the default position at the origin, pointed 
toward the negative z-axis; if there's no modeling transformation, the model isn't moved, 
and it retains its specified position, orientation, and size. Since the commands for 
performing modeling transformations can be used to perform viewing transformations, 
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modeling transformations are discussed first, even if viewing transformations are actually 
issued first. This order for discussion also matches the way many programmers think 
when planning their code: Often, they write all the code necessary to compose the scene, 
which involves transformations to position and orient objects correctly relative to each 
other. Next, they decide where they want the viewpoint to be relative to the scene they've 
composed, and then they write the viewing transformations accordingly. 
 
Modeling Transformations 
 
The three OpenGL routines for modeling transformations are glTranslate*(), 
glRotate*(), and glScale*(). As we might suspect, these routines transform an object (or 
coordinate system, if we're thinking of it that way) by moving, rotating, stretching, 
shrinking, or reflecting it. All three commands are equivalent to producing an appropriate 
translation, rotation, or scaling matrix, and then calling glMultMatrix*() with that matrix 
as the argument. However, these three routines might be faster than using 
glMultMatrix*(). OpenGL automatically computes the matrices for we. In the command 
summaries that follow, each matrix multiplication is described in terms of what it does to 
the vertices of a geometric object using the fixed coordinate system approach, and in 
terms of what it does to the local coordinate system that's attached to an object. Translate 
void glTranslate{fd}(TYPEx, TYPE y, TYPEz); 
 
Multiplies the current matrix by a matrix that moves (translates) an object by the given x, 
y, and z values (or moves the local coordinate system by the 
same amounts). 
 
Figure 5 shows the effect of glTranslate*(). 
 

 
Figure 5 : Translating an Object 

 
Note that using (0.0, 0.0, 0.0) as the argument for glTranslate*() is the identity operation 
- that is, it has no effect on an object or its local coordinate system. 
 
Rotate 
void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z); 
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Multiplies the current matrix by a matrix that rotates an object (or the local coordinate 
system) in a counterclockwise direction about the ray from the origin through the point 
(x, y, z). The angle parameter specifies the angle of rotation in degrees. 
 
The effect of glRotatef(45.0, 0.0, 0.0, 1.0), which is a rotation of 45 degrees about the z-
axis, is shown in Figure 6. 
 

 
 

Figure 6 : Rotating an Object 
 
Note that an object that lies farther from the axis of rotation is more dramatically rotated 
(has a larger orbit) than an object drawn near the axis. Also, if the angle argument is zero, 
the glRotate*() command has no effect. 
 
Scale 
void glScale{fd}(TYPEx, TYPE y, TYPEz); 
 
Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object 
along the axes. Each x, y, and z coordinate of every point in the object is multiplied by the 
corresponding argument x, y, or z. With the local coordinate system approach, the local 
coordinate axes are stretched, shrunk, or reflected by the x, y, and z factors, and the 
associated object is transformed with them. 
Figure 7 shows the effect of glScalef(2.0, -0.5, 1.0). 
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Figure 7 : Scaling and Reflecting an Object 

 
glScale*() is the only one of the three modeling transformations that changes the apparent 
size of an object: Scaling with values greater than 1.0 stretches an object, and using 
values less than 1.0 shrinks it. Scaling with a -1.0 value reflects an object across an axis. 
The identity values for scaling are (1.0, 1.0, 1.0). In general, we should limit our use of 
glScale*() to those cases where it is necessary. Using glScale*() decreases the 
performance of lighting calculations, because the normal vectors have to be renormalized 
after transformation. 
 
Note: A scale value of zero collapses all object coordinates along that axis to zero. It's 
usually not a good idea to do this, because such an operation cannot be undone. 
Mathematically speaking, the matrix cannot be inverted, and inverse matrices are required 
for certain lighting operations. Sometimes collapsing coordinates does make sense, 
however; the calculation of shadows on a planar surface is a typical application. In 
general, if a coordinate system is to be collapsed, the projection matrix should be used 
rather than the modelview matrix. 
 
A Modeling Transformation Code Example 
 
Example 2 is a portion of a program that renders a triangle four times, as shown in Figure 
8. These are the four transformed triangles.  
 
A solid wireframe triangle is drawn with no modeling transformation.  
The same triangle is drawn again, but with a dashed line stipple and translated (to the left 
- along the negative x-axis).  
A triangle is drawn with a long dashed line stipple, with its height (y-axis) halved and its 
width (x-axis) increased by 50%.  
A rotated triangle, made of dotted lines, is drawn. 
 
 

 
 

Figure 8 : Modeling Transformation Example 
 
Example 2 : Using Modeling Transformations: 
glLoadIdentity(); 
glColor3f(1.0, 1.0, 1.0); 
draw_triangle(); /* solid lines */ 
glEnable(GL_LINE_STIPPLE); /* dashed lines */ 
glLineStipple(1, 0xF0F0); 
glLoadIdentity(); 
glTranslatef(-20.0, 0.0, 0.0); 
draw_triangle(); 
glLineStipple(1, 0xF00F); /*long dashed lines */ 
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glLoadIdentity(); 
glScalef(1.5, 0.5, 1.0); 
draw_triangle(); 
glLineStipple(1, 0x8888); /* dotted lines */ 
glLoadIdentity(); 
glRotatef (90.0, 0.0, 0.0, 1.0); 
draw_triangle (); 
glDisable (GL_LINE_STIPPLE); 
 
Note the use of glLoadIdentity() to isolate the effects of modeling transformations; 
initializing the matrix values prevents successive transformations from having a 
cumulative effect. Even though using glLoadIdentity() repeatedly has the desired effect, 
it may be inefficient, because we may have to re specify viewing or modeling 
transformations.  
 
Note: Sometimes, programmers who want a continuously rotating object attempt to 
achieve this by repeatedly applying a rotation matrix that has small values. The problem 
with this technique is that because of round-off errors, the product of thousands of tiny 
rotations gradually drifts away from the value we really want (it might even become 
something that isn't a rotation). Instead of using this technique, increment the angle and 
issue a new rotation command with the new angle at each update step. 
 
Viewing Transformations 
 
A viewing transformation changes the position and orientation of the viewpoint. If we 
recall the camera analogy, the viewing transformation positions the camera tripod, 
pointing the camera toward the model. Just as we move the camera to some position and 
rotate it until it points in the desired direction, viewing transformations are generally 
composed of translations and rotations. Also remember that to achieve a certain scene 
composition in the final image or photograph, we can either move the camera or move all 
the objects in the opposite direction. Thus, a modeling transformation that rotates an 
object counterclockwise is equivalent to a viewing transformation that rotates the camera 
clockwise, for example. Finally, keep in mind that the viewing transformation commands 
must be called before any modeling transformations are performed, so that the modeling 
transformations take effect on the objects first.  
 
We can manufacture a viewing transformation in any of several ways, as described next. 
we can also choose to use the default location and orientation of the viewpoint, which is 
at the origin, looking down the negative z-axis. 
 
Use one or more modeling transformation commands (that is, glTranslate*() and 
glRotate*()). We can think of the effect of these transformations as moving the camera 
position or as moving all the objects in the world, relative to a stationary camera. 
 
Use the Utility Library routine gluLookAt() to define a line of sight. This routine 
encapsulates a series of rotation and translation commands. 
 
Create our own utility routine that encapsulates rotations and translations. Some 
applications might require custom routines that allow we to specify the viewing 
transformation in a convenient way. For example, we might want to specify the roll, 
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pitch, and heading rotation angles of a plane in flight, or we might want to specify a 
transformation in terms of polar coordinates for a camera that's orbiting around an object. 
 
Using glTranslate*() and glRotate*() 
When we use modeling transformation commands to emulate viewing transformations, 
we're trying to move the viewpoint in a desired way while keeping the objects in the 
world stationary. Since the viewpoint is initially located at the origin and since objects are 
often most easily constructed there as well (see Figure 9), in general we have to perform 
some transformation so that the objects can be viewed. Note that, as shown in the figure, 
the camera initially points down the negative z-axis. (we're seeing the back of the 
camera.) 
 

 
 

Figure 9 : Object and Viewpoint at the Origin 
 
In the simplest case, we can move the viewpoint backward, away from the objects; this 
has the same effect as moving the objects forward, or away from the viewpoint. 
Remember that by default forward is down the negative z-axis; if we rotate the viewpoint, 
forward has a different meaning. So, to put 5 units of distance between the viewpoint and 
the objects by moving the viewpoint, as shown in Figure 10, use glTranslatef(0.0, 0.0, -
5.0); 
 
This routine moves the objects in the scene -5 units along the z axis. This is also 
equivalent to moving the camera +5 units along the z axis. 
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Figure 10 : Separating the Viewpoint and the Object 
 
Now suppose we want to view the objects from the side. Should we issue a rotate 
command before or after the translate command? If we're thinking in terms of a grand, 
fixed coordinate system, first imagine both the object and the camera at the origin. We 
could rotate the object first and then move it away from the camera so that the desired 
side is visible. Since we know that with the fixed coordinate system approach, commands 
have to be issued in the opposite order in which they should take effect, we know that we 
need to write the translate command first in our code and follow it with the rotate 
command. Now let's use the local coordinate system approach. In this case, think about 
moving the object and its local coordinate system away from the origin; then, the rotate 
command is carried out using the now-translated coordinate system. With this approach, 
commands are issued in the order in which they're applied, so once again the translate 
command comes first. Thus, the sequence of transformation commands to produce the 
desired result is 
 
glTranslatef(0.0, 0.0, -5.0); 
glRotatef(90.0, 0.0, 1.0, 0.0); 
 
If we're having trouble keeping track of the effect of successive matrix multiplications, try 
using both the fixed and local coordinate system approaches and see whether one makes 
more sense to us. Note that with the fixed coordinate system, rotations always occur about 
the grand origin, whereas with the local coordinate system, rotations occur about the 
origin of the local system. We might also try using the gluLookAt() utility routine 
described in the next section. 
 
Using the gluLookAt() Utility Routine 
 
Often, programmers construct a scene around the origin or some other convenient 
location, then they want to look at it from an arbitrary point to get a good view of it. As 
its name suggests, the gluLookAt() utility routine is designed for just this purpose. It 
takes three sets of arguments, which specify the location of the viewpoint, define a 
reference point toward which the camera is aimed, and indicate which direction is up. 
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Choose the viewpoint to yield the desired view of the scene. The reference point is 
typically somewhere in the middle of the scene. (If we've built our scene at the origin, the 
reference point is probably the origin.) It might be a little trickier to specify the correct 
up-vector. Again, if we've built some real-world scene at or around the origin and if we've 
been taking the positive y-axis to point upward, then that's our up-vector for 
gluLookAt(). However, if we're designing a flight simulator, up is the direction 
perpendicular to the plane's wings, from the plane toward the sky when the plane is right-
side up on the ground. 
 
The gluLookAt() routine is particularly useful when we want to pan across a landscape, 
for instance. With a viewing volume that's symmetric in both x and y, the (eyex, eyey, 
eyez) point specified is always in the center of the image on the screen, so we can use a 
series of commands to move this point slightly, thereby panning across the scene. 
 
void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, 
GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz); 
 
Defines a viewing matrix and multiplies it to the right of the current matrix. The desired 
viewpoint is specified by eyex, eyey, and eyez. The centerx, centery, and centerz 
arguments specify any point along the desired line of sight, but typically they're some 
point in the center of the scene being looked at. The upx, upy, and upz arguments indicate 
which direction is up (that is, the direction from the bottom to the top of the viewing 
volume)  
 
In the default position, the camera is at the origin, is looking down the negative z-axis, 
and has the positive y-axis as straight up. This is the same as calling 
 
gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0); 
 
The z value of the reference point is -100.0, but could be any negative z, because the line 
of sight will remain the same. In this case, we don't actually want to call gluLookAt(), 
because this is the default and we are already there! (The lines extending from the camera 
represent the viewing volume, which indicates its field of view.) 

 
 

Figure 11 : Default Camera Position 
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Figure 12 shows the effect of a typical gluLookAt() routine. The camera position (eyex, 
eyey, eyez) is at (4, 2, 1). In this case, the camera is looking right at the model, so the 
reference point is at (2, 4, -3). An orientation vector of (2, 2, -1) is chosen to rotate the 
viewpoint to this 45-degree angle. 

 
Figure 12 : Using gluLookAt() 

 
So, to achieve this effect, call 
 
gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0); 
 
Note that gluLookAt() is part of the Utility Library rather than the basic OpenGL library. 
This isn't because it's not useful, but because it encapsulates several basic OpenGL 
commands - specifically, glTranslate*() and glRotate*(). To see this, imagine a camera 
located at an arbitrary viewpoint and oriented according to a line of sight, both as 
specified with gluLookAt() and a scene located at the origin. To "undo" what 
gluLookAt() does, we need to transform the camera so that it sits at the origin and points 
down the negative z-axis, the default position. A simple translate moves the camera to the 
origin. We can easily imagine a series of rotations about each of the three axes of a fixed 
coordinate system that would orient the camera so that it pointed toward negative z 
values. Since OpenGL allows rotation about an arbitrary axis, we can accomplish any 
desired rotation of the camera with a single glRotate*() command. 
 
Note: we can have only one active viewing transformation. we cannot try to combine the 
effects of two viewing transformations, any more than a camera can have two tripods. If 
we want to change the position of the camera, make sure we call glLoadIdentity() to 
wipe away the effects of any current viewing transformation. 
 
