Visual Programming (CS410)
Assignment # 1

 Total marks = 20

 Deadline Date = 15-04-2011
Please carefully read the following instructions before attempting the assignment.

Rules for Marking

It should be clear that your assignment would not get any credit if:

· The assignment is submitted after due date.

· The submitted assignment does not open or file is corrupt.

· The assignment is copied. Note that strict action would be taken if the submitted assignment is copied from any other student. Both students will be punished severely.

1) You should concern recommended books to clarify your concepts as handouts are not sufficient.
2) You are supposed to submit your assignment in .doc format. Any other formats like scan images, PDF, Zip, rar, bmp, docx etc will not be accepted

3) You are advised to upload your assignment at least two days before Due date.
4) This assignment file comprises of Two (2) pages.

5) Do not send the CPP file of your code, but paste the complete code in same document (.DOC) file in which you will solve other questions.

Important Note:

Assignment comprises of 20 Marks. Note that no assignment will be accepted after due date via email in any case (whether it is the case of load shedding or emergency electric failure or internet malfunctioning etc.). Hence, refrain from uploading assignment in the last hour of the deadline, and try to upload Solutions at least 02 days before the deadline to avoid inconvenience later on.

For any query please contact: CS410@vu.edu.pk
Q1 [Marks: 2*5]

Explain the following instructions:

1) int *c[10];

2) char *(**n)(void);

3) float *(**r(void))[6];

4) short *(**v(void))(int);

5) long *(*(*(*z)(void))[7])(void);
int *c[10];

‘c’ is an array of 10 pointers to int.

char *(**n)(void);

‘n’ is a pointer to a pointer to a function, taking no parameters, returning a character
float *(**r(void))[6];

‘r’ is a function, taking no parameters, returning a pointer to a pointer to an array of 6 pointer to float.

short *(**v(void))(int);

‘v’ is a function, taking no parameters, returning a pointer to a pointer to a function, taking an int,

returning a pointer to a short.

long *(*(*(*z)(void))[7])(void);

‘z’ is a pointer to a function, taking no parameters, returning a pointer to an array of 7 pointers to functions, taking no parameters, returning pointers to long.

Q2 [marks: 10]

Define Macro? Explain the following two macros with example.

1) __FILE__

2) __LINE__
Macro:

A macro is a fragment of code which has been given a name. Whenever the name is used, it is replaced by the contents of the macro.

1) __FILE__

This macro expands to the name of the current input file, in the form of a C string constant. This is the path by which the preprocessor opened the file, not the short names specified in #include or as the input file name argument. For example, "/usr/local/include/myheader.h" is a possible expansion of this macro.

2) __LINE__

This macro expands to the current input line number, in the form of a decimal integer constant. While we call it a predefined macro, it's a pretty strange macro, since its "definition" changes with each new line of source code.

__FILE__ and __LINE__ are useful in generating an error message to report an inconsistency detected by the program; the message can state the source line at which the inconsistency was detected. For example,

fprintf (stderr, "Internal error: "

 "negative string length "

 "%d at %s, line %d.",

 length, __FILE__, __LINE__);

An #include directive changes the expansions of __FILE__ and __LINE__ to correspond to the included file. At the end of that file, when processing resumes on the input file that contained the #include directive, the expansions of __FILE__ and __LINE__ revert to the values they had before the #include (but __LINE__ is then incremented by one as processing moves to the line after the #include).