Advanced 
 
To transform any arbitrary vector so that it's coincident with another arbitrary vector (for 
instance, the negative z-axis), we need to do a little mathematics. The axis about which 
we want to rotate is given by the cross product of the two normalized vectors. To find the 
angle of rotation, normalize the initial two vectors. The cosine of the desired angle 
between the vectors is equal to the dot product of the normalized vectors. The angle of 
rotation around the axis given by the cross product is always between 0 and 180 degrees. 
Note that computing the angle between two normalized vectors by taking the inverse 
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cosine of their dot product is not very accurate, especially for small angles. But it should 
work well enough to get us started. 
 
Creating a Custom Utility Routine 
 
For some specialized applications, we might want to define our own transformation 
routine. Since this is rarely done and in any case is a fairly advanced topic, it's left mostly 
as an exercise for the reader. The following exercises suggest two custom viewing 
transformations that might be useful. 
 
Try This 
 
Suppose we're writing a flight simulator and we'd like to display the world from the point 
of view of the pilot of a plane. The world is described in a coordinate system with the 
origin on the runway and the plane at coordinates (x, y, z). Suppose further that the plane 
has some roll, pitch, and heading (these are rotation angles of the plane relative to its 
center of gravity). 
 
 
 
Show that the following routine could serve as the viewing transformation: 
 
void pilotView{GLdouble planex, GLdouble planey, 
GLdouble planez, GLdouble roll, 
GLdouble pitch, GLdouble heading) 
{ 
glRotated(roll, 0.0, 0.0, 1.0); 
glRotated(pitch, 0.0, 1.0, 0.0); 
glRotated(heading, 1.0, 0.0, 0.0); 
glTranslated(-planex, -planey, -planez); 
} 
 
l Suppose our application involves orbiting the camera around an object that's centered at 
the origin. In this case, we'd like to specify the viewing transformation by using polar 
coordinates. Let the distance variable define the radius of the orbit, or how far the camera 
is from the origin. (Initially, the camera is moved distance units along the positive z-axis.) 
The azimuth describes the angle of rotation of the camera about the object in the x-y 
plane, measured from the positive y-axis. Similarly, elevation is the angle of rotation of 
the camera in the y-z plane, measured from the positive z-axis. Finally, twist represents 
the rotation of the viewing volume around its line of sight. Show that the following 
routine could serve as the viewing transformation: 
 
void polarView{GLdouble distance, GLdouble twist, 
GLdouble elevation, GLdouble azimuth) 
{ 
glTranslated(0.0, 0.0, -distance); 
glRotated(-twist, 0.0, 0.0, 1.0); 
glRotated(-elevation, 1.0, 0.0, 0.0); 
glRotated(azimuth, 0.0, 0.0, 1.0); 
} 
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Manipulating the Matrix Stacks 
 
The modelview and projection matrices we've been creating, loading, and multiplying 
have only been the visible tips of their respective icebergs. Each of these matrices is 
actually the topmost member of a stack of matrices (see Figure 20). 
 

 
 

Figure 20 : Modelview and Projection Matrix Stacks 
 
A stack of matrices is useful for constructing hierarchical models, in which complicated 
objects are constructed from simpler ones. For example, suppose we're  drawing an 
automobile that has four wheels, each of which is attached to the car with five bolts. We 
have a single routine to draw a wheel and another to draw a bolt, since all the wheels and 
all the bolts look the same. These routines draw a wheel or a bolt in some convenient 
position and orientation, say centered at the origin with its axis coincident with the z axis. 
When we draw the car, including the wheels and bolts, we want to call the wheel-drawing 
routine four times with different transformations in effect each time to position the wheels 
correctly. As we draw each wheel, we want to draw the bolts five times, each time 
translated appropriately relative to the wheel. Suppose for a minute that all we have to do 
is draw the car body and the wheels. The English description of what we want to do might 
be something like this: 
 
 
Draw the car body. Remember where we are, and translate to the right front wheel. Draw 
the wheel and throw away the last translation so our current position is back at the origin 
of the car body. Remember where we are, and translate to the left front wheel... 
 
Similarly, for each wheel, we want to draw the wheel, remember where we are, and 
successively translate to each of the positions that bolts are drawn, throwing away the 
transformations after each bolt is drawn. 
 
Since the transformations are stored as matrices, a matrix stack provides an ideal 
mechanism for doing this sort of successive remembering, translating, and throwing 
away. All the matrix operations that have been described so far (glLoadMatrix(), 
glMultMatrix(), glLoadIdentity() and the commands that create specific transformation 
matrices) deal with the current matrix, or the top matrix on the stack. We can control 
which matrix is on top with the commands that perform stack operations: 
glPushMatrix(), which copies the current matrix and adds the copy to the top of the 
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stack, and glPopMatrix(), which discards the top matrix on the stack, as shown in Figure 
21. In effect, glPushMatrix() means "remember where we are" and glPopMatrix() 
means "go back to where we were." 
 

 
 

Figure 21 : Pushing and Popping the Matrix Stack 
 
void glPushMatrix(void); 
Pushes all matrices in the current stack down one level. The current stack is determined 
by glMatrixMode(). The topmost matrix is copied, so its contents are duplicated in both 
the top and second-from-the-top matrix. If too many matrices are pushed, an error is 
generated. 
 
void glPopMatrix(void); 
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was 
the second-from-the-top matrix becomes the top matrix. The current stack is determined 
by glMatrixMode(). If the stack contains a single matrix, calling glPopMatrix() 
generates an error. 
 
Example 4 draws an automobile, assuming the existence of routines that draw the car 
body, a wheel, and a bolt. 
 
Example 4 : Pushing and Popping the Matrix 
 
draw_wheel_and_bolts() 
{ 
long i; 
draw_wheel(); 
for(i=0;i<5;i++){ 
glPushMatrix(); 
glRotatef(72.0*i,0.0,0.0,1.0); 
glTranslatef(3.0,0.0,0.0); 
draw_bolt(); 
glPopMatrix(); 
} 
} 
draw_body_and_wheel_and_bolts() 
{ 
draw_car_body(); 
glPushMatrix(); 
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glTranslatef(40,0,30); /*move to first wheel position*/ 
draw_wheel_and_bolts(); 
glPopMatrix(); 
glPushMatrix(); 
glTranslatef(40,0,-30); /*move to 2nd wheel position*/ 
draw_wheel_and_bolts(); 
glPopMatrix(); 
... /*draw last two wheels similarly*/ 
} 
 
This code assumes the wheel and bolt axes are coincident with the z-axis, that the bolts 
are evenly spaced every 72 degrees, 3 units (maybe inches) from the center of the wheel, 
and that the front wheels are 40 units in front of and 30 units to the right and left of the 
car's origin. 
 
A stack is more efficient than an individual matrix, especially if the stack is implemented 
in hardware. When we push a matrix, we don't need to copy the current data back to the 
main process, and the hardware may be able to copy more than one element of the matrix 
at a time. Sometimes we might want to keep an identity matrix at the bottom of the stack 
so that we don't need to call glLoadIdentity() repeatedly.
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Lecture No.42   Examples of Composing Several Transformations 

 
This section demonstrates how to combine several transformations to achieve a particular 
result. The two examples discussed are a solar system, in which objects need to rotate on 
their axes as well as in orbit around each other, and a robot arm, which has several joints 
that effectively transform coordinate systems as they move relative to each other. 
Building a Solar System 
 
The program described in this section draws a simple solar system with a planet and a 
sun, both using the same sphere-drawing routine. To write this program, we need to use 
glRotate*() for the revolution of the planet around the sun and for the rotation of the 
planet around its own axis. We also need glTranslate*() to move the planet out to its 
orbit, away from the origin of the solar system. Remember that we can specify the desired 
size of the two spheres by supplying the appropriate arguments for the glutWireSphere() 
routine. To draw the solar system, we first want to set up a projection and a viewing 
transformation. For this example, gluPerspective() and gluLookAt() are used. Drawing 
the sun is straightforward, since it should be located at the origin of the grand, fixed 
coordinate system, which is where the sphere routine places it. Thus, drawing the sun 
doesn't require  translation; we can use glRotate*() to make the sun rotate about an 
arbitrary axis. To draw a planet rotating around the sun, as shown in Figure 24, requires 
several modeling transformations. The planet needs to rotate about its own axis once a 
day. And once a year, the planet completes one revolution around the sun.  
 

 
Figure 24 : Planet and Sun 

 
To determine the order of modeling transformations, visualize what happens to the local 
coordinate system. An initial glRotate*() rotates the local coordinate system that initially 
coincides with the grand coordinate system. Next, glTranslate*() moves the local 
coordinate system to a position on the planet's orbit; the distance moved should equal the 
radius of the orbit. Thus, the initial glRotate*() actually determines where along the orbit 
the planet is (or what time of year it is). A second glRotate*() rotates the local coordinate 
system around the local axes, thus determining the time of day for the planet. Once we've 
issued all these transformation commands, the planet can be drawn.  
In summary, these are the OpenGL commands to draw the sun and planet; the full 
program is shown in Example 6. 
 
glPushMatrix(); 
glutWireSphere(1.0, 20, 16); /* draw sun */ 
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0); 
glTranslatef (2.0, 0.0, 0.0); 
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glRotatef ((GLfloat) day, 0.0, 1.0, 0.0); 
glutWireSphere(0.2, 10, 8); /* draw smaller planet */ 
glPopMatrix(); 
 
Example 6 : Planetary System: 
#include <GL/gl.h> 
#include <GL/glu.h> 
#include <GL/glut.h> 
static int year = 0, day = 0; 
void init(void) 
{ 
glClearColor (0.0, 0.0, 0.0, 0.0); 
glShadeModel (GL_FLAT); 
} 
void display(void) 
{ 
glClear (GL_COLOR_BUFFER_BIT); 
glColor3f (1.0, 1.0, 1.0); 
glPushMatrix(); 
glutWireSphere(1.0, 20, 16); /* draw sun */ 
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0); 
glTranslatef (2.0, 0.0, 0.0); 
glRotatef ((GLfloat) day, 0.0, 1.0, 0.0); 
glutWireSphere(0.2, 10, 8); /* draw smaller planet */ 
glPopMatrix(); 
glutSwapBuffers(); 
} 
void reshape (int w, int h) 
{ 
glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
glMatrixMode (GL_PROJECTION); 
glLoadIdentity (); 
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0); 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); 
} 
void keyboard (unsigned char key, int x, int y) 
{ 
switch (key) { 
case `d': 
day = (day + 10) % 360; 
glutPostRedisplay(); 
break; 
case `D': 
day = (day - 10) % 360; 
glutPostRedisplay(); 
break; 
case `y': 
year = (year + 5) % 360; 
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glutPostRedisplay(); 
break; 
case `Y': 
year = (year - 5) % 360; 
glutPostRedisplay(); 
break; 
default: 
break; 
} 
} 
int main(int argc, char** argv) 
{ 
glutInit(&argc, argv); 
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB); 
glutInitWindowSize (500, 500); 
glutInitWindowPosition (100, 100); 
glutCreateWindow (argv[0]); 
init (); 
glutDisplayFunc(display); 
glutReshapeFunc(reshape); 
glutKeyboardFunc(keyboard); 
glutMainLoop(); 
return 0; 
} 
 
Try This 
Try adding a moon to the planet. Or try several moons and additional planets. Hint: Use 
glPushMatrix() and glPopMatrix() to save and restore the position and orientation of the 
coordinate system at appropriate moments. If we're going to draw several moons around a 
planet, we need to save the coordinate system prior to positioning each moon and restore 
the coordinate system after each moon is drawn. 
Try tilting the planet's axis. 
 
Building an Articulated Robot Arm 
This section discusses a program that creates an articulated robot arm with two or more 
segments. The arm should be connected with pivot points at the 
shoulder, elbow, or other joints. Figure 25 shows a single joint of such an arm. 
 

 
Figure 25 : Robot Arm 

 
We can use a scaled cube as a segment of the robot arm, but first we must call the 
appropriate modeling transformations to orient each segment. Since the origin of the local 
coordinate system is initially at the center of the cube, we need to move the local 
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coordinate system to one edge of the cube. Otherwise, the cube rotates about its center 
rather than the pivot point. 
 
After we call glTranslate*() to establish the pivot point and glRotate*() to pivot the 
cube, translate back to the center of the cube. Then the cube is scaled (flattened and 
widened) before it is drawn. The glPushMatrix() and glPopMatrix() restrict the effect of 
glScale*(). Here's what our code might look like for this first segment of the arm (the 
entire program is shown in Example 7): 
 
glTranslatef (-1.0, 0.0, 0.0); 
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0); 
glTranslatef (1.0, 0.0, 0.0); 
glPushMatrix(); 
glScalef (2.0, 0.4, 1.0); 
glutWireCube (1.0); 
glPopMatrix(); 
 
To build a second segment, we need to move the local coordinate system to the next pivot 
point. Since the coordinate system has previously been rotated, the x-axis is already 
oriented along the length of the rotated arm. Therefore, translating along the x-axis moves 
the local coordinate system to the next pivot point. Once it's at that pivot point, we can 
use the same code to draw the second segment as we used for the first one. This can be 
continued for an indefinite number of segments (shoulder, elbow, wrist, fingers). 
 
glTranslatef (1.0, 0.0, 0.0); 
glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0); 
glTranslatef (1.0, 0.0, 0.0); 
glPushMatrix(); 
glScalef (2.0, 0.4, 1.0); 
glutWireCube (1.0); 
glPopMatrix(); 
 
Example 7 : Robot Arm: 
#include <GL/gl.h> 
#include <GL/glu.h> 
#include <GL/glut.h> 
static int shoulder = 0, elbow = 0; 
void init(void) 
{ 
glClearColor (0.0, 0.0, 0.0, 0.0); 
glShadeModel (GL_FLAT); 
} 
void display(void) 
{ 
glClear (GL_COLOR_BUFFER_BIT); 
glPushMatrix(); 
glTranslatef (-1.0, 0.0, 0.0); 
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0); 
glTranslatef (1.0, 0.0, 0.0); 
glPushMatrix(); 
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glScalef (2.0, 0.4, 1.0); 
glutWireCube (1.0); 
glPopMatrix(); 
glTranslatef (1.0, 0.0, 0.0); 
glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0); 
glTranslatef (1.0, 0.0, 0.0); 
glPushMatrix(); 
glScalef (2.0, 0.4, 1.0); 
glutWireCube (1.0); 
glPopMatrix(); 
glPopMatrix(); 
glutSwapBuffers(); 
} 
void reshape (int w, int h) 
{ 
glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
glMatrixMode (GL_PROJECTION); 
glLoadIdentity (); 
gluPerspective(65.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0); 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
glTranslatef (0.0, 0.0, -5.0); 
} 
void keyboard (unsigned char key, int x, int y) 
{ 
switch (key) { 
case `s': /* s key rotates at shoulder */ 
shoulder = (shoulder + 5) % 360; 
glutPostRedisplay(); 
break; 
case `S': 
shoulder = (shoulder - 5) % 360; 
glutPostRedisplay(); 
break; 
case `e': /* e key rotates at elbow */ 
elbow = (elbow + 5) % 360; 
glutPostRedisplay(); 
break; 
case `E': 
elbow = (elbow - 5) % 360; 
glutPostRedisplay(); 
break; 
default: 
break; 
} 
} 
int main(int argc, char** argv) 
{ 
glutInit(&argc, argv); 
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB); 
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glutInitWindowSize (500, 500); 
glutInitWindowPosition (100, 100); 
glutCreateWindow (argv[0]); 
init (); 
glutDisplayFunc(display); 
glutReshapeFunc(reshape); 
glutKeyboardFunc(keyboard); 
glutMainLoop(); 
return 0; 
} 
 
Try This 
Modify Example 7 to add additional segments onto the robot arm. l    
 
Modify Example 7 to add additional segments at the same position. For example, give the 
robot arm several "fingers" at the wrist, as shown in Figure 26. Hint: Use glPushMatrix() 
and glPopMatrix() to save and restore the position and orientation of the coordinate 
system at the wrist. If we're going to draw fingers at the wrist, we need to save the current 
matrix prior to positioning each finger and restore the current matrix after each finger is 
drawn. 
 
 

 
 
 

Figure 26: Robot Arm with Fingers 
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Lecture No.43   Real-World and OpenGL Lighting 
 
When we look at a physical surface, our eye's perception of the color depends on the 
distribution of photon energies that arrive and trigger our cone cells. Those photons come 
from a light source or combination of sources, some of which are absorbed and some are 
reflected by the surface. In addition, different surfaces may have very different properties 
- some are shiny and preferentially reflect light in certain directions, while others scatter 
incoming light equally in all directions. Most surfaces are somewhere in between. 
 
OpenGL approximates light and lighting as if light can be broken into red, green, and 
blue components. Thus, the color of light sources is characterized by the amount of red, 
green, and blue light they emit, and the material of surfaces is characterized by the 
percentage of the incoming red, green, and blue components that is reflected in various 
directions. The OpenGL lighting equations are just an approximation but one that works 
fairly well and can be computed relatively quickly. If we desire a more accurate (or just 
different) lighting model, we have to do our own calculations in software. Such software 
can be enormously complex, as a few hours of reading any optics textbook should 
convince us.  In the OpenGL lighting model, the light in a scene comes from several light 
sources that can be individually turned on and off. Some light comes from a particular 
direction or position, and some light is generally scattered about the scene. For example, 
when we turn on a light bulb in a room, most of the light comes from the bulb, but some 
light comes after bouncing off one, two, three, or more walls. This bounced light (called 
ambient) is assumed to be so scattered that there is no way to tell its original direction, but 
it disappears if a particular light source is turned off. 
 
Finally, there might be a general ambient light in the scene that comes from no particular 
source, as if it had been scattered so many times that its original source is impossible to 
determine. In the OpenGL model, the light sources have an effect only when there are 
surfaces that absorb and reflect light. Each surface is assumed to be composed of a 
material with various properties. A material might emit its own light (like headlights on 
an automobile), it might scatter some incoming light in all directions, and it might reflect 
some portion of the incoming light in a preferential direction like a mirror or other shiny 
surface. The OpenGL lighting model considers the lighting to be divided into four 
independent components: emissive, ambient, diffuse and specular. All four components 
are computed independently and then added together. 
 
A Simple Example: Rendering a Lit Sphere 
 
These are the steps required to add lighting to our scene. Define NORMAL vectors for 
each vertex of all the objects. These NORMALS determine the orientation of the object 
relative to the light sources.  
 
Create, select, and position one or more light sources.  
Create and select a lighting model, which defines the level of global ambient light and the 
effective location of the viewpoint (for the purposes of lighting calculations) 
Define material properties for the objects in the scene.  
 
Example 1 accomplishes these tasks. It displays a sphere illuminated by a single light 
source, as shown earlier in Figure 1. 
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Example 1 : Drawing a Lit Sphere:  
#include <GL/gl.h> 
#include <GL/glu.h> 
#include <GL/glut.h> 
void init(void) 
{ 
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat mat_shininess[] = { 50.0 }; 
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; 
glClearColor (0.0, 0.0, 0.0, 0.0); 
glShadeModel (GL_SMOOTH); 
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); 
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess); 
glLightfv(GL_LIGHT0, GL_POSITION, light_position); 
glEnable(GL_LIGHTING); 
glEnable(GL_LIGHT0); 
glEnable(GL_DEPTH_TEST); 
} 
void display(void) 
{ 
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
glutSolidSphere (1.0, 20, 16); 
glFlush (); 
} 
void reshape (int w, int h) 
{ 
glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
glMatrixMode (GL_PROJECTION); 
glLoadIdentity(); 
if (w <= h) 
glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w, 1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0); 
else 
glOrtho (-1.5*(GLfloat)w/(GLfloat)h, 1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0); 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
} 
int main(int argc, char** argv) 
{ 
glutInit(&argc, argv); 
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH); 
glutInitWindowSize (500, 500); 
glutInitWindowPosition (100, 100); 
glutCreateWindow (argv[0]); 
init (); 
glutDisplayFunc(display); 
glutReshapeFunc(reshape); 
glutMainLoop(); 
return 0; 
} 
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The lighting-related calls are in the init() command; they're discussed briefly in the 
following paragraphs and in more detail later in the chapter. One thing to note about 
Example 1 is that it uses RGBA color mode, not color-index mode. The OpenGL lighting 
calculation is different for the two modes, and in fact the lighting capabilities are more 
limited in color-index mode. Thus, RGBA is the preferred mode when doing lighting. 
 
Define Normal Vectors for Each Vertex of Every Object 
An object's NORMALS determine its orientation relative to the light sources. For each 
vertex, OpenGL uses the assigned normal to determine how much light that particular 
vertex receives from each light source. In this example, the NORMALS for the sphere are 
defined as part of the glutSolidSphere() routine. (recall "Normal Vectors") 
 
Create, Position, and Enable One or More Light Sources 
Example 1 uses only one, white light source; its location is specified by the glLightfv() 
call. This example uses the default color for light zero (GL_LIGHT0), which is white; if 
we want a differently colored light, use glLight*() to indicate this. We can include at 
least eight different light sources in our scene of various colors; the default color of these 
other lights is black. (The particular implementation of OpenGL we're using might allow 
more than eight.) we can also locate the lights wherever we desire - we can position them 
near the scene, as a desk lamp would be, or an infinite distance away, like the sun. In 
addition, we can control whether a light produces a narrow, focused beam or a wider 
beam. Remember that each light source adds significantly to the calculations needed to 
render the scene, so performance is affected by the number of lights in the scene.  
After we've defined the characteristics of the lights we want, we have to turn them on 
with the glEnable() command. We also need to call glEnable() with GL_LIGHTING as a 
parameter to prepare OpenGL to perform lighting calculations. 
 
Select a Lighting Model 
As we might expect, the glLightModel*() command describes the parameters of a 
lighting model. In Example 1, the only element of the lighting model that's defined 
explicitly is the global ambient light. The lighting model also defines whether the viewer 
of the scene should be considered to be an infinite distance away or local to the scene, and 
whether lighting calculations should be performed differently for the front and back 
surfaces of objects in the scene. Example 1 uses the default settings for these two aspects 
of the model - an infinite viewer and one-sided lighting. Using a local viewer adds 
significantly to the complexity of the calculations that must be performed, because 
OpenGL must calculate the angle between the viewpoint and each object. With an infinite 
viewer, however, the angle is ignored, and the results are slightly less realistic. Further, 
since in this example, the back surface of the sphere is never seen (it's the inside of the 
sphere), one-sided lighting is sufficient.  
 
Define Material Properties for the Objects in the Scene 
An object's material properties determine how it reflects light and therefore what material 
it seems to be made of. Because the interaction between an object's material surface and 
incident light is complex, specifying material properties so that an object has a certain 
desired appearance is an art. We can specify a material's ambient, diffuse, and specular 
colors and how shiny it is. In this example, only these last two material properties - the 
specular material color and shininess - are explicitly specified (with the glMaterialfv() 
calls).  
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Some Important Notes 
As we write our own lighting program, remember that we can use the default values for 
some lighting parameters; others need to be changed. Also, don't forget to enable 
whatever lights we define and to enable lighting calculations. Finally, remember that we 
might be able to use display lists to maximize efficiency as we change lighting 
conditions. 
 
Creating Light Sources 
Light sources have a number of properties, such as color, position, and direction. The 
following sections explain how to control these properties and what the resulting light 
looks like. The command used to specify all properties of lights is glLight*(); it takes 
three arguments: to identify the light whose property is being specified, the property, and 
the desired value for that property.  
 
void glLight{if}(GLenum light, GLenum pname, TYPEparam); 
void glLight{if}v(GLenum light, GLenum pname, TYPE *param); 
 
Creates the light specified by light, which can be GL_LIGHT0, GL_LIGHT1, ... , or 
GL_LIGHT7. The characteristic of the light being set is defined by pname, which 
specifies a named parameter (see Table 1). param indicates the values to which the 
pname characteristic is set; it's a pointer to a group of values if the vector version is used, 
or the value itself if the nonvector version is used. The nonvector version can be used to 
set only single-valued light characteristics. 
 
Table 1 : Default Values for pname Parameter of glLight*() 
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Note: The default values listed for GL_DIFFUSE and GL_SPECULAR in Table 1 apply 
only to GL_LIGHT(). For other lights, the default value is (0.0, 0.0, 0.0, 1.0) for both 
GL_DIFFUSE and GL_SPECULAR. 
Example 2 shows how to use glLight*(): 
 
Example 2 : Defining Colors and Position for a Light Source 
 
GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 }; 
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; 
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient); 
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse); 
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular); 
glLightfv(GL_LIGHT0, GL_POSITION, light_position); 
 
As we can see, arrays are defined for the parameter values, and glLightfv() is called 
repeatedly to set the various parameters. In this example, the first three calls to 
glLightfv() are superfluous, since they're being used to specify the default values for the 
GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR parameters. 
 
Note: Remember to turn on each light with glEnable().  
All the parameters for glLight*() and their possible values are explained in the following 
sections. These parameters interact with those that define the overall lighting model for a 
particular scene and an object's material properties.  
Color 
 
OpenGL allows we to associate three different color-related parameters - GL_AMBIENT, 
GL_DIFFUSE, and GL_SPECULAR - with any particular light. The GL_AMBIENT 
parameter refers to the RGBA intensity of the ambient light that a particular light source 
adds to the scene. As we can see in Table 1, by default there is no ambient light since 
GL_AMBIENT is (0.0, 0.0, 0.0, 1.0). This value was used in Example 1. If this program 
had specified blue ambient light as 
 
GLfloat light_ambient[] = { 0.0, 0.0, 1.0, 1.0}; 
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient); 
 
The GL_DIFFUSE parameter probably most closely correlates with what we naturally 
think of as "the color of a light." It defines the RGBA color of the diffuse light that a 
particular light source adds to a scene. By default, GL_DIFFUSE is (1.0, 1.0, 1.0, 1.0) for 
GL_LIGHT0, which produces a bright. The default value for any other light 
(GL_LIGHT1, ... , GL_LIGHT7) is (0.0, 0.0, 0.0, 0.0). 
 
The GL_SPECULAR parameter affects the color of the specular highlight on an object. 
Typically, a real-world object such as a glass bottle has a specular highlight that's the 
color of the light shining on it (which is often white). Therefore, if we want to create a 
realistic effect, set the GL_SPECULAR parameter to the same value as the 
GL_DIFFUSE parameter. By default, GL_SPECULAR is (1.0, 1.0, 1.0, 1.0) for 
GL_LIGHT0 and (0.0, 0.0, 0.0, 0.0) for any other light. 
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Note: The alpha component of these colors is not used until blending is enabled.  
 
Position and Attenuation 
 
As previously mentioned, we can choose whether to have a light source that's treated as 
though it's located infinitely far away from the scene or one that's nearer to the scene. The 
first type is referred to as a directional light source; the effect of an infinite location is 
that the rays of light can be considered parallel by the time they reach an object. An 
example of a real-world directional light source is the sun. The second type is called a 
positional light source, since its exact position within the scene determines the effect it 
has on a scene and, specifically, the direction from which the light rays come. A desk 
lamp is an example of a positional light source. The light used in Example 1 is a 
directional one: 
 
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; 
glLightfv(GL_LIGHT0, GL_POSITION, light_position); 
 
As shown, we supply a vector of four values (x, y, z, w) for the GL_POSITION 
parameter. If the last value, w, is zero, the corresponding light source is a directional one, 
and the (x, y, z) values describe its direction. This direction is transformed by the 
modelview matrix. By default, GL_POSITION is (0, 0, 1, 0), which defines a directional 
light that points along the negative z-axis. (Note that nothing prevents we from creating a 
directional light with the direction of (0, 0, 0), but such a light won't help we much.) If the 
w value is nonzero, the light is positional, and the (x, y, z) values specify the location of 
the light in homogeneous object coordinates. This location is transformed by the 
modelview matrix and stored in eye coordinates. Also, by default, a positional light 
radiates in all directions, but we can restrict it to producing a cone of illumination by 
defining the light as a spotlight.  
 
Note: Remember that the colors across the face of a smooth-shaded polygon are 
determined by the colors calculated for the vertices. Because of this, we probably want to 
avoid using large polygons with local lights. If we locate the light near the middle of the 
polygon, the vertices might be too far away to receive much light, and the whole polygon 
will look darker than we intended. To avoid this problem, break up the large polygon into 
smaller ones. 
 
For real-world lights, the intensity of light decreases as distance from the light increases. 
Since a directional light is infinitely far away, it doesn't make sense to attenuate its 
intensity over distance, so attenuation is disabled for a directional light. However, we 
might want to attenuate the light from a positional light. 
OpenGL attenuates a light source by multiplying the contribution of that source by an 
attenuation factor: 
 

 
where 
d = distance between the light's position and the vertex 
kc = GL_CONSTANT_ATTENUATION 



43-Real-World and OpenGL Lighting                                                                                                          VU         
 

 
© Copyright Virtual University of Pakistan 

 

401

kl = GL_LINEAR_ATTENUATION 
kq = GL_QUADRATIC_ATTENUATION 
By default, kc is 1.0 and both kl and kq are zero, but we can give these parameters 
different values: 
glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0); 
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0); 
glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5); 
 
Note that the ambient, diffuse, and specular contributions are all attenuated. Only the 
emission and global ambient values aren't attenuated. Also note that since attenuation 
requires an additional division (and possibly more math) for each calculated color, using 
attenuated lights may slow down application performance. 
 
Spotlights 
As previously mentioned, we can have a positional light source act as a spotlight - that is, 
by restricting the shape of the light it emits to a cone. To create a spotlight, we need to 
determine the spread of the cone of light we desire. (Remember that since spotlights are 
positional lights, we also have to locate them where we want them. Again, note that 
nothing prevents us from creating a directional spotlight, but it won't give us the result we 
want.) To specify the angle between the axis of the cone and a ray along the edge of the 
cone, use the GL_SPOT_CUTOFF parameter. The angle of the cone at the apex is then 
twice this value, as shown in Figure 2. 
 

 
 

Figure 2 : GL_SPOT_CUTOFF Parameter 
 
Note that no light is emitted beyond the edges of the cone. By default, the spotlight 
feature is disabled because the GL_SPOT_CUTOFF parameter is 180.0. This value 
means that light is emitted in all directions (the angle at the cone's apex is 360 degrees, so 
it isn't a cone at all). The value for GL_SPOT_CUTOFF is restricted to being within the 
range [0.0,90.0] (unless it has the special value 180.0). The following line sets the cutoff 
parameter to 45 degrees:  
 
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0); 
 
We also need to specify a spotlight's direction, which determines the axis of the cone of 
light: 
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GLfloat spot_direction[] = { -1.0, -1.0, 0.0 }; 
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction); 
 
The direction is specified in object coordinates. By default, the direction is (0.0, 0.0, -1.0), 
so if we don't explicitly set the value of GL_SPOT_DIRECTION, the light points down 
the negative z-axis. Also, keep in mind that a spotlight's direction is transformed by the 
modelview matrix just as though it were a normal vector, and the result is stored in eye 
coordinates.  
 
In addition to the spotlight's cutoff angle and direction, there are two ways we can control 
the intensity distribution of the light within the cone. First, we can set the attenuation 
factor described earlier, which is multiplied by the light's intensity. We can also set the 
GL_SPOT_EXPONENT parameter, which by default is zero, to control how concentrated 
the light is. The light's intensity is highest in the center of the cone. It's attenuated toward 
the edges of the cone by the cosine of the angle between the direction of the light and the 
direction from the light to the vertex being lit, raised to the power of the spot exponent. 
Thus, higher spot exponents result in a more focused light source.  
 
Multiple Lights 
As mentioned, we can have at least eight lights in our scene (possibly more, depending on 
our OpenGL implementation). Since OpenGL needs to perform calculations to determine 
how much light each vertex receives from each light source, increasing the number of 
lights adversely affects performance. The constants used to refer to the eight lights are 
GL_LIGHT0, GL_LIGHT1, GL_LIGHT2, GL_LIGHT3, and so on. In the preceding 
discussions, parameters related to GL_LIGHT0 were set. If we want an additional light, 
we need to specify its parameters; also, remember that the default values are different for 
these other lights than they are for GL_LIGHT0, as explained in Table 1. Example 3 
defines a white attenuated spotlight. 
 
Example 3 : Second Light Source 
 
GLfloat light1_ambient[] = { 0.2, 0.2, 0.2, 1.0 }; 
GLfloat light1_diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat light1_specular[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat light1_position[] = { -2.0, 2.0, 1.0, 1.0 }; 
GLfloat spot_direction[] = { -1.0, -1.0, 0.0 }; 
glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient); 
glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse); 
glLightfv(GL_LIGHT1, GL_SPECULAR, light1_specular); 
glLightfv(GL_LIGHT1, GL_POSITION, light1_position); 
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.5); 
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.5); 
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.2); 
glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0); 
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_direction); 
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0); 
glEnable(GL_LIGHT1); 
 
If these lines were added to Example 1, the sphere would be lit with two lights, one 
directional and one spotlight. 
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Try This 
Modify Example 1 in the following manner: 
Change the first light to be a positional colored light rather than a directional white one.     
Add an additional colored spotlight. Hint: Use some of the code shown in the preceding 
section. Measure how these two changes affect performance.    
 
Controlling a Light's Position and Direction 
OpenGL treats the position and direction of a light source just as it treats the position of a 
geometric primitive. In other words, a light source is subject to the same matrix 
transformations as a primitive. More specifically, when glLight*() is called to specify the 
position or the direction of a light source, the position or direction is transformed by the 
current modelview matrix and stored in eye coordinates. This means we can manipulate a 
light source's position or direction by changing the contents of the modelview matrix. 
(The projection matrix has no effect on a light's position or direction.) This section 
explains how to achieve the following three different effects by changing the point in the 
program at which the light position is set, relative to modeling or viewing 
transformations: 
 
A light position that remains fixed    
A light that moves around a stationary object    
A light that moves along with the viewpoint    
 
Keeping the Light Stationary 
In the simplest example, as in Example 1, the light position remains fixed. To achieve this 
effect, we need to set the light position after whatever viewing and/or modeling 
transformation we use. In Example 4, the relevant code from the init() and reshape() 
routines might look like this. 
 
Example 4 : Stationary Light Source 
 
glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
glMatrixMode (GL_PROJECTION); 
glLoadIdentity(); 
if (w <= h) 
glOrtho (-1.5, 1.5, -1.5*h/w, 1.5*h/w, -10.0, 10.0); 
else 
glOrtho (-1.5*w/h, 1.5*w/h, -1.5, 1.5, -10.0, 10.0); 
glMatrixMode (GL_MODELVIEW); 
glLoadIdentity(); 
/* later in init() */ 
GLfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 }; 
glLightfv(GL_LIGHT0, GL_POSITION, position); 
 
As we can see, the viewport and projection matrices are established first. Then, the 
identity matrix is loaded as the modelview matrix, after which the light position is set. 
Since the identity matrix is used, the originally specified light position (1.0, 1.0, 1.0) isn't 
changed by being multiplied by the modelview matrix. Then, since neither the light 
position nor the modelview matrix is modified after this point, the direction of the light 
remains (1.0, 1.0, 1.0). 
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Independently Moving the Light 
Now suppose we want to rotate or translate the light position so that the light moves 
relative to a stationary object. One way to do this is to set the light position after the 
modeling transformation, which is itself changed specifically to modify the light position. 
We can begin with the same series of calls in init() early in the program. Then we need to 
perform the desired modeling transformation (on the modelview stack) and reset the light 
position, probably in display(). Example 5 shows what display() might be. 
 
Example 5 : Independently Moving Light Source 
 
static GLdouble spin; 
void display(void) 
{ 
GLfloat light_position[] = { 0.0, 0.0, 1.5, 1.0 }; 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
glPushMatrix(); 
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); 
glPushMatrix(); 
glRotated(spin, 1.0, 0.0, 0.0); 
glLightfv(GL_LIGHT0, GL_POSITION, light_position); 
glPopMatrix(); 
glutSolidTorus (0.275, 0.85, 8, 15); 
glPopMatrix(); 
glFlush(); 
} 
 
spin is a global variable and is probably controlled by an input device. display() causes 
the scene to be redrawn with the light rotated spin degrees around a stationary torus. Note 
the two pairs of glPushMatrix() and glPopMatrix() calls, which are used to isolate the 
viewing and modeling transformations, all of which occur on the modelview stack. Since 
in Example 5 the viewpoint remains constant, the current matrix is pushed down the stack 
and then the desired viewing transformation is loaded with gluLookAt(). The matrix 
stack is pushed again before the modeling transformation glRotated() is specified. Then 
the light position is set in the new, rotated coordinate system so that the light itself 
appears to be rotated from its previous position. (Remember that the light position is 
stored in eye coordinates, which are obtained after transformation by the modelview 
matrix.) After the rotated matrix is popped off the stack, the torus is drawn. 
Example 6 is a program that rotates a light source around an object. When the left mouse 
button is pressed, the light position rotates an additional 30 degrees. A small, unlit, 
wireframe cube is drawn to represent the position of the light in the scene. 
 
Example 6 : Moving a Light with Modeling Transformations: 
#include <GL/gl.h> 
#include <GL/glu.h> 
#include "glut.h" 
static int spin = 0; 
void init(void) 
{ 
glClearColor (0.0, 0.0, 0.0, 0.0); 
glShadeModel (GL_SMOOTH); 
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glEnable(GL_LIGHTING); 
glEnable(GL_LIGHT0); 
glEnable(GL_DEPTH_TEST); 
} 
/* Here is where the light position is reset after the modeling 
* transformation (glRotated) is called. This places the 
* light at a new position in world coordinates. The cube 
* represents the position of the light. 
*/ 
void display(void) 
{ 
GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 }; 
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
glPushMatrix (); 
glTranslatef (0.0, 0.0, -5.0); 
glPushMatrix (); 
glRotated ((GLdouble) spin, 1.0, 0.0, 0.0); 
glLightfv (GL_LIGHT0, GL_POSITION, position); 
glTranslated (0.0, 0.0, 1.5); 
glDisable (GL_LIGHTING); 
glColor3f (0.0, 1.0, 1.0); 
glutWireCube (0.1); 
glEnable (GL_LIGHTING); 
glPopMatrix (); 
glutSolidTorus (0.275, 0.85, 8, 15); 
glPopMatrix (); 
glFlush (); 
} 
void reshape (int w, int h) 
{ 
glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
glMatrixMode (GL_PROJECTION); 
glLoadIdentity(); 
gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0); 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
} 
void mouse(int button, int state, int x, int y) 
{ 
switch (button) { 
case GLUT_LEFT_BUTTON: 
if (state == GLUT_DOWN) { 
spin = (spin + 30) % 360; 
glutPostRedisplay(); 
} 
break; 
default: 
break; 
} 
} 



43-Real-World and OpenGL Lighting                                                                                                          VU         
 

 
© Copyright Virtual University of Pakistan 

 

406

int main(int argc, char** argv) 
{ 
glutInit(&argc, argv); 
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH); 
glutInitWindowSize (500, 500); 
glutInitWindowPosition (100, 100); 
glutCreateWindow (argv[0]); 
init (); 
glutDisplayFunc(display); 
glutReshapeFunc(reshape); 
glutMouseFunc(mouse); 
glutMainLoop(); 
return 0; 
} 
 
Selecting a Lighting Model 
The OpenGL notion of a lighting model has three components: 
 
The global ambient light intensity    
Whether the viewpoint position is local to the scene or whether it should be considered to 
be an infinite distance away    
Whether lighting calculations should be performed differently for both the front and back 
faces of objects    
 
This section explains how to specify a lighting model. It also discusses how to enable 
lighting - that is, how to tell OpenGL that we want lighting calculations performed. 
The command used to specify all properties of the lighting model is glLightModel*(). 
glLightModel*() has two arguments: the lighting model property and the desired value 
for that property. 
 
void glLightModel{if}(GLenum pname, TYPEparam); 
void glLightModel{if}v(GLenum pname, TYPE *param); 
Sets properties of the lighting model. The characteristic of the lighting model being set is 
defined by pname, which specifies a named parameter (see Table 2). param indicates the 
values to which the pname characteristic is set; it's a pointer to a group of values if the 
vector version is used, or the 
value itself if the nonvector version is used. The nonvector version can be used to set only 
single-valued lighting model characteristics, not for 
GL_LIGHT_MODEL_AMBIENT. 
 
Table 2 : Default Values for pname Parameter of glLightModel*() 
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Global Ambient Light 
 
As discussed earlier, each light source can contribute ambient light to a scene. In addition, 
there can be other ambient light that's not from any particular source. To specify the 
RGBA intensity of such global ambient light, use the GL_LIGHT_MODEL_AMBIENT 
parameter as follows: 
 
GLfloat lmodel_ambient[] = { 0.2, 0.2, 0.2, 1.0 }; 
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient); 
 
In this example, the values used for lmodel_ambient are the default values for 
GL_LIGHT_MODEL_AMBIENT. Since these numbers yield a small amount of white 
ambient light, even if we don't add a specific light source to our scene, we can still see the 
objects in the scene.  
 
Enabling Lighting 
 
With OpenGL, we need to explicitly enable (or disable) lighting. If lighting isn't enabled, 
the current color is simply mapped onto the current vertex, and no calculations 
concerning normals, light sources, the lighting model, and material properties are 
performed. Here's how to enable lighting: 
 
glEnable(GL_LIGHTING); 
 
To disable lighting, call glDisable() with GL_LIGHTING as the argument. We also need 
to explicitly enable each light source that we define, after we've specified the parameters 
for that source. Example 1 uses only one light, 
 
GL_LIGHT0: 
glEnable(GL_LIGHT0); 
 
 
Defining Material Properties 
 
We've seen how to create light sources with certain characteristics and how to define the 
desired lighting model. This section describes how to define the material properties of the 
objects in the scene: the ambient, diffuse, and specular colors, the shininess, and the color 
of any emitted light. Most of the material properties are conceptually similar to ones 
we've already used to create light sources. The mechanism for setting them is similar, 
except that the command used is called glMaterial*(). 
 
void glMaterial{if}(GLenum face, GLenum pname, TYPEparam); 
void glMaterial{if}v(GLenum face, GLenum pname, TYPE *param); 
 
Specifies a current material property for use in lighting calculations. face can be 
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the 
object the material should be applied to. The particular material property being set is 
identified by pname and the desired values for that property are given by param, which is 
either a pointer to a group of values (if the vector version is used) or the actual value (if 
the nonvector version is used). The nonvector version works only for setting 
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GL_SHININESS. The possible values for pname are shown in Table 3. Note that 
GL_AMBIENT_AND_DIFFUSE allows we to set both the ambient and diffuse material 
colors simultaneously to the same RGBA value. 
 
Table 3 : Default Values for pname Parameter of glMaterial*() 
 

 
 
As discussed in "Selecting a Lighting Model," we can choose to have lighting 
calculations performed differently for the front- and back-facing polygons of objects. If 
the back faces might indeed be seen, we can supply different material properties for the 
front and the back surfaces by using the face parameter of glMaterial*().  
 
Note that most of the material properties set with glMaterial*() are (R, G, B, A) colors. 
Regardless of what alpha values are supplied for other parameters, the alpha value at any 
particular vertex is the diffuse-material alpha value (that is, the alpha value given to 
GL_DIFFUSE with the glMaterial*() command, as described in the next section). Also, 
none of the RGBA material properties apply in color-index mode.  
 
Diffuse and Ambient Reflection 
 
The GL_DIFFUSE and GL_AMBIENT parameters set with glMaterial*() affect the 
color of the diffuse and ambient light reflected by an object. Diffuse reflectance plays the 
most important role in determining what we perceive the color of an object to be. It's 
affected by the color of the incident diffuse light and the angle of the incident light 
relative to the normal direction. (It's most intense where the incident light falls 
perpendicular to the surface.) The position of the viewpoint doesn't affect diffuse 
reflectance at all. 
 
Ambient reflectance affects the overall color of the object. Because diffuse reflectance is 
brightest where an object is directly illuminated, ambient reflectance is most noticeable 
where an object receives no direct illumination. An object's total ambient reflectance is 
affected by the global ambient light and ambient light from individual light sources. Like 
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diffuse reflectance, ambient reflectance isn't affected by the position of the viewpoint. For 
real-world objects, diffuse and ambient reflectance are normally the same color. For this 
reason, OpenGL provides we with a convenient way of assigning the same value to both 
simultaneously with glMaterial*(): 
 
GLfloat mat_amb_diff[] = { 0.1, 0.5, 0.8, 1.0 }; 
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, mat_amb_diff); 
 
In this example, the RGBA color (0.1, 0.5, 0.8, 1.0) - a deep blue color - represents the 
current ambient and diffuse reflectance for both the front- and 
back-facing polygons. 
 
Specular Reflection 
 
Specular reflection from an object produces highlights. Unlike ambient and diffuse 
reflection, the amount of specular reflection seen by a viewer does depend on the location 
of the viewpoint - it's brightest along the direct angle of reflection. To see this, imagine 
looking at a metallic ball outdoors in the sunlight. As we move our head, the highlight 
created by the sunlight moves with us to some extent. However, if we move our head too 
much, we lose the highlight entirely. 
 
OpenGL allows us to set the effect that the material has on reflected light (with 
GL_SPECULAR) and control the size and brightness of the highlight (with 
GL_SHININESS). We can assign a number in the range of [0.0, 128.0] to 
GL_SHININESS - the higher the value, the smaller and brighter (more focused) the 
highlight. 
 

 
 
Twelve spheres, each with different material parameters. The row properties are as 
labeled above. The first column uses a blue diffuse material color with no specular 
properties. The second column adds white specular reflection with a low shininess 
exponent. The third column uses a high shininess exponent and thus has a more 
concentrated highlight. The fourth column uses the blue diffuse color and, instead of 
specular reflection, adds an emissive component.  
 
In above figure, the spheres in the first column have no specular reflection. In the second 
column, GL_SPECULAR and GL_SHININESS are assigned values as follows: 
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GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat low_shininess[] = { 5.0 }; 
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); 
glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess); 
 
In the third column, the GL_SHININESS parameter is increased to 100.0. 
 
Emission 
By specifying an RGBA color for GL_EMISSION, we can make an object appear to be 
giving off light of that color. Since most real-world objects (except lights) don't emit 
light, we'll probably use this feature mostly to simulate lamps and other light sources in a 
scene.  
 
GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0}; 
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission); 
 
Notice that the spheres appear to be slightly glowing; however, they're not actually acting 
as light sources. We would need to create a light source and position it at the same 
location as the sphere to create that effect. 
 
Changing Material Properties 
Example 1 uses the same material properties for all vertices of the only object in the scene 
(the sphere). In other situations, we might want to assign different material properties for 
different vertices on the same object. More likely, we have more than one object in the 
scene, and each object has different material properties. For example, the code that 
produced "above figure” has to draw twelve different objects (all spheres), each with 
different material properties. Example 8 shows a portion of the code in display(). 
 
Example 8 : Different Material Properties: 
GLfloat no_mat[] = { 0.0, 0.0, 0.0, 1.0 }; 
GLfloat mat_ambient[] = { 0.7, 0.7, 0.7, 1.0 }; 
GLfloat mat_ambient_color[] = { 0.8, 0.8, 0.2, 1.0 }; 
GLfloat mat_diffuse[] = { 0.1, 0.5, 0.8, 1.0 }; 
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat no_shininess[] = { 0.0 }; 
GLfloat low_shininess[] = { 5.0 }; 
GLfloat high_shininess[] = { 100.0 }; 
GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0}; 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
/* draw sphere in first row, first column 
* diffuse reflection only; no ambient or specular 
*/ 
glPushMatrix(); 
glTranslatef (-3.75, 3.0, 0.0); 
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat); 
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse); 
glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat); 
glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess); 
glMaterialfv(GL_FRONT, GL_EMISSION, no_mat); 
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glutSolidSphere(1.0, 16, 16); 
glPopMatrix(); 
/* draw sphere in first row, second column 
* diffuse and specular reflection; low shininess; no ambient 
*/ 
glPushMatrix(); 
glTranslatef (-1.25, 3.0, 0.0); 
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat); 
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse); 
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); 
glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess); 
glMaterialfv(GL_FRONT, GL_EMISSION, no_mat); 
glutSolidSphere(1.0, 16, 16); 
glPopMatrix(); 
/* draw sphere in first row, third column 
* diffuse and specular reflection; high shininess; no ambient 
*/ 
glPushMatrix(); 
glTranslatef (1.25, 3.0, 0.0); 
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat); 
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse); 
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); 
glMaterialfv(GL_FRONT, GL_SHININESS, high_shininess); 
glMaterialfv(GL_FRONT, GL_EMISSION, no_mat); 
glutSolidSphere(1.0, 16, 16); 
glPopMatrix(); 
/* draw sphere in first row, fourth column 
* diffuse reflection; emission; no ambient or specular refl. 
*/ 
glPushMatrix(); 
glTranslatef (3.75, 3.0, 0.0); 
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat); 
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse); 
glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat); 
glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess); 
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission); 
glutSolidSphere(1.0, 16, 16); 
glPopMatrix(); 
 
As we can see, glMaterialfv() is called repeatedly to set the desired material property for 
each sphere. Note that it only needs to be called to change a property that needs to be 
respecified. The second, third, and fourth spheres use the same ambient and diffuse 
properties as the first sphere, so these properties do not need to be respecified. Since 
glMaterial*() has a performance cost associated with its use, Example 8 could be 
rewritten to minimize material-property changes. Another technique for minimizing 
performance costs associated with changing material properties is to use 
glColorMaterial(). 
 
void glColorMaterial(GLenum face, GLenum mode); 
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Causes the material property (or properties) specified by mode of the specified material 
face (or faces) specified by face to track the value of the current color at all times. A 
change to the current color (using glColor*()) immediately updates the specified material 
properties. The face parameter can beGL_FRONT, GL_BACK, or 
GL_FRONT_AND_BACK (the default). The mode parameter can be GL_AMBIENT, 
GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE (the default), GL_SPECULAR, or 
GL_EMISSION. At any given time, only one mode is active. glColorMaterial() has no 
effect on color-index lighting. 
 
Note that glColorMaterial() specifies two independent values: the first specifies which 
face or faces are updated, and the second specifies which material property or properties 
of those faces are updated. OpenGL does not maintain separate mode variables for each 
face. After calling glColorMaterial(), we need to call glEnable() with 
GL_COLOR_MATERIAL as the parameter. Then, we can change the current color using 
glColor*() (or other material properties, using glMaterial*()) as needed as we draw: 
 
glEnable(GL_COLOR_MATERIAL); 
glColorMaterial(GL_FRONT, GL_DIFFUSE); 
/* now glColor* changes diffuse reflection */ 
glColor3f(0.2, 0.5, 0.8); 
/* draw some objects here */ 
glColorMaterial(GL_FRONT, GL_SPECULAR); 
/* glColor* no longer changes diffuse reflection */ 
/* now glColor* changes specular reflection */ 
glColor3f(0.9, 0.0, 0.2); 
/* draw other objects here */ 
glDisable(GL_COLOR_MATERIAL); 
 
We should use glColorMaterial() whenever we need to change a single material 
parameter for most vertices in our scene. If we need to change more than one material 
parameter, as was the case for "in above figure”, use glMaterial*(). When we don't need 
the capabilities of glColorMaterial() anymore, be sure to disable it so that we don't get 
undesired material properties and don't incur the performance cost associated with it. The 
performance value in using glColorMaterial() varies, depending on our OpenGL 
implementation. Some implementations may be able to optimize the vertex routines so 
that they can quickly update material properties based on the current color. 
 
Example 9 shows an interactive program that uses glColorMaterial() to change material 
parameters. Pressing each of the three mouse buttons changes the color of the diffuse 
reflection. 
 
Example 9 : Using glColorMaterial(): 
#include <GL/gl.h> 
#include <GL/glu.h> 
#include "glut.h" 
GLfloat diffuseMaterial[4] = { 0.5, 0.5, 0.5, 1.0 }; 
void init(void) 
{ 
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; 
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glClearColor (0.0, 0.0, 0.0, 0.0); 
glShadeModel (GL_SMOOTH); 
glEnable(GL_DEPTH_TEST); 
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseMaterial); 
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); 
glMaterialf(GL_FRONT, GL_SHININESS, 25.0); 
glLightfv(GL_LIGHT0, GL_POSITION, light_position); 
glEnable(GL_LIGHTING); 
glEnable(GL_LIGHT0); 
glColorMaterial(GL_FRONT, GL_DIFFUSE); 
glEnable(GL_COLOR_MATERIAL); 
} 
void display(void) 
{ 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
glutSolidSphere(1.0, 20, 16); 
glFlush (); 
} 
void reshape (int w, int h) 
{ 
glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
glMatrixMode (GL_PROJECTION); 
glLoadIdentity(); 
if (w <= h) 
glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w, 1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0); 
else 
glOrtho (-1.5*(GLfloat)w/(GLfloat)h, 1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0); 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
} 
void mouse(int button, int state, int x, int y) 
{ 
switch (button) { 
case GLUT_LEFT_BUTTON: 
if (state == GLUT_DOWN) { /* change red */ 
diffuseMaterial[0] += 0.1; 
if (diffuseMaterial[0] > 1.0) 
diffuseMaterial[0] = 0.0; 
glColor4fv(diffuseMaterial); 
glutPostRedisplay(); 
} 
break; 
case GLUT_MIDDLE_BUTTON: 
if (state == GLUT_DOWN) { /* change green */ 
diffuseMaterial[1] += 0.1; 
if (diffuseMaterial[1] > 1.0) 
diffuseMaterial[1] = 0.0; 
glColor4fv(diffuseMaterial); 
glutPostRedisplay(); 
} 
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break; 
case GLUT_RIGHT_BUTTON: 
if (state == GLUT_DOWN) { /* change blue */ 
diffuseMaterial[2] += 0.1; 
if (diffuseMaterial[2] > 1.0) 
diffuseMaterial[2] = 0.0; 
glColor4fv(diffuseMaterial); 
glutPostRedisplay(); 
} 
break; 
default: 
break; 
} 
} 
int main(int argc, char** argv) 
{ 
glutInit(&argc, argv); 
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH); 
glutInitWindowSize (500, 500); 
glutInitWindowPosition (100, 100); 
glutCreateWindow (argv[0]); 
init (); 
glutDisplayFunc(display); 
glutReshapeFunc(reshape); 
glutMouseFunc(mouse); 
glutMainLoop(); 
return 0; 
} 
 
Try This 
Modify Example 8 in the following manner: 
Change the global ambient light in the scene. Hint: Alter the value of the 
GL_LIGHT_MODEL_AMBIENT parameter.    
 
Change the diffuse, ambient, and specular reflection parameters, the shininess exponent, 
and the emission color. Hint: Use the glMaterial*() command, but avoid making 
excessive calls. 
 
Use two-sided materials and add a user-defined clipping plane so that we can see the 
inside and outside of a row or column of spheres. if we need to recall user-defined 
clipping planes.) Hint: Turn on two-sided lighting with 
GL_LIGHT_MODEL_TWO_SIDE, set the desired material properties, and add a 
clipping plane. 
 
Remove all the glMaterialfv() calls, and use the more efficient glColorMaterial() calls 
to achieve the same lighting.   
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Lecture No.44   Evaluators, curves and Surfaces 
 
Evaluators 
 
A Bézier curve is a vector-valued function of one variable 
 

C(u) = [X(u) Y(u) Z(u)] 
 
where u varies in some domain (say [0,1]). 
A Bézier surface patch is a vector-valued function of two variables 
 

S(u,v) = [X(u,v) Y(u,v) Z(u,v)] 
 
Where u and v can both vary in some domain. The range isn't necessarily three-
dimensional as shown here. You might want two-dimensional output for curves on a 
plane or texture coordinates, or you might want four-dimensional output to specify 
RGBA information. Even one-dimensional output may make sense for gray levels. For 
each u (or u and v, in the case of a surface), the formula for C() (or S()) calculates a point 
on the curve (or surface). To use an evaluator, first define the function C() or S(), enable 
it, and then use the glEvalCoord1() or glEvalCoord2() command instead of glVertex*(). 
This way, the curve or surface vertices can be used like any other vertices - to form points 
or lines, for example. In addition, other commands automatically generate series of 
vertices that produce a regular mesh uniformly spaced in u (or in u and v). One- and two-
dimensional evaluators are similar, but the description is somewhat simpler in one 
dimension, so that case is discussed first. 
 
One-Dimensional Evaluators 
 
This section presents an example of using one-dimensional evaluators to draw a curve. It 
then describes the commands and equations that control evaluators. 
 
One-Dimensional Example: A Simple Bézier Curve 
 
The program shown in Example 1 draws a cubic Bézier curve using four control points, 
as shown in Figure 1. 

 
 

Figure 1 : Bézier Curve 
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Example 1 : Bézier Curve with Four Control Points: 
#include <GL/gl.h> 
#include <GL/glu.h> 
#include <stdlib.h> 
#include <GL/glut.h> 
GLfloat ctrlpoints[4][3] = { 
{ -4.0, -4.0, 0.0}, { -2.0, 4.0, 0.0}, 
{2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}}; 
void init(void) 
{ 
glClearColor(0.0, 0.0, 0.0, 0.0); 
glShadeModel(GL_FLAT); 
glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]); 
glEnable(GL_MAP1_VERTEX_3); 
} 
void display(void) 
{ 

int i; 
glClear(GL_COLOR_BUFFER_BIT); 
glColor3f(1.0, 1.0, 1.0); 
glBegin(GL_LINE_STRIP); 

for (i = 0; i <= 30; i++) 
glEvalCoord1f((GLfloat) i/30.0); 

glEnd(); 
/* The following code displays the control points as dots. */ 
glPointSize(5.0); 
glColor3f(1.0, 1.0, 0.0); 
glBegin(GL_POINTS); 

for (i = 0; i < 4; i++) 
glVertex3fv(&ctrlpoints[i][0]); 

glEnd(); 
glFlush(); 
} 
void reshape(int w, int h) 
{ 
glViewport(0, 0, (GLsizei) w, (GLsizei) h); 
glMatrixMode(GL_PROJECTION); 
glLoadIdentity(); 
if (w <= h) 

glOrtho(-5.0, 5.0, -5.0*(GLfloat)h/(GLfloat)w, 
5.0*(GLfloat)h/(GLfloat)w, -5.0, 5.0); 

else 
glOrtho(-5.0*(GLfloat)w/(GLfloat)h, 
5.0*(GLfloat)w/(GLfloat)h, -5.0, 5.0, -5.0, 5.0); 

glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
} 
 
int main(int argc, char** argv) 
{ 
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glutInit(&argc, argv); 
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); 
glutInitWindowSize (500, 500); 
glutInitWindowPosition (100, 100); 
glutCreateWindow (argv[0]); 
init (); 
glutDisplayFunc(display); 
glutReshapeFunc(reshape); 
glutMainLoop(); 
return 0; 
} 
 
A cubic Bézier curve is described by four control points, which appear in this example in 
the ctrlpoints[][] array. This array is one of the arguments to glMap1f(). All the 
arguments for this command are as follows: 
 
GL_MAP1_VERTEX_3 
 
Three-dimensional control points are provided and three-dimensional vertices are 
produced 
 
0.0 : Low value of parameter u 
1.0 : High value of parameter u 
3    : The number of floating-point values to advance in the data between one control 
point and the next 
4    : The order of the spline, which is the degree+1: in this case, the degree is 3 (since this 
is a cubic curve)  
&ctrlpoints[0][0] : Pointer to the first control point's data 
 
Note that the second and third arguments control the parameterization of the curve - as 
the variable u ranges from 0.0 to 1.0, the curve goes from one end to the other. The call to 
glEnable() enables the one-dimensional evaluator for three-dimensional vertices. 
 
The curve is drawn in the routine display() between the glBegin() and glEnd() calls. 
Since the evaluator is enabled, the command glEvalCoord1f() is just like issuing a 
glVertex() command with the coordinates of a vertex on the curve corresponding to the 
input parameter u. 
 
44.1 Defining and Evaluating a One-Dimensional Evaluator 
 
The Bernstein polynomial of degree n (or order n+1) is given by 

 
If Pi represents a set of control points (one-, two-, three-, or even four- dimensional), then 
the equation 
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represents a Bézier curve as u varies from 0.0 to 1.0. To represent the same curve but 
allowing u to vary between u1 and u2 instead of 0.0 and 1.0, evaluate 
 

 
 
The command glMap1() defines a one-dimensional evaluator that uses these equations. 
 
void glMap1{fd}(GLenum target, TYPEu1, TYPEu2, GLint stride, 
GLint order, const TYPE*points); 
 
Defines a one-dimensional evaluator. The target parameter specifies what the control 
points represent, as shown in Table 1, and therefore how many values need to be supplied 
in points. The points can represent vertices, RGBA color data, normal vectors, or texture 
coordinates. For example, with GL_MAP1_COLOR_4, the evaluator generates color 
data along a curve in four-dimensional (RGBA) color space. You also use the parameter 
values listed in Table 1 to enable each defined evaluator before you invoke it. Pass the 
appropriate value to glEnable() or glDisable() to enable or disable the evaluator. The 
second two parameters for glMap1*(), u1 and u2, indicate the range for the variable u. 
The variable stride is the number of single- or double-precision values (as appropriate) 
in each block of storage. Thus, it's an offset value between the beginning of one control 
point and the beginning of the next. The order is the degree plus one, and it should agree 
with the number of control points. The points parameter points to the first coordinate of 
the first control point. Using the example data structure for glMap1*(), use the following 
for points: 
 
(GLfloat *)(&ctlpoints[0].x) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



44-Evaluators, curves and Surfaces                                                                                                               VU      
 

 
© Copyright Virtual University of Pakistan 

 

419

Table 1 : Types of Control Points for glMap1*() 
 

 
 
More than one evaluator can be evaluated at a time. If you have both a 
GL_MAP1_VERTEX_3 and a GL_MAP1_COLOR_4 evaluator defined and enabled, for 
example, then calls to glEvalCoord1() generate both a position and a color. Only one of 
the vertex evaluators can be enabled at a time, although you might have defined both of 
them. Similarly, only one of the texture evaluators can be active. Other than that, 
however, evaluators can be used to generate any combination of vertex, normal, color, 
and texture-coordinate data. If more than one evaluator of the same type is defined and 
enabled, the one of highest dimension is used. Use glEvalCoord1*() to evaluate a 
defined and enabled one-dimensional map. 
 
void glEvalCoord1{fd}(TYPE u); 
void glEvalCoord1{fd}v(TYPE *u); 
 
Causes evaluation of the enabled one-dimensional maps. The argument u is the value (or 
a pointer to the value, in the vector version of the command) of the domain coordinate. 
For evaluated vertices, values for color, color index, normal vectors, and texture 
coordinates are generated by evaluation. Calls to glEvalCoord*() do not use the current 
values for color, color index, normal vectors, and texture coordinates. glEvalCoord*() 
also leaves those values unchanged. 
 
44.2 Defining Evenly Spaced Coordinate Values in One Dimension 
 
You can use glEvalCoord1() with any values for u, but by far the most common use is 
with evenly spaced values, as shown previously in Example 1. To obtain evenly spaced 
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values, define a one-dimensional grid using glMapGrid1*() and then apply it using 
glEvalMesh1(). 
 
void glMapGrid1{fd}(GLint n, TYPEu1, TYPEu2); 
Defines a grid that goes from u1 to u2 in n steps, which are evenly spaced. 
 
void glEvalMesh1(GLenum mode, GLint p1, GLint p2); 
Applies the currently defined map grid to all enabled evaluators. The mode can be either 
GL_POINT or GL_LINE, depending on whether you want to draw points or a connected 
line along the curve. The call has exactly the same effect as issuing a glEvalCoord1() for 
each of the steps between and including p1 and p2, where 0 <= p1, p2 <= n. 
Programmatically, it's equivalent to the following: 
 
glBegin(GL_POINTS); /* OR glBegin(GL_LINE_STRIP); */ 
for (i = p1; i <= p2; i++) 
glEvalCoord1(u1 + i*(u2-u1)/n); 
glEnd(); 
except that if i = 0 or i = n, then glEvalCoord1() is called with exactly u1 or u2 as its 
parameter. 
 
Two-Dimensional Evaluators 
In two dimensions, everything is similar to the one-dimensional case, except that all the 
commands must take two parameters, u and v, into account. Points, colors, normals, or 
texture coordinates must be supplied over a surface instead of a curve. Mathematically, 
the definition of a Bézier surface patch is given by 
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where Pij are a set of m*n control points, and the Bi are the same Bernstein polynomials 
for one dimension. As before, the Pij can represent vertices, normals, colors, or texture 
coordinates. 
The procedure to use two-dimensional evaluators is similar to the procedure for one 
dimension. 

1. Define the evaluator(s) with glMap2*().  
2. Enable them by passing the appropriate value to glEnable(). 
3. Invoke them either by calling glEvalCoord2() between a glBegin() and 

glEnd() pair or by specifying and then applying a mesh with glMapGrid2() and 
glEvalMesh2(). 

 
44.3 Defining and Evaluating a Two-Dimensional Evaluator 
 
Use glMap2*() and glEvalCoord2*() to define and then invoke a two-dimensional 
evaluator. 
 
void glMap2{fd}(GLenum target, TYPEu1, TYPEu2, GLint ustride, 
GLint uorder, TYPEv1, TYPEv2, GLint vstride, 
GLint vorder, TYPE points); 
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The target parameter can have any of the values in Table 1, except that the string MAP1 
is replaced with MAP2. As before, these values are also used with glEnable() to enable 
the corresponding evaluator. Minimum and maximum values for both u and v are 
provided as u1, u2, v1, and v2. The parameters ustride and vstride indicate the number of 
single- or double-precision values (as appropriate) between independent settings for 
these values, allowing users to select a subrectangle of control points out of a much 
larger array. For example, if the data appears in the form 
 
GLfloat ctlpoints[100][100][3]; 
 
and you want to use the 4x4 subset beginning at ctlpoints[20][30], choose ustride to be 
100*3 and vstride to be 3. The starting point, points, should be set to 
&ctlpoints[20][30][0]. Finally, the order parameters, uorder and vorder, can be 
different, allowing patches that are cubic in one direction andquadratic in the other, for 
example. 
 
void glEvalCoord2{fd}(TYPE u, TYPE v); 
void glEvalCoord2{fd}v(TYPE *values); 
 
Causes evaluation of the enabled two-dimensional maps. The arguments u and v are the 
values (or a pointer to the values u and v, in the vector version of the command) for the 
domain coordinates. If either of the vertex evaluators is enabled (GL_MAP2_VERTEX_3 
or GL_MAP2_VERTEX_4), then the normal to the surface is computed analytically. This 
normal is associated with the generated vertex if automatic normal generation has been 
enabled by passing GL_AUTO_NORMAL to glEnable(). If it's disabled, the 
corresponding enabled normal map is used to produce a normal. If no such map exists, 
the current normal is used. 
 
44.4 Two-Dimensional Example: A Bézier Surface 
 
Example 2 draws a wire frame Bézier surface using evaluators, as shown in Figure 2. In 
this example, the surface is drawn with nine curved lines in each direction. Each curve is 
drawn as 30 segments. To get the whole program, add the reshape() and main() routines 
from Example 1. 

 
 

Figure 2 : Bézier Surface 
Example 2 : Bézier Surface: 
#include <GL/gl.h> 
#include <GL/glu.h> 
#include <stdlib.h> 
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#include <GL/glut.h> 
GLfloat ctrlpoints[4][4][3] = { 

{{-1.5, -1.5, 4.0}, {-0.5, -1.5, 2.0}, 
{0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}}, 
{{-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0}, 

{0.5, -0.5, 0.0}, {1.5, -0.5, -1.0}}, 
{{-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0}, 
{0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}}, 
{{-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0}, 
{0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}} 
}; 
void display(void) 
{ 
int i, j; 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
glColor3f(1.0, 1.0, 1.0); 
glPushMatrix (); 
glRotatef(85.0, 1.0, 1.0, 1.0); 
for (j = 0; j <= 8; j++) { 

glBegin(GL_LINE_STRIP); 
for (i = 0; i <= 30; i++) 
glEvalCoord2f((GLfloat)i/30.0, (GLfloat)j/8.0); 
glEnd(); 
glBegin(GL_LINE_STRIP); 
for (i = 0; i <= 30; i++) 
glEvalCoord2f((GLfloat)j/8.0, (GLfloat)i/30.0); 
glEnd(); 

} 
glPopMatrix (); 
glFlush(); 
} 
void init(void) 
{ 
glClearColor (0.0, 0.0, 0.0, 0.0); 
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,0, 1, 12, 4, &ctrlpoints[0][0][0]); 
glEnable(GL_MAP2_VERTEX_3); 
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0); 
glEnable(GL_DEPTH_TEST); 
glShadeModel(GL_FLAT); 
} 
 
Defining Evenly Spaced Coordinate Values in Two Dimensions 
 
In two dimensions, the glMapGrid2*() and glEvalMesh2() commands are similar to the 
one-dimensional versions, except that both u and v information must be included. 
 
void glMapGrid2{fd}(GLint nu, TYPEu1, TYPEu2,GLint nv, TYPEv1, TYPEv2); 
void glEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2); 
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Defines a two-dimensional map grid that goes from u1 to u2 in nu evenly spaced steps, 
from v1 to v2 in nv steps (glMapGrid2*()), and then applies this grid to all enabled 
evaluators (glEvalMesh2()). The only significant difference from the one-dimensional 
versions of these two commands is that in glEvalMesh2() the mode parameter can be 
GL_FILL as well as GL_POINT or GL_LINE. GL_FILL generates filled polygons using 
the quad-mesh primitive. Stated precisely, glEvalMesh2() is nearly equivalent to one of 
the following three code fragments. (It's nearly equivalent because when i is equal to nu 
or j to nv, the parameter is exactly equal to u2 or v2, not to u1+nu*(u2-u1)/nu, which 
might be slightly different due to round-off error.) 
 
glBegin(GL_POINTS); /* mode == GL_POINT */ 

for (i = nu1; i <= nu2; i++) 
for (j = nv1; j <= nv2; j++) 
glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv); 

glEnd(); 
 
or 
 
for (i = nu1; i <= nu2; i++) { /* mode == GL_LINE */ 

glBegin(GL_LINES); 
for (j = nv1; j <= nv2; j++) 
glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv); 
glEnd(); 

} 
for (j = nv1; j <= nv2; j++) { 

glBegin(GL_LINES); 
for (i = nu1; i <= nu2; i++) 
glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv); 
glEnd(); 

} 
 
or 
 
for (i = nu1; i < nu2; i++) { /* mode == GL_FILL */ 

glBegin(GL_QUAD_STRIP); 
for (j = nv1; j <= nv2; j++) { 
glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv); 
glEvalCoord2(u1 + (i+1)*(u2-u1)/nu, v1+j*(v2-v1)/nv); 
glEnd(); 

} 
 
Example 3 shows the differences necessary to draw the same Bézier surface as Example 
2, but using glMapGrid2() and glEvalMesh2() to subdivide the square domain into a 
uniform 8x8 grid. This program also adds lighting and shading, as shown in Figure 3. 
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Figure 3 : Lit, Shaded Bézier Surface Drawn with a Mesh 
 
Example 3 : Lit, Shaded Bézier Surface Using a Mesh: 
 
void initlights(void) 
{ 
GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0}; 
GLfloat position[] = {0.0, 0.0, 2.0, 1.0}; 
GLfloat mat_diffuse[] = {0.6, 0.6, 0.6, 1.0}; 
GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0}; 
GLfloat mat_shininess[] = {50.0}; 
glEnable(GL_LIGHTING); 
glEnable(GL_LIGHT0); 
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient); 
glLightfv(GL_LIGHT0, GL_POSITION, position); 
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse); 
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); 
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess); 
} 
void display(void) 
{ 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
glPushMatrix(); 
glRotatef(85.0, 1.0, 1.0, 1.0); 
glEvalMesh2(GL_FILL, 0, 20, 0, 20); 
glPopMatrix(); 
glFlush(); 
} 
void init(void) 
{ 
glClearColor(0.0, 0.0, 0.0, 0.0); 
glEnable(GL_DEPTH_TEST); 
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4, 
0, 1, 12, 4, &ctrlpoints[0][0][0]); 
glEnable(GL_MAP2_VERTEX_3); 
glEnable(GL_AUTO_NORMAL); 
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0); 
initlights(); 
} 
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Lecture No.45   Animations 

The passage of time has fascinated artists, scientists and theologians for thousands 
of years. Naturally they have attributed to it different interpretations, different 
implications and different conclusions. Nevertheless there seems to be general 
agreement on one aspect of time; that we are all conditioned by it and that, 
whether we like it or not, there is a time space into which we inevitably have to 
fit. 

Einstein, among other well known names in the world of science, made a special 
study of time in relation to his research in physics. His theory of relativity 
maintains that space and time are merely different aspects of the same thing. Since 
then other physicists have pointed out that objects can be moved backward and 
forward in space, but nothing can be moved back in time. 

Another method of describing the concept of time is through the ‘three arrows of 
time’. The first ‘arrow’ is thermodynamic and can be seen operating when sugar 
dissolves in hot water. Second, is the historical ‘arrow’, whereby a single-celled 
organism evolves to produce more complex and varied species? The third is the 
cosmological ‘arrow’ which is the theory that the universe is expanding from a 
‘big bang’ in the past. This cosmic expansion cannot be reversed in time. While 
the principle of relationships between the ‘time arrows’ is still to be worked out on 
a scientific level, the actual application of it is constantly related to all work which 
utilizes it, such as music and the performing arts. In the latter it is one of the most 
important raw materials. 

In terms of animation, the idea of film time is one of the most vital concepts to 
understand and to use. It is an essential raw material which can be compressed or 
expanded and used for effects and moods in a highly creative way. It is, therefore, 
essential to learn and to understand how time can be applied to animation. The 
great advantage of animation is that the animator can creatively manipulate time 
since an action must be timed prior to carrying out the actual physical work on a 
film. 

It is also essential to understand how the audience will react to the manipulation of 
time from their point of view. Time sense or ‘a sense of timing’, therefore, is just 
as important as color sense and skill of drawing or craftsmanship in film 
animation. 

It has to be realized that while a performance on stage and on the screen requires a 
basic understanding of how timing works, this lecture is primarily confined to 
hand drawn animation which up to this point in film history still comprises 90% of 
all output in the animation medium. 
Timing for TV series 
For economic reasons, TV series are made as simply as possible from the 
animation point of view. This approach is generally known as limited animation. 
Animation is expensive, non-animation is cheaper. So to keep the films lively the 
plots are usually carried along by means of dialogue. It is often necessary to work 
with prerecorded blocks of dialogue which must remain intact. If this dialogue is 
well recorded for maximum dramatic effect, lengths of pauses between phrases 
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cannot be changed (except within very narrow limits) without destroying that 
effect. In this case, the overall timing of long sections of the film is governed 
entirely by the dialogue. (There could be, however, considerable flexibility for 
more detailed timing within this fixed overall length.) 

The director has room to maneuver sections. So, if the total timing for all the 
recorded dialogue is subtracted from the required length for the whole film, this 
gives the amount of time that is available without dialogue. This can then be split 
up in the normal way and distributed throughout the film to give the best effect. 
Limited animation 
With limited animation as many repeats as possible are used within the 24 frames 
per second. A hold is also lengthened to reduce the number of drawings. As a rule 
not more than 6 drawings are produced for one second of animation. Limited 
animation requires almost as much skill on the part of the animator as full 
animation, since he must create an illusion of action with the greatest sense of 
economy.  
Full animation 
Full animation implies a large number of drawings per second of action. Some 
action may require that every single frame of the 24 frames within the second is 
animated in order to achieve an illusion of fluidity on the screen. Neither time nor 
money is spared on animation. As a rule only, TV commercials and feature-length 
animated films can afford this luxury. 

Animation is expensive and time-consuming. It is not economically possible to 
animate more than is needed and edit the scenes later, as it is in live-action films. 
In cartoons the director carefully pre-times every action so that the animator 
works within exact limits and does no more drawings than necessary. 

Ideally, the director should be able to view line test loops of the film as it 
progresses and so have a chance to make adjustments. But often there is no time to 
make corrections in limited animation and the aim is to make the animation work 
the first time. 
Timing for Animation in general 
Timing in animation is an elusive subject. It only exists whilst the film is being 
projected, in the same way that a melody only exists when it is being played. A 
melody is more easily appreciated by listening to it than by trying to explain it in 
words. So with cartoon timing, it is difficult to avoid using a lot of words to 
explain what may seem fairly simple when seen on the screen. 

Timing is also a dangerous factor to try to formulate—something which works in 
one situation or in one mood may not work at all in another situation or mood. 
The only real criterion for timing is: if it works effectively on the screen it is good, 
if it doesn't, it isn't. 

So if having looked through the following pages you can see a better way to 
achieve an effect, then go ahead and do it! 

In this book we attempt to look at the laws of movement in nature. What do 
movements mean? What do they express? How can these movements be 
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simplified and exaggerated to be made ‘animatable’ and to express ideas, feelings 
and dramatic effects? The timing mainly described is that which is used in so-
called ‘classical’ or ‘full’ animation. To cover all possible kinds of timing in all 
possible kinds of animation would be quite impossible. 

Nevertheless we hope to provide a basic 
understanding of how timing in animation is 
ultimately based on timing in nature and how, 
from this starting point, it is possible to apply 
such a difficult and invisible concept to the 
maximum advantage in film animation. 
Animation Principles 
What is good timing? 
Timing is the part of animation which gives 
meaning to movement. Movement can easily be 
achieved by drawing the same thing in two 
different positions and inserting a number of 
other drawings between the two. The result on 
the screen will be movement, but it will not be 
animation. In nature, things do not just move. 
Newton's first law of motion stated that things 
do not move unless a force acts upon them. So 
in animation the movement itself is of secondary 
importance; the vital factor is how the action 
expresses the underlying causes of the 
movement. With inanimate objects these causes 
may be natural forces, mainly gravity. With 
living characters the same external forces can 
cause movement, plus the contractions of 
muscles but, more importantly, there are the 
underlying will, mood, instincts and so on of the 
character who is moving. 

In order to animate a character from A to B, the forces which are operating to 
produce the movement must be considered. Firstly, gravity tends to pull the 
character down towards the ground. Secondly, his body is built and jointed in a 
certain way and is acted on by a certain arrangement of muscles which tend to 
work against gravity. Thirdly, there is the psychological reason or motivation for 
his action—whether he is dodging a blow, welcoming a guest or threatening 
someone with a revolver. 

A live actor faced with these problems moves his muscles and limbs and deals 
with gravity automatically from habit, and so can concentrate on acting. An 
animator has to worry about making his flat, weightless drawings move like solid, 
heavy objects, as well as making them act in a convincing way. In both these 
aspects of animation, timing is of primary importance. 

Part of the working storyboard of The Story of the Bible by Halas and Batchelor. 
At this stage the director works out the smooth visual flow of the film, the editing, 
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camera movements and so on. All these elements combine to tell the story in an 
interesting way. 
The storyboard 
A smooth visual flow is the major objective in any film, especially if it is an 
animated one. Good continuity depends on coordinating the action of the 
character, choreography, scene changes and camera movement. All these different 
aspects cannot be considered in isolation. They must work together to put across a 
story point. Furthermore the right emphasis on such planning, including the 
behaviour of the character, must also be realised. 

The storyboard should serve as a blueprint for any film project and as the first 
visual impression of the film. It is at this stage that the major decisions are taken 
as far as the film's content is concerned. It is generally accepted that no production 
should proceed until a satisfactory storyboard is achieved and most of the creative 
and technical problems which may arise during the film's production have been 
considered. 

There is no strict rule as to how many sketches are required for a film. It depends 
on the type, character and content of the project. A rough guideline is 
approximately 100 storyboard sketches for each minute of film. If, however, a 
film is technically complex, the number of sketches could double. For a TV 
commercial, more sketches are produced as a rule because there are usually more 
scene changes and more action than in longer films. 
The basic unit of time in animation 
The basis of timing in 
animation is the fixed 
projection speed of 24 
frames per second (fps) 
for film and video. While 
other projection speeds 
have been used in the 
past the standard 
projection rate for film of 
all formats—16mm, 35mm and 70mm remains 24 fps. On television and video 
this becomes 25 frames per second (PAL) or 30 fps (NTSC), but the difference is 
usually imperceptible. 

The thing to remember is that if an action on the screen takes one second it covers 
24 frames of film, and if it takes half a second it covers 12 frames and so on. 

24 frames of film go through the projector every second (25 on television). This 
fixed number of frames provides the basis on which all actions are planned and 
timed by the director. 

For single frame animation, where one drawing is done for each frame, a second 
of action needs 24 drawings. If the same action is animated on double frames, 
where each drawing is photographed twice in succession, 12 drawings are 
necessary out the number of frames and hence the speed of the action would be 
the same in both cases. 
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Whatever the mood or pace of the action that appears on the screen, whether it be 
a frantic chase or a romantic love scene, all timing calculations must be based on 
the fact that the projector continues to hammer away at its constant projection rate. 
That is—24 fps for film and either 25 fps or 30 fps for television and video 
depending on format. The unit of time within which an animator works is, 
therefore, 1/24 sec, 1/25 sec or 1/30 sec and an important part of the skill, which 
the animator has to learn is what this specific timing ‘feels’ like on screen. With 
practice the animator also learns what multiples of this unit look like—3 frames, 8 
frames, 12 frames and so on. 
Animation and properties of matter 
The basic question which an animator is continually asking himself is: ‘What will 
happen to this object when a force acts upon it?’ And the success of his animation 
largely depends on how well he answers this question. 

All objects in nature have their own weight, construction and degree of flexibility, 
and therefore each behaves in its own individual way when a force acts upon it. 
This behavior, a combination of position and timing, is the basis of animation. 
Animation consists of drawings, which have neither weight nor do they have any 
forces acting on them. In certain types of limited or abstract animation, the 
drawings can be treated as moving patterns. However, in order to give meaning to 
movement, the animator must consider Newton's laws of motion which contain all 
the information necessary to move characters and objects around. There are many 
aspects of his theories which are important in this book. However, it is not 
necessary to know the laws of motion in their verbal form, but in the way which is 
familiar to everyone, that is by watching things move. For instance, everyone 
knows that things do not start moving suddenly from rest—even a cannonball has 
to accelerate to its maximum speed when fired. Nor do things suddenly stop 
dead—a car hitting a wall of concrete carries on moving after the first impact, 
during which time it folds itself rapidly up into a wreck. 

It is not the exaggeration of the weight of the object which is at the centre of 
animation, but the exaggeration of the tendency of the weight—any weight—to 
move in a certain way. 

The timing of a scene for animation has two aspects: 

1. The timing of inanimate objects 

2. The timing of the movement of a living character 

With inanimate objects the problems are straightforward dynamics. ‘How long 
does a door take to slam?’, ‘How quickly does a cloud drift across the sky?’, 
‘How long does it take a steamroller, running out of control downhill, to go 
through a brick wall?’. 

With living characters the same kind of problems occur because a character is a 
piece of flesh which has to be moved around by the action of forces on it. In 
addition, however, time must be allowed for the mental operation of the character, 
if he is to come alive on the screen. He must appear to be thinking his way 
through his actions, making decisions and finally moving his body around under 
the influence of his own will power and muscle. 
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Animation consists of sequences of weightless drawings. The success of 
animation on the screen depends largely on how well these drawings give the 
impression of reacting in an exaggerated way when weight and forces are made to 
act upon them. 
Movement and caricature 
The movement of most everyday objects around us is caused by the effect of 
forces acting upon matter. 

The movement of objects becomes so familiar to us that, subconsciously, these 
movements give us a great deal of information about the objects themselves and 
about the forces acting on them. This is true not only of inanimate objects, but 
also of living things—especially people. 

The animator's job is to synthesize movements and to apply just the right amount 
of creative exaggeration to make the movement look natural within the cartoon 
medium. 

Cartoon film is a medium of caricature. The character of each subject and the 
movement it expresses are 
exaggerated. The subjects 
can be considered as 
caricatured matter acted 
upon by caricatured forces. 

Cartoon film can also be a 
dramatic medium. This 
particular quality can be 
achieved, among other 
means, by speeded up action 
and highly exaggerated 
timing. The difference 
between an action containing 
caricature, or humour or 
drama, may be very subtle. 
Eventually, with enough 
experience in animation 
timing, it becomes possible 
to emphasise the difference. 

Caricatured matter has the 
same properties as natural 
matter, only more so. To 
understand how cartoon 
matter behaves it is 
necessary to look more closely into the way matter behaves naturally. 

Cartoon is a medium of caricature—naturalistic action looks weak in animation. 
Look at what actually happens, simplify down to the essentials of the movement 
and exaggerate these to the extreme. 
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Cause and effect 
There is a train of cause 
and effect which runs 
through an object when it 
is acted upon by a force. 
This is the result of the 
transmission of the force 
through a more or less 
flexible medium (ie 
caricatured matter). This 
is one aspect of good 
movement in animation. 

An animator must 
understand the mechanics 
of the natural movement 
of an object and then 
keep this knowledge in 
the back of his mind 
whilst he concentrates on 
the real business of 
animation. This is the 
creation of mood and 
conveying the right 
feeling by the way an 
action is done. 

Examples of cause and effect: 
Figs A and B 
A rope wrapped around anything and pulled tight has the tendency shown. How 
far the reaction goes depends on: 

i. the strength of the forces pulling the rope. 

ii. the flexibility or rigidity of the object being squeezed. Exaggerate the 
tendency. 
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A A rope wrapped round 
something.    

B The ends of the rope are 
pulled tight. 
Fig. C 
On the seesaw, the end of the 
plank with the smaller stone 
tends to stay where it is to begin 
with because of its inertia, so 
bending plank D. A moment 
later it starts to accelerate and 
the plank springs back with the 
opposite curvature causing the 
stone to whizz out of the screen, 
E. 

 

C A stone on one end of a 
seesaw. 

D and E A bigger stone 
drops onto the other end. 
Newton's laws of motion 
Every object or character 
has weight and moves only 
when a force is applied to it. 
This is Newton's first law of 
motion. An object at rest 
tends to remain at rest until a 
force moves it and once it is 
moving it tends to keep 
moving in a straight line until 
another force stops it. 

The heavier an object is, or 
strictly speaking, the greater 
its mass, the more force is 
required to change its motion. 
A heavy body has more inertia 
and more momentum than a 
light one. 

A heavy object at rest, such as 
a cannonball, needs a lot of 
force to move it (following Fig. A). When fired from a cannon, the force of the 
charge acts on the cannonball only whilst it is in the gun barrel. Since the force of 
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the explosive charge is very large indeed, this is sufficient to accelerate the 
cannonball to a considerable speed. A smaller force acting for a short time, say a 
strong kick, may have no effect on the cannonball at all. In fact it is more likely to 
damage the kicker's toe. However, persistent force, even if not very strong, would 
gradually start the cannonball rolling and it would eventually be travelling fairly 
quickly. 

A A cannon ball needs a lot of 
force to start it moving. Once 
moving, it takes a lot of 
stopping. 

Once the cannonball is 
moving, it tends to keep 
moving at the same speed and 
requires some force to stop it. 
If it meets an obstacle it may, 
depending on its speed, crash 
straight through it. If it is 
rolling on a rough surface it comes to rest fairly soon, but if rolling on a smooth 
flat surface, friction takes quite a long time to bring it to rest. 

When dealing with very heavy objects, therefore, the director must allow plenty of 
time to start, stop or change their movements, in order to make their weight look 
convincing. The animator, for his part, must see that plenty of force is applied to 
the cannonball to make it start, stop or change direction. 

Light objects have much less resistance to change of movement and so behave 
very differently when forces act on them. A toy balloon (Fig. B) needs much less 
time to start it moving. The flick of a finger is enough to make it accelerate 
quickly away. When moving, it has little momentum and the friction of the air 
quickly slows it up, so it does not travel very far. 

B A balloon needs only a 
small force to move it, but 
air resistance quickly 
brings it to rest. In both 
these examples a circle is 
being animated. The 
timing of its movements 
can make it look heavy or 
light on the screen. 

The way an object 
behaves on the screen, and 
the effect of weight that it gives, depends entirely on the spacing of the animation 
drawings and not on the drawing itself. It does not matter how beautifully drawn 
the cannonball is in the static sense, it does not look like a cannonball if it does not 
behave like one and the same applies to the balloon, and indeed to any other 
object or character. 
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Fast run cycles 
An eight frame run cycle—that is four frames to each step—gives a fast and 
vigorous dash. At this speed the successive leg positions are quite widely 
separated and may need drybrush or speed lines to make the movement flow. 
Drawing 5 shows the same position as drawing 1 but with opposite arms and feet. 
Similarly drawings 6 and 2, 7 and 3, and 8 and 4 show the same positions. These 
alternate positions should be varied slightly in each case, to avoid the rather 
mechanical effect of the same positions occurring every four frames. 

A twelve frame cycle gives a less frantic run, but if the cycle is more than sixteen 
frames the movement tends to lose its dash and appear too leisurely. 

 

The body normally leans forward in the direction of movement, although for 
comic effect a backward lean can sometimes work. If a faster run than an eight 
frame repeat is needed, then perhaps several foot positions can be given on each 
drawing, to fill up the gaps in the movement, or possibly the legs can become a 
complete blur treated entirely in dry-brush. 

In the first example, drawing 4 is equivalent to the ‘step’ position in a walk, with 
the maximum forward and backward leg and arm movement. In a run it is also the 
point at which the centre of gravity of the body is farthest from the ground, that is, 
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in mid-stride. In drawing 1 the weight is returning to its lowest point, which is in 
drawing 2. In drawing 3 the body starts to rise again as the thrust of the back foot 
gives the forward impetus for the next stride. 

These are both examples of eight frame run cycles. This means four drawings to 
each step. Drawings 1 and 5 show the same leg and arm positions but with 
opposite feet, and so do 2 and 6, 3 and 7, 4 and 8. In such a short cycle these 
positions should be varied slightly to avoid a mechanical effect. 
Timing and music 
Ever since the very first animated productions, Disney's Steamboat Mickey and 
Fischinger's abstract film Brahm's Hungarian Dances, it was clear that there is a 
strong relationship between animation and music. This relationship can be 
explained on two accounts. First, both elements have a basic mathematical 
foundation and move forward at a determined speed. Second, since animation is 
created manually frame by frame, it can be fitted to music in a very exact manner. 
It is further able to capture its rhythm, its mood and hit the beat right to the frame. 
Most animation makes good use of this advantage. 

In general principle it is more difficult to follow the rhythm of a musical 
composition with its mood than its beat. The latter aspect of the music is easily 
measured, since beats are fitted into bar units of defined time length and are 
interpreted in time units. 

Bars can contain various numbers of beats and these must be measured to the film 
frame. Having done this, it is comparatively easy to fit the animation to the speed 
of the beat and find the right type of movement to follow the music, whether it is a 
slow waltz of 36 frames, or 4 frames for rock music. A beat can be emphasised by 
synchronisation of the feet but it works better if the whole body is used. In quick 
beats of 3,4 or 6 frames it is possible to follow every second beat without losing 
the rhythm. It is always better to work to specially prepared music if this can be 
afforded. 

 

A This eight frame cycle, 
animated on double frames, of 
a whirling Spanish dancer is 
fitted closely to strong 
flamenco music. The figure 
fully conveys the character of 
the music with all its functional 
simplicity. 

 

B Single and double frame 
animation are alternated to fit 
the beats of the sound of a 
Spanish guitar. It is essential 
for the movement to follow the 
musical lead of a specially 
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prerecorded music track, for accurate synchronisation. 

 
 

Camera movements 
Tracks are used to move into a closer field or pull back to a more distant one. 
They are done by moving the camera frame by frame, up or down its vertical 
pillar, above the animation drawings. Usually the field centre also moves during a 
track and as the camera travels on a fixed axis this movement in a north south, 
east west direction is done by moving the table. 

Tracks and table moves are worked out in terms of general timing—track lengths 
and the action which the various fields must include—by the director on bar 
sheets before production begins. 

When the animator finalises the action of the scene in detail, he converts the 
director's timing into specific instructions to the cameraman. He writes down the 
field sizes and marks the frames where camera movements start and stop in the 
‘camera instructions’ column on the exposure chart (Fig. A). He also provides a 
drawn field key with field centres marked (Fig. B). 

It then becomes the 
cameraman's 
responsibility to 
achieve the required 
effect smoothly and 
accurately on the 
screen. Briefly, the 
procedure is as 
follows: in Fig. B the 
track is made from 
field X to field Y so 
the screen centre 
moves towards the 
south-east. This means 
that under the camera, 
the table must move 
north-west. Fig. C is 
an enlargement of this 
table move, showing 
how the cameraman 
divides the line to 
achieve a smooth 
movement from X to 
Y. At the same time he 
measures the distance 
the camera travels on 
its column during the 
track, and divides this 
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in exactly the same way as Fig. C, so that camera and table top move smoothly 
together. Fig. D is a similar track and table move which includes a tilt. This would 
also be done as a table move. 

Tracks and table moves are usually animated on single frames. 

A The director's timing of tracks is finalised by the animator in the ‘camera 
instructions’ column on the exposure sheet. 

B The accompanying field key. 

C Enlargement of field centres from Fig. B, inverted for use as table move. 

D Another example of a track including a table tilt. 
 


